linux-hardened/drivers/scsi/aacraid/linit.c
Salyzyn, Mark 94cf6ba11b [SCSI] aacraid: fix driver failure with Dell PowerEdge Expandable RAID Controller 3/Di
As reported in http://bugzilla.kernel.org/show_bug.cgi?id=3D9133 it was
discovered that the PERC line of controllers lacked a key 64 bit
ScatterGather capable SCSI pass-through function. The adapters are still
capable of 64 bit ScatterGather I/O commands, but these two can not be
mixed. This problem was exacerbated by the introduction of the SCSI
Generic access to the DASD physical devices.

The fix for users before this patch is applied is aacraid.dacmode=3D0 on
the kernel command line to disable 64 bit I/O.

The enclosed patch introduces a new adapter quirk and tries to limp
along by enabling pass-through in situations where memory is 32 bit
addressable on 64 bit machines, or disable the pass-through functions
altogether. I expect that the check for 32 bit addressable memory to be
controversial in that it can be incorrect in non-Dell non-Intel systems
that PERC would never be installed under, the alternative is to disable
pass-through in all cases which could be reported as another regression.

Pass-through is used for SCSI Generic access to the physical devices, or
for the management applications to properly function.

In systems where this patch has disabled pass-through because it is
unsupportable in combination with I/O performance, the user can choose
to enable pass-through by turning off dacmode (aacraid.dacmode=3D0) or
limiting the discovered kernel memory (mem=3D4G) with an associated loss
in runtime performance. If we chose instead to turn off 64 bit dacmode
for the adapters with this quirk, then this would be reported as another
regression.

Signed-off-by: Mark Salyzyn <aacraid@adaptec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
2008-01-11 18:28:07 -06:00

1209 lines
41 KiB
C

/*
* Adaptec AAC series RAID controller driver
* (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
*
* based on the old aacraid driver that is..
* Adaptec aacraid device driver for Linux.
*
* Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Module Name:
* linit.c
*
* Abstract: Linux Driver entry module for Adaptec RAID Array Controller
*/
#include <linux/compat.h>
#include <linux/blkdev.h>
#include <linux/completion.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/syscalls.h>
#include <linux/delay.h>
#include <linux/kthread.h>
#include <asm/semaphore.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_tcq.h>
#include <scsi/scsicam.h>
#include <scsi/scsi_eh.h>
#include "aacraid.h"
#define AAC_DRIVER_VERSION "1.1-5"
#ifndef AAC_DRIVER_BRANCH
#define AAC_DRIVER_BRANCH ""
#endif
#define AAC_DRIVER_BUILD_DATE __DATE__ " " __TIME__
#define AAC_DRIVERNAME "aacraid"
#ifdef AAC_DRIVER_BUILD
#define _str(x) #x
#define str(x) _str(x)
#define AAC_DRIVER_FULL_VERSION AAC_DRIVER_VERSION "[" str(AAC_DRIVER_BUILD) "]" AAC_DRIVER_BRANCH
#else
#define AAC_DRIVER_FULL_VERSION AAC_DRIVER_VERSION AAC_DRIVER_BRANCH " " AAC_DRIVER_BUILD_DATE
#endif
MODULE_AUTHOR("Red Hat Inc and Adaptec");
MODULE_DESCRIPTION("Dell PERC2, 2/Si, 3/Si, 3/Di, "
"Adaptec Advanced Raid Products, "
"HP NetRAID-4M, IBM ServeRAID & ICP SCSI driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(AAC_DRIVER_FULL_VERSION);
static LIST_HEAD(aac_devices);
static int aac_cfg_major = -1;
char aac_driver_version[] = AAC_DRIVER_FULL_VERSION;
/*
* Because of the way Linux names scsi devices, the order in this table has
* become important. Check for on-board Raid first, add-in cards second.
*
* Note: The last field is used to index into aac_drivers below.
