linux-hardened/Documentation/serial-console.txt
Linus Torvalds 1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00

104 lines
3.8 KiB
Text

Linux Serial Console
To use a serial port as console you need to compile the support into your
kernel - by default it is not compiled in. For PC style serial ports
it's the config option next to "Standard/generic (dumb) serial support".
You must compile serial support into the kernel and not as a module.
It is possible to specify multiple devices for console output. You can
define a new kernel command line option to select which device(s) to
use for console output.
The format of this option is:
console=device,options
device: tty0 for the foreground virtual console
ttyX for any other virtual console
ttySx for a serial port
lp0 for the first parallel port
options: depend on the driver. For the serial port this
defines the baudrate/parity/bits of the port,
in the format BBBBPN, where BBBB is the speed,
P is parity (n/o/e), and N is bits. Default is
9600n8. The maximum baudrate is 115200.
You can specify multiple console= options on the kernel command line.
Output will appear on all of them. The last device will be used when
you open /dev/console. So, for example:
console=ttyS1,9600 console=tty0
defines that opening /dev/console will get you the current foreground
virtual console, and kernel messages will appear on both the VGA
console and the 2nd serial port (ttyS1 or COM2) at 9600 baud.
Note that you can only define one console per device type (serial, video).
If no console device is specified, the first device found capable of
acting as a system console will be used. At this time, the system
first looks for a VGA card and then for a serial port. So if you don't
have a VGA card in your system the first serial port will automatically
become the console.
You will need to create a new device to use /dev/console. The official
/dev/console is now character device 5,1.
Here's an example that will use /dev/ttyS1 (COM2) as the console.
Replace the sample values as needed.
1. Create /dev/console (real console) and /dev/tty0 (master virtual
console):
cd /dev
rm -f console tty0
mknod -m 622 console c 5 1
mknod -m 622 tty0 c 4 0
2. LILO can also take input from a serial device. This is a very
useful option. To tell LILO to use the serial port:
In lilo.conf (global section):
serial = 1,9600n8 (ttyS1, 9600 bd, no parity, 8 bits)
3. Adjust to kernel flags for the new kernel,
again in lilo.conf (kernel section)
append = "console=ttyS1,9600"
4. Make sure a getty runs on the serial port so that you can login to
it once the system is done booting. This is done by adding a line
like this to /etc/inittab (exact syntax depends on your getty):
S1:23:respawn:/sbin/getty -L ttyS1 9600 vt100
5. Init and /etc/ioctl.save
Sysvinit remembers its stty settings in a file in /etc, called
`/etc/ioctl.save'. REMOVE THIS FILE before using the serial
console for the first time, because otherwise init will probably
set the baudrate to 38400 (baudrate of the virtual console).
6. /dev/console and X
Programs that want to do something with the virtual console usually
open /dev/console. If you have created the new /dev/console device,
and your console is NOT the virtual console some programs will fail.
Those are programs that want to access the VT interface, and use
/dev/console instead of /dev/tty0. Some of those programs are:
Xfree86, svgalib, gpm, SVGATextMode
It should be fixed in modern versions of these programs though.
Note that if you boot without a console= option (or with
console=/dev/tty0), /dev/console is the same as /dev/tty0. In that
case everything will still work.
7. Thanks
Thanks to Geert Uytterhoeven <geert@linux-m68k.org>
for porting the patches from 2.1.4x to 2.1.6x for taking care of
the integration of these patches into m68k, ppc and alpha.
Miquel van Smoorenburg <miquels@cistron.nl>, 11-Jun-2000