linux-hardened/fs/btrfs/btrfs_inode.h
David Sterba 9888c3402c btrfs: replace GPL boilerplate by SPDX -- headers
Remove GPL boilerplate text (long, short, one-line) and keep the rest,
ie. personal, company or original source copyright statements. Add the
SPDX header.

Unify the include protection macros to match the file names.

Signed-off-by: David Sterba <dsterba@suse.com>
2018-04-12 16:29:46 +02:00

354 lines
9.4 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (C) 2007 Oracle. All rights reserved.
*/
#ifndef BTRFS_INODE_H
#define BTRFS_INODE_H
#include <linux/hash.h>
#include "extent_map.h"
#include "extent_io.h"
#include "ordered-data.h"
#include "delayed-inode.h"
/*
* ordered_data_close is set by truncate when a file that used
* to have good data has been truncated to zero. When it is set
* the btrfs file release call will add this inode to the
* ordered operations list so that we make sure to flush out any
* new data the application may have written before commit.
*/
#define BTRFS_INODE_ORDERED_DATA_CLOSE 0
#define BTRFS_INODE_ORPHAN_META_RESERVED 1
#define BTRFS_INODE_DUMMY 2
#define BTRFS_INODE_IN_DEFRAG 3
#define BTRFS_INODE_HAS_ORPHAN_ITEM 4
#define BTRFS_INODE_HAS_ASYNC_EXTENT 5
#define BTRFS_INODE_NEEDS_FULL_SYNC 6
#define BTRFS_INODE_COPY_EVERYTHING 7
#define BTRFS_INODE_IN_DELALLOC_LIST 8
#define BTRFS_INODE_READDIO_NEED_LOCK 9
#define BTRFS_INODE_HAS_PROPS 10
/* in memory btrfs inode */
struct btrfs_inode {
/* which subvolume this inode belongs to */
struct btrfs_root *root;
/* key used to find this inode on disk. This is used by the code
* to read in roots of subvolumes
*/
struct btrfs_key location;
/*
* Lock for counters and all fields used to determine if the inode is in
* the log or not (last_trans, last_sub_trans, last_log_commit,
* logged_trans).
*/
spinlock_t lock;
/* the extent_tree has caches of all the extent mappings to disk */
struct extent_map_tree extent_tree;
/* the io_tree does range state (DIRTY, LOCKED etc) */
struct extent_io_tree io_tree;
/* special utility tree used to record which mirrors have already been
* tried when checksums fail for a given block
*/
struct extent_io_tree io_failure_tree;
/* held while logging the inode in tree-log.c */
struct mutex log_mutex;
/* held while doing delalloc reservations */
struct mutex delalloc_mutex;
/* used to order data wrt metadata */
struct btrfs_ordered_inode_tree ordered_tree;
/* list of all the delalloc inodes in the FS. There are times we need
* to write all the delalloc pages to disk, and this list is used
* to walk them all.
*/
struct list_head delalloc_inodes;
/* node for the red-black tree that links inodes in subvolume root */
struct rb_node rb_node;
unsigned long runtime_flags;
/* Keep track of who's O_SYNC/fsyncing currently */
atomic_t sync_writers;
/* full 64 bit generation number, struct vfs_inode doesn't have a big
* enough field for this.
*/
u64 generation;
/*
* transid of the trans_handle that last modified this inode
*/
u64 last_trans;
/*
* transid that last logged this inode
*/
u64 logged_trans;
/*
* log transid when this inode was last modified
*/
int last_sub_trans;
/* a local copy of root's last_log_commit */
int last_log_commit;
/* total number of bytes pending delalloc, used by stat to calc the
* real block usage of the file
*/
u64 delalloc_bytes;
/*
* Total number of bytes pending delalloc that fall within a file
* range that is either a hole or beyond EOF (and no prealloc extent
* exists in the range). This is always <= delalloc_bytes.
*/
u64 new_delalloc_bytes;
/*
* total number of bytes pending defrag, used by stat to check whether
* it needs COW.
*/
u64 defrag_bytes;
/*
* the size of the file stored in the metadata on disk. data=ordered
* means the in-memory i_size might be larger than the size on disk
* because not all the blocks are written yet.
*/
u64 disk_i_size;
/*
* if this is a directory then index_cnt is the counter for the index
* number for new files that are created
*/
u64 index_cnt;
/* Cache the directory index number to speed the dir/file remove */
u64 dir_index;
/* the fsync log has some corner cases that mean we have to check
* directories to see if any unlinks have been done before
* the directory was logged. See tree-log.c for all the
* details
*/
u64 last_unlink_trans;
/*
* Number of bytes outstanding that are going to need csums. This is
* used in ENOSPC accounting.
*/
u64 csum_bytes;
/* flags field from the on disk inode */
u32 flags;
/*
* Counters to keep track of the number of extent item's we may use due
* to delalloc and such. outstanding_extents is the number of extent
* items we think we'll end up using, and reserved_extents is the number
* of extent items we've reserved metadata for.
*/
unsigned outstanding_extents;
struct btrfs_block_rsv block_rsv;
