09cbfeaf1a
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
317 lines
9.1 KiB
C
317 lines
9.1 KiB
C
/*
|
|
* Copyright 1999 Hans Reiser, see reiserfs/README for licensing and copyright
|
|
* details
|
|
*/
|
|
|
|
#include <linux/time.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/buffer_head.h>
|
|
#include "reiserfs.h"
|
|
|
|
/*
|
|
* access to tail : when one is going to read tail it must make sure, that is
|
|
* not running. direct2indirect and indirect2direct can not run concurrently
|
|
*/
|
|
|
|
/*
|
|
* Converts direct items to an unformatted node. Panics if file has no
|
|
* tail. -ENOSPC if no disk space for conversion
|
|
*/
|
|
/*
|
|
* path points to first direct item of the file regardless of how many of
|
|
* them are there
|
|
*/
|
|
int direct2indirect(struct reiserfs_transaction_handle *th, struct inode *inode,
|
|
struct treepath *path, struct buffer_head *unbh,
|
|
loff_t tail_offset)
|
|
{
|
|
struct super_block *sb = inode->i_sb;
|
|
struct buffer_head *up_to_date_bh;
|
|
struct item_head *p_le_ih = tp_item_head(path);
|
|
unsigned long total_tail = 0;
|
|
|
|
/* Key to search for the last byte of the converted item. */
|
|
struct cpu_key end_key;
|
|
|
|
/*
|
|
* new indirect item to be inserted or key
|
|
* of unfm pointer to be pasted
|
|
*/
|
|
struct item_head ind_ih;
|
|
int blk_size;
|
|
/* returned value for reiserfs_insert_item and clones */
|
|
int retval;
|
|
/* Handle on an unformatted node that will be inserted in the tree. */
|
|
unp_t unfm_ptr;
|
|
|
|
BUG_ON(!th->t_trans_id);
|
|
|
|
REISERFS_SB(sb)->s_direct2indirect++;
|
|
|
|
blk_size = sb->s_blocksize;
|
|
|
|
/*
|
|
* and key to search for append or insert pointer to the new
|
|
* unformatted node.
|
|
*/
|
|
copy_item_head(&ind_ih, p_le_ih);
|
|
set_le_ih_k_offset(&ind_ih, tail_offset);
|
|
set_le_ih_k_type(&ind_ih, TYPE_INDIRECT);
|
|
|
|
/* Set the key to search for the place for new unfm pointer */
|
|
make_cpu_key(&end_key, inode, tail_offset, TYPE_INDIRECT, 4);
|
|
|
|
/* FIXME: we could avoid this */
|
|
if (search_for_position_by_key(sb, &end_key, path) == POSITION_FOUND) {
|
|
reiserfs_error(sb, "PAP-14030",
|
|
"pasted or inserted byte exists in "
|
|
"the tree %K. Use fsck to repair.", &end_key);
|
|
pathrelse(path);
|
|
return -EIO;
|
|
}
|
|
|
|
p_le_ih = tp_item_head(path);
|
|
|
|
unfm_ptr = cpu_to_le32(unbh->b_blocknr);
|
|
|
|
if (is_statdata_le_ih(p_le_ih)) {
|
|
/* Insert new indirect item. */
|
|
set_ih_free_space(&ind_ih, 0); /* delete at nearest future */
|
|
put_ih_item_len(&ind_ih, UNFM_P_SIZE);
|
|
PATH_LAST_POSITION(path)++;
|
|
retval =
|
|
reiserfs_insert_item(th, path, &end_key, &ind_ih, inode,
|
|
(char *)&unfm_ptr);
|
|
} else {
|
|
/* Paste into last indirect item of an object. */
|
|
retval = reiserfs_paste_into_item(th, path, &end_key, inode,
|
|
(char *)&unfm_ptr,
|
|
UNFM_P_SIZE);
|
|
}
|
|
if (retval) {
|
|
return retval;
|
|
}
|
|
/*
|
|
* note: from here there are two keys which have matching first
|
|
* three key components. They only differ by the fourth one.
|
|
*/
|
|
|
|
/* Set the key to search for the direct items of the file */
|
|
make_cpu_key(&end_key, inode, max_reiserfs_offset(inode), TYPE_DIRECT,
|
|
4);
|
|
|
|
/*
|
|
* Move bytes from the direct items to the new unformatted node
|
|
* and delete them.