*/
static struct pci_device_id aac_pci_tbl[] = {
{ 0x1028, 0x0001, 0x1028, 0x0001, 0, 0, 0 }, /* PERC 2/Si (Iguana/PERC2Si) */
{ 0x1028, 0x0002, 0x1028, 0x0002, 0, 0, 1 }, /* PERC 3/Di (Opal/PERC3Di) */
{ 0x1028, 0x0003, 0x1028, 0x0003, 0, 0, 2 }, /* PERC 3/Si (SlimFast/PERC3Si */
{ 0x1028, 0x0004, 0x1028, 0x00d0, 0, 0, 3 }, /* PERC 3/Di (Iguana FlipChip/PERC3DiF */
{ 0x1028, 0x0002, 0x1028, 0x00d1, 0, 0, 4 }, /* PERC 3/Di (Viper/PERC3DiV) */
{ 0x1028, 0x0002, 0x1028, 0x00d9, 0, 0, 5 }, /* PERC 3/Di (Lexus/PERC3DiL) */
{ 0x1028, 0x000a, 0x1028, 0x0106, 0, 0, 6 }, /* PERC 3/Di (Jaguar/PERC3DiJ) */
{ 0x1028, 0x000a, 0x1028, 0x011b, 0, 0, 7 }, /* PERC 3/Di (Dagger/PERC3DiD) */
{ 0x1028, 0x000a, 0x1028, 0x0121, 0, 0, 8 }, /* PERC 3/Di (Boxster/PERC3DiB) */
{ 0x9005, 0x0283, 0x9005, 0x0283, 0, 0, 9 }, /* catapult */
{ 0x9005, 0x0284, 0x9005, 0x0284, 0, 0, 10 }, /* tomcat */
{ 0x9005, 0x0285, 0x9005, 0x0286, 0, 0, 11 }, /* Adaptec 2120S (Crusader) */
{ 0x9005, 0x0285, 0x9005, 0x0285, 0, 0, 12 }, /* Adaptec 2200S (Vulcan) */
{ 0x9005, 0x0285, 0x9005, 0x0287, 0, 0, 13 }, /* Adaptec 2200S (Vulcan-2m) */
{ 0x9005, 0x0285, 0x17aa, 0x0286, 0, 0, 14 }, /* Legend S220 (Legend Crusader) */
{ 0x9005, 0x0285, 0x17aa, 0x0287, 0, 0, 15 }, /* Legend S230 (Legend Vulcan) */
{ 0x9005, 0x0285, 0x9005, 0x0288, 0, 0, 16 }, /* Adaptec 3230S (Harrier) */
{ 0x9005, 0x0285, 0x9005, 0x0289, 0, 0, 17 }, /* Adaptec 3240S (Tornado) */
{ 0x9005, 0x0285, 0x9005, 0x028a, 0, 0, 18 }, /* ASR-2020ZCR SCSI PCI-X ZCR (Skyhawk) */
{ 0x9005, 0x0285, 0x9005, 0x028b, 0, 0, 19 }, /* ASR-2025ZCR SCSI SO-DIMM PCI-X ZCR (Terminator) */
{ 0x9005, 0x0286, 0x9005, 0x028c, 0, 0, 20 }, /* ASR-2230S + ASR-2230SLP PCI-X (Lancer) */
{ 0x9005, 0x0286, 0x9005, 0x028d, 0, 0, 21 }, /* ASR-2130S (Lancer) */
{ 0x9005, 0x0286, 0x9005, 0x029b, 0, 0, 22 }, /* AAR-2820SA (Intruder) */
{ 0x9005, 0x0286, 0x9005, 0x029c, 0, 0, 23 }, /* AAR-2620SA (Intruder) */
{ 0x9005, 0x0286, 0x9005, 0x029d, 0, 0, 24 }, /* AAR-2420SA (Intruder) */
{ 0x9005, 0x0286, 0x9005, 0x029e, 0, 0, 25 }, /* ICP9024RO (Lancer) */
{ 0x9005, 0x0286, 0x9005, 0x029f, 0, 0, 26 }, /* ICP9014RO (Lancer) */
{ 0x9005, 0x0286, 0x9005, 0x02a0, 0, 0, 27 }, /* ICP9047MA (Lancer) */
{ 0x9005, 0x0286, 0x9005, 0x02a1, 0, 0, 28 }, /* ICP9087MA (Lancer) */
{ 0x9005, 0x0286, 0x9005, 0x02a3, 0, 0, 29 }, /* ICP5445AU (Hurricane44) */
{ 0x9005, 0x0285, 0x9005, 0x02a4, 0, 0, 30 }, /* ICP9085LI (Marauder-X) */
{ 0x9005, 0x0285, 0x9005, 0x02a5, 0, 0, 31 }, /* ICP5085BR (Marauder-E) */
{ 0x9005, 0x0286, 0x9005, 0x02a6, 0, 0, 32 }, /* ICP9067MA (Intruder-6) */
{ 0x9005, 0x0287, 0x9005, 0x0800, 0, 0, 33 }, /* Themisto Jupiter Platform */