/*
* Cached values of inode properties
*/
unsigned prop_compress; /* per-file compression algorithm */
/*
* Force compression on the file using the defrag ioctl, could be
* different from prop_compress and takes precedence if set
*/
unsigned defrag_compress;
struct btrfs_delayed_node *delayed_node;
/* File creation time. */
struct timespec i_otime;
/* Hook into fs_info->delayed_iputs */
struct list_head delayed_iput;
/*
* To avoid races between lockless (i_mutex not held) direct IO writes
* and concurrent fsync requests. Direct IO writes must acquire read
* access on this semaphore for creating an extent map and its
* corresponding ordered extent. The fast fsync path must acquire write
* access on this semaphore before it collects ordered extents and
* extent maps.
*/
struct rw_semaphore dio_sem;
struct inode vfs_inode;
};
extern unsigned char btrfs_filetype_table[];
static inline struct btrfs_inode *BTRFS_I(const struct inode *inode)
{
return container_of(inode, struct btrfs_inode, vfs_inode);
}
static inline unsigned long btrfs_inode_hash(u64 objectid,
const struct btrfs_root *root)
{
u64 h = objectid ^ (root->objectid * GOLDEN_RATIO_PRIME);
#if BITS_PER_LONG == 32
h = (h >> 32) ^ (h & 0xffffffff);
#endif
return (unsigned long)h;
}
static inline void btrfs_insert_inode_hash(struct inode *inode)
{
unsigned long h = btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root);
__insert_inode_hash(inode, h);
}
static inline u64 btrfs_ino(const struct btrfs_inode *inode)
{
u64 ino = inode->location.objectid;
/*
* !ino: btree_inode
* type == BTRFS_ROOT_ITEM_KEY: subvol dir
*/
if (!ino || inode->location.type == BTRFS_ROOT_ITEM_KEY)
ino = inode->vfs_inode.i_ino;
return ino;
}
static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size)
{
i_size_write(&inode->vfs_inode, size);
inode->disk_i_size = size;
}
static inline bool btrfs_is_free_space_inode(struct btrfs_inode *inode)
{
struct btrfs_root *root = inode->root;
if (root == root->fs_info->tree_root &&
btrfs_ino(inode) != BTRFS_BTREE_INODE_OBJECTID)
return true;
if (inode->location.objectid == BTRFS_FREE_INO_OBJECTID)
return true;
return false;
}
static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode,
int mod)
{
lockdep_assert_held(&inode->lock);
inode->outstanding_extents += mod;
if (btrfs_is_free_space_inode(inode))
return;
trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode),
mod);
}
static inline int btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation)
{
int ret = 0;
spin_lock(&inode->lock);
if (inode->logged_trans == generation &&
inode->last_sub_trans <= inode->last_log_commit &&
inode->last_sub_trans <= inode->root->last_log_commit) {
/*
* After a ranged fsync we might have left some extent maps
* (that fall outside the fsync's range). So return false
* here if the list isn't empty, to make sure btrfs_log_inode()
* will be called and process those extent maps.
*/
smp_mb();
if (list_empty(&inode->extent_tree.modified_extents))
ret = 1;
}
spin_unlock(&inode->lock);
return ret;
}
#define BTRFS_DIO_ORIG_BIO_SUBMITTED 0x1
struct btrfs_dio_private {
struct inode *inode;
unsigned long flags;
u64 logical_offset;
u64 disk_bytenr;
u64 bytes;
void *private;
/* number of bios pending for this dio */
atomic_t pending_bios;
/* IO errors */
int errors;
/* orig_bio is our btrfs_io_bio */
struct bio *orig_bio;
/* dio_bio came from fs/direct-io.c */
struct bio *dio_bio;
/*
* The original bio may be split to several sub-bios, this is
* done during endio of sub-bios
*/
blk_status_t (*subio_endio)(struct inode *, struct btrfs_io_bio *,
blk_status_t);
};
/*
* Disable DIO read nolock optimization, so new dio readers will be forced
* to grab i_mutex. It is used to avoid the endless truncate due to
* nonlocked dio read.
*/
static inline void btrfs_inode_block_unlocked_dio(struct btrfs_inode *inode)
{
set_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags);
smp_mb();
}
static inline void btrfs_inode_resume_unlocked_dio(struct btrfs_inode *inode)
{
smp_mb__before_atomic();
clear_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags);
}
static inline void btrfs_print_data_csum_error(struct btrfs_inode *inode,
u64 logical_start, u32 csum, u32 csum_expected, int mirror_num)
{
struct btrfs_root *root = inode->root;
/* Output minus objectid, which is more meaningful */
if (root->objectid >= BTRFS_LAST_FREE_OBJECTID)
btrfs_warn_rl(root->fs_info,
"csum failed root %lld ino %lld off %llu csum 0x%08x expected csum 0x%08x mirror %d",
root->objectid, btrfs_ino(inode),
logical_start, csum, csum_expected, mirror_num);
else
btrfs_warn_rl(root->fs_info,
"csum failed root %llu ino %llu off %llu csum 0x%08x expected csum 0x%08x mirror %d",
root->objectid, btrfs_ino(inode),
logical_start, csum, csum_expected, mirror_num);
}
#endif