|
|
*/
|
|
while (1) {
|
|
int tail_size;
|
|
|
|
/*
|
|
* end_key.k_offset is set so, that we will always have found
|
|
* last item of the file
|
|
*/
|
|
if (search_for_position_by_key(sb, &end_key, path) ==
|
|
POSITION_FOUND)
|
|
reiserfs_panic(sb, "PAP-14050",
|
|
"direct item (%K) not found", &end_key);
|
|
p_le_ih = tp_item_head(path);
|
|
RFALSE(!is_direct_le_ih(p_le_ih),
|
|
"vs-14055: direct item expected(%K), found %h",
|
|
&end_key, p_le_ih);
|
|
tail_size = (le_ih_k_offset(p_le_ih) & (blk_size - 1))
|
|
+ ih_item_len(p_le_ih) - 1;
|
|
|
|
/*
|
|
* we only send the unbh pointer if the buffer is not
|
|
* up to date. this avoids overwriting good data from
|
|
* writepage() with old data from the disk or buffer cache
|
|
* Special case: unbh->b_page will be NULL if we are coming
|
|
* through DIRECT_IO handler here.
|
|
*/
|
|
if (!unbh->b_page || buffer_uptodate(unbh)
|
|
|| PageUptodate(unbh->b_page)) {
|
|
up_to_date_bh = NULL;
|
|
} else {
|
|
up_to_date_bh = unbh;
|
|
}
|
|
retval = reiserfs_delete_item(th, path, &end_key, inode,
|
|
up_to_date_bh);
|
|
|
|
total_tail += retval;
|
|
|
|
/* done: file does not have direct items anymore */
|
|
if (tail_size == retval)
|
|
break;
|
|
|
|
}
|
|
/*
|
|
* if we've copied bytes from disk into the page, we need to zero
|
|
* out the unused part of the block (it was not up to date before)
|
|
*/
|
|
if (up_to_date_bh) {
|
|
unsigned pgoff =
|
|
(tail_offset + total_tail - 1) & (PAGE_SIZE - 1);
|
|
char *kaddr = kmap_atomic(up_to_date_bh->b_page);
|
|
memset(kaddr + pgoff, 0, blk_size - total_tail);
|
|
kunmap_atomic(kaddr);
|
|
}
|
|
|
|
REISERFS_I(inode)->i_first_direct_byte = U32_MAX;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* stolen from fs/buffer.c */
|
|
void reiserfs_unmap_buffer(struct buffer_head *bh)
|
|
{
|
|
lock_buffer(bh);
|
|
if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
|
|
BUG();
|
|
}
|
|
clear_buffer_dirty(bh);
|
|
/*
|
|
* Remove the buffer from whatever list it belongs to. We are mostly
|
|
* interested in removing it from per-sb j_dirty_buffers list, to avoid
|
|
* BUG() on attempt to write not mapped buffer
|
|
*/
|
|
if ((!list_empty(&bh->b_assoc_buffers) || bh->b_private) && bh->b_page) {
|
|
struct inode *inode = bh->b_page->mapping->host;
|
|
struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
|
|
spin_lock(&j->j_dirty_buffers_lock);
|
|
list_del_init(&bh->b_assoc_buffers);
|
|
reiserfs_free_jh(bh);
|
|
spin_unlock(&j->j_dirty_buffers_lock);
|
|
}
|
|
clear_buffer_mapped(bh);
|
|
clear_buffer_req(bh);
|
|
clear_buffer_new(bh);
|
|
bh->b_bdev = NULL;
|
|
unlock_buffer(bh);
|
|
}
|
|
|
|
/*
|
|
* this first locks inode (neither reads nor sync are permitted),
|
|
* reads tail through page cache, insert direct item. When direct item
|
|
* inserted successfully inode is left locked. Return value is always
|
|
* what we expect from it (number of cut bytes). But when tail remains
|
|
* in the unformatted node, we set mode to SKIP_BALANCING and unlock
|
|
* inode
|
|
*/
|
|
int indirect2direct(struct reiserfs_transaction_handle *th,
|
|
struct inode *inode, struct page *page,
|
|
struct treepath *path, /* path to the indirect item. */
|
|
const struct cpu_key *item_key, /* Key to look for
|
|
* unformatted node
|
|
* pointer to be cut. */
|
|
loff_t n_new_file_size, /* New file size. */
|
|
char *mode)
|
|
{
|
|
struct super_block *sb = inode->i_sb;