{ 0x9005, 0x0200, 0x9005, 0x0200, 0, 0, 33 }, /* Themisto Jupiter Platform */
{ 0x9005, 0x0286, 0x9005, 0x0800, 0, 0, 34 }, /* Callisto Jupiter Platform */
{ 0x9005, 0x0285, 0x9005, 0x028e, 0, 0, 35 }, /* ASR-2020SA SATA PCI-X ZCR (Skyhawk) */
{ 0x9005, 0x0285, 0x9005, 0x028f, 0, 0, 36 }, /* ASR-2025SA SATA SO-DIMM PCI-X ZCR (Terminator) */
{ 0x9005, 0x0285, 0x9005, 0x0290, 0, 0, 37 }, /* AAR-2410SA PCI SATA 4ch (Jaguar II) */
{ 0x9005, 0x0285, 0x1028, 0x0291, 0, 0, 38 }, /* CERC SATA RAID 2 PCI SATA 6ch (DellCorsair) */
{ 0x9005, 0x0285, 0x9005, 0x0292, 0, 0, 39 }, /* AAR-2810SA PCI SATA 8ch (Corsair-8) */
{ 0x9005, 0x0285, 0x9005, 0x0293, 0, 0, 40 }, /* AAR-21610SA PCI SATA 16ch (Corsair-16) */
{ 0x9005, 0x0285, 0x9005, 0x0294, 0, 0, 41 }, /* ESD SO-DIMM PCI-X SATA ZCR (Prowler) */
{ 0x9005, 0x0285, 0x103C, 0x3227, 0, 0, 42 }, /* AAR-2610SA PCI SATA 6ch */
{ 0x9005, 0x0285, 0x9005, 0x0296, 0, 0, 43 }, /* ASR-2240S (SabreExpress) */
{ 0x9005, 0x0285, 0x9005, 0x0297, 0, 0, 44 }, /* ASR-4005 */
{ 0x9005, 0x0285, 0x1014, 0x02F2, 0, 0, 45 }, /* IBM 8i (AvonPark) */
{ 0x9005, 0x0285, 0x1014, 0x0312, 0, 0, 45 }, /* IBM 8i (AvonPark Lite) */
{ 0x9005, 0x0286, 0x1014, 0x9580, 0, 0, 46 }, /* IBM 8k/8k-l8 (Aurora) */
{ 0x9005, 0x0286, 0x1014, 0x9540, 0, 0, 47 }, /* IBM 8k/8k-l4 (Aurora Lite) */
{ 0x9005, 0x0285, 0x9005, 0x0298, 0, 0, 48 }, /* ASR-4000 (BlackBird) */
{ 0x9005, 0x0285, 0x9005, 0x0299, 0, 0, 49 }, /* ASR-4800SAS (Marauder-X) */
{ 0x9005, 0x0285, 0x9005, 0x029a, 0, 0, 50 }, /* ASR-4805SAS (Marauder-E) */
{ 0x9005, 0x0286, 0x9005, 0x02a2, 0, 0, 51 }, /* ASR-3800 (Hurricane44) */
{ 0x9005, 0x0285, 0x1028, 0x0287, 0, 0, 52 }, /* Perc 320/DC*/
{ 0x1011, 0x0046, 0x9005, 0x0365, 0, 0, 53 }, /* Adaptec 5400S (Mustang)*/
{ 0x1011, 0x0046, 0x9005, 0x0364, 0, 0, 54 }, /* Adaptec 5400S (Mustang)*/
{ 0x1011, 0x0046, 0x9005, 0x1364, 0, 0, 55 }, /* Dell PERC2/QC */
{ 0x1011, 0x0046, 0x103c, 0x10c2, 0, 0, 56 }, /* HP NetRAID-4M */
{ 0x9005, 0x0285, 0x1028, PCI_ANY_ID, 0, 0, 57 }, /* Dell Catchall */
{ 0x9005, 0x0285, 0x17aa, PCI_ANY_ID, 0, 0, 58 }, /* Legend Catchall */
{ 0x9005, 0x0285, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 59 }, /* Adaptec Catch All */
{ 0x9005, 0x0286, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 60 }, /* Adaptec Rocket Catch All */
{ 0x9005, 0x0288, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 61 }, /* Adaptec NEMER/ARK Catch All */
{ 0,}
};
MODULE_DEVICE_TABLE(pci, aac_pci_tbl);
/*
* dmb - For now we add the number of channels to this structure.
* In the future we should add a fib that reports the number of channels
* for the card. At that time we can remove the channels from here
*/
static struct aac_driver_ident aac_drivers[] = {
{ aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 2/Si (Iguana/PERC2Si) */
{ aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Opal/PERC3Di) */
{ aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Si (SlimFast/PERC3Si */
{ aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Iguana FlipChip/PERC3DiF */
{ aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Viper/PERC3DiV) */
{ aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Lexus/PERC3DiL) */
{ aac_rx_init, "percraid", "DELL ", "PERCRAID ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Jaguar/PERC3DiJ) */
{ aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Dagger/PERC3DiD) */
{ aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Boxster/PERC3DiB) */
{ aac_rx_init, "aacraid", "ADAPTEC ", "catapult ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* catapult */
{ aac_rx_init, "aacraid", "ADAPTEC ", "tomcat ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* tomcat */
{ aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 2120S ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Adaptec 2120S (Crusader) */
{ aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 2200S ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Adaptec 2200S (Vulcan) */
{ aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 2200S ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Adaptec 2200S (Vulcan-2m) */
{ aac_rx_init, "aacraid", "Legend ", "Legend S220 ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend S220 (Legend Crusader) */
{ aac_rx_init, "aacraid", "Legend ", "Legend S230 ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend S230 (Legend Vulcan) */
{ aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 3230S ", 2 }, /* Adaptec 3230S (Harrier) */
{ aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 3240S ", 2 }, /* Adaptec 3240S (Tornado) */
{ aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2020ZCR ", 2 }, /* ASR-2020ZCR SCSI PCI-X ZCR (Skyhawk) */
{ aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2025ZCR ", 2 }, /* ASR-2025ZCR SCSI SO-DIMM PCI-X ZCR (Terminator) */
{ aac_rkt_init, "aacraid", "ADAPTEC ", "ASR-2230S PCI-X ", 2 }, /* ASR-2230S + ASR-2230SLP PCI-X (Lancer) */
{ aac_rkt_init, "aacraid", "ADAPTEC ", "ASR-2130S PCI-X ", 1 }, /* ASR-2130S (Lancer) */
{ aac_rkt_init, "aacraid", "ADAPTEC ", "AAR-2820SA ", 1 }, /* AAR-2820SA (Intruder) */
{ aac_rkt_init, "aacraid", "ADAPTEC ", "AAR-2620SA ", 1 }, /* AAR-2620SA (Intruder) */
{ aac_rkt_init, "aacraid", "ADAPTEC ", "AAR-2420SA ", 1 }, /* AAR-2420SA (Intruder) */
{ aac_rkt_init, "aacraid", "ICP ", "ICP9024RO ", 2 }, /* ICP9024RO (Lancer) */
{ aac_rkt_init, "aacraid", "ICP ", "ICP9014RO ", 1 }, /* ICP9014RO (Lancer) */
{ aac_rkt_init, "aacraid", "ICP ", "ICP9047MA ", 1 }, /* ICP9047MA (Lancer) */
{ aac_rkt_init, "aacraid", "ICP ", "ICP9087MA ", 1 }, /* ICP9087MA (Lancer) */
{ aac_rkt_init, "aacraid", "ICP ", "ICP5445AU ", 1 }, /* ICP5445AU (Hurricane44) */
{ aac_rx_init, "aacraid", "ICP ", "ICP9085LI ", 1 }, /* ICP9085LI (Marauder-X) */
{ aac_rx_init, "aacraid", "ICP ", "ICP5085BR ", 1 }, /* ICP5085BR (Marauder-E) */
{ aac_rkt_init, "aacraid", "ICP ", "ICP9067MA ", 1 }, /* ICP9067MA (Intruder-6) */
{ NULL , "aacraid", "ADAPTEC ", "Themisto ", 0, AAC_QUIRK_SLAVE }, /* Jupiter Platform */
{ aac_rkt_init, "aacraid", "ADAPTEC ", "Callisto ", 2, AAC_QUIRK_MASTER }, /* Jupiter Platform */
{ aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2020SA ", 1 }, /* ASR-2020SA SATA PCI-X ZCR (Skyhawk) */
{ aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2025SA ", 1 }, /* ASR-2025SA SATA SO-DIMM PCI-X ZCR (Terminator) */
{ aac_rx_init, "aacraid", "ADAPTEC ", "AAR-2410SA SATA ", 1, AAC_QUIRK_17SG }, /* AAR-2410SA PCI SATA 4ch (Jaguar II) */
{ aac_rx_init, "aacraid", "DELL ", "CERC SR2 ", 1, AAC_QUIRK_17SG }, /* CERC SATA RAID 2 PCI SATA 6ch (DellCorsair) */
{ aac_rx_init, "aacraid", "ADAPTEC ", "AAR-2810SA SATA ", 1, AAC_QUIRK_17SG }, /* AAR-2810SA PCI SATA 8ch (Corsair-8) */
{ aac_rx_init, "aacraid", "ADAPTEC ", "AAR-21610SA SATA", 1, AAC_QUIRK_17SG }, /* AAR-21610SA PCI SATA 16ch (Corsair-16) */
{ aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2026ZCR ", 1 }, /* ESD SO-DIMM PCI-X SATA ZCR (Prowler) */
{ aac_rx_init, "aacraid", "ADAPTEC ", "AAR-2610SA ", 1 }, /* SATA 6Ch (Bearcat) */
{ aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2240S ", 1 }, /* ASR-2240S (SabreExpress) */
{ aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4005 ", 1 }, /* ASR-4005 */
{ aac_rx_init, "ServeRAID","IBM ", "ServeRAID 8i ", 1 }, /* IBM 8i (AvonPark) */
{ aac_rkt_init, "ServeRAID","IBM ", "ServeRAID 8k-l8 ", 1 }, /* IBM 8k/8k-l8 (Aurora) */
{ aac_rkt_init, "ServeRAID","IBM ", "ServeRAID 8k-l4 ", 1 }, /* IBM 8k/8k-l4 (Aurora Lite) */
{ aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4000 ", 1 }, /* ASR-4000 (BlackBird & AvonPark) */
{ aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4800SAS ", 1 }, /* ASR-4800SAS (Marauder-X) */
{ aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4805SAS ", 1 }, /* ASR-4805SAS (Marauder-E) */
{ aac_rkt_init, "aacraid", "ADAPTEC ", "ASR-3800 ", 1 }, /* ASR-3800 (Hurricane44) */
{ aac_rx_init, "percraid", "DELL ", "PERC 320/DC ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Perc 320/DC*/
{ aac_sa_init, "aacraid", "ADAPTEC ", "Adaptec 5400S ", 4, AAC_QUIRK_34SG }, /* Adaptec 5400S (Mustang)*/