|
|
struct item_head s_ih;
|
|
unsigned long block_size = sb->s_blocksize;
|
|
char *tail;
|
|
int tail_len, round_tail_len;
|
|
loff_t pos, pos1; /* position of first byte of the tail */
|
|
struct cpu_key key;
|
|
|
|
BUG_ON(!th->t_trans_id);
|
|
|
|
REISERFS_SB(sb)->s_indirect2direct++;
|
|
|
|
*mode = M_SKIP_BALANCING;
|
|
|
|
/* store item head path points to. */
|
|
copy_item_head(&s_ih, tp_item_head(path));
|
|
|
|
tail_len = (n_new_file_size & (block_size - 1));
|
|
if (get_inode_sd_version(inode) == STAT_DATA_V2)
|
|
round_tail_len = ROUND_UP(tail_len);
|
|
else
|
|
round_tail_len = tail_len;
|
|
|
|
pos =
|
|
le_ih_k_offset(&s_ih) - 1 + (ih_item_len(&s_ih) / UNFM_P_SIZE -
|
|
1) * sb->s_blocksize;
|
|
pos1 = pos;
|
|
|
|
/*
|
|
* we are protected by i_mutex. The tail can not disapper, not
|
|
* append can be done either
|
|
* we are in truncate or packing tail in file_release
|
|
*/
|
|
|
|
tail = (char *)kmap(page); /* this can schedule */
|
|
|
|
if (path_changed(&s_ih, path)) {
|
|
/* re-search indirect item */
|
|
if (search_for_position_by_key(sb, item_key, path)
|
|
== POSITION_NOT_FOUND)
|
|
reiserfs_panic(sb, "PAP-5520",
|
|
"item to be converted %K does not exist",
|
|
item_key);
|
|
copy_item_head(&s_ih, tp_item_head(path));
|
|
#ifdef CONFIG_REISERFS_CHECK
|
|
pos = le_ih_k_offset(&s_ih) - 1 +
|
|
(ih_item_len(&s_ih) / UNFM_P_SIZE -
|
|
1) * sb->s_blocksize;
|
|
if (pos != pos1)
|
|
reiserfs_panic(sb, "vs-5530", "tail position "
|
|
"changed while we were reading it");
|
|
#endif
|
|
}
|
|
|
|
/* Set direct item header to insert. */
|
|
make_le_item_head(&s_ih, NULL, get_inode_item_key_version(inode),
|
|
pos1 + 1, TYPE_DIRECT, round_tail_len,
|
|
0xffff /*ih_free_space */ );
|
|
|
|
/*
|
|
* we want a pointer to the first byte of the tail in the page.
|
|
* the page was locked and this part of the page was up to date when
|
|
* indirect2direct was called, so we know the bytes are still valid
|
|
*/
|
|
tail = tail + (pos & (PAGE_SIZE - 1));
|
|
|
|
PATH_LAST_POSITION(path)++;
|
|
|
|
key = *item_key;
|
|
set_cpu_key_k_type(&key, TYPE_DIRECT);
|
|
key.key_length = 4;
|
|
/* Insert tail as new direct item in the tree */
|
|
if (reiserfs_insert_item(th, path, &key, &s_ih, inode,
|
|
tail ? tail : NULL) < 0) {
|
|
/*
|
|
* No disk memory. So we can not convert last unformatted node
|
|
* to the direct item. In this case we used to adjust
|
|
* indirect items's ih_free_space. Now ih_free_space is not
|
|
* used, it would be ideal to write zeros to corresponding
|
|
* unformatted node. For now i_size is considered as guard for
|
|
* going out of file size
|
|
*/
|
|
kunmap(page);
|
|
return block_size - round_tail_len;
|
|
}
|
|
kunmap(page);
|
|
|
|
/* make sure to get the i_blocks changes from reiserfs_insert_item */
|
|
reiserfs_update_sd(th, inode);
|
|
|
|
/*
|
|
* note: we have now the same as in above direct2indirect
|
|
* conversion: there are two keys which have matching first three
|
|
* key components. They only differ by the fourth one.
|
|
*/
|
|
|
|
/*
|
|
* We have inserted new direct item and must remove last
|
|
* unformatted node.
|
|
*/
|
|
*mode = M_CUT;
|
|
|
|
/* we store position of first direct item in the in-core inode */
|
|
/* mark_file_with_tail (inode, pos1 + 1); */
|
|
REISERFS_I(inode)->i_first_direct_byte = pos1 + 1;
|
|
|
|
return block_size - round_tail_len;
|
|
}
|