{ aac_sa_init, "aacraid", "ADAPTEC ", "AAC-364 ", 4, AAC_QUIRK_34SG }, /* Adaptec 5400S (Mustang)*/
{ aac_sa_init, "percraid", "DELL ", "PERCRAID ", 4, AAC_QUIRK_34SG }, /* Dell PERC2/QC */
{ aac_sa_init, "hpnraid", "HP ", "NetRAID ", 4, AAC_QUIRK_34SG }, /* HP NetRAID-4M */
{ aac_rx_init, "aacraid", "DELL ", "RAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Dell Catchall */
{ aac_rx_init, "aacraid", "Legend ", "RAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend Catchall */
{ aac_rx_init, "aacraid", "ADAPTEC ", "RAID ", 2 }, /* Adaptec Catch All */
{ aac_rkt_init, "aacraid", "ADAPTEC ", "RAID ", 2 }, /* Adaptec Rocket Catch All */
{ aac_nark_init, "aacraid", "ADAPTEC ", "RAID ", 2 } /* Adaptec NEMER/ARK Catch All */
};
/**
* aac_queuecommand - queue a SCSI command
* @cmd: SCSI command to queue
* @done: Function to call on command completion
*
* Queues a command for execution by the associated Host Adapter.
*
* TODO: unify with aac_scsi_cmd().
*/
static int aac_queuecommand(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *))
{
struct Scsi_Host *host = cmd->device->host;
struct aac_dev *dev = (struct aac_dev *)host->hostdata;
u32 count = 0;
cmd->scsi_done = done;
for (; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) {
struct fib * fib = &dev->fibs[count];
struct scsi_cmnd * command;
if (fib->hw_fib_va->header.XferState &&
((command = fib->callback_data)) &&
(command == cmd) &&
(cmd->SCp.phase == AAC_OWNER_FIRMWARE))
return 0; /* Already owned by Adapter */
}
cmd->SCp.phase = AAC_OWNER_LOWLEVEL;
return (aac_scsi_cmd(cmd) ? FAILED : 0);
}
/**
* aac_info - Returns the host adapter name
* @shost: Scsi host to report on
*
* Returns a static string describing the device in question
*/
static const char *aac_info(struct Scsi_Host *shost)
{
struct aac_dev *dev = (struct aac_dev *)shost->hostdata;
return aac_drivers[dev->cardtype].name;
}
/**
* aac_get_driver_ident
* @devtype: index into lookup table
*
* Returns a pointer to the entry in the driver lookup table.
*/
struct aac_driver_ident* aac_get_driver_ident(int devtype)
{
return &aac_drivers[devtype];
}
/**
* aac_biosparm - return BIOS parameters for disk
* @sdev: The scsi device corresponding to the disk
* @bdev: the block device corresponding to the disk
* @capacity: the sector capacity of the disk
* @geom: geometry block to fill in
*
* Return the Heads/Sectors/Cylinders BIOS Disk Parameters for Disk.
* The default disk geometry is 64 heads, 32 sectors, and the appropriate
* number of cylinders so as not to exceed drive capacity. In order for
* disks equal to or larger than 1 GB to be addressable by the BIOS
* without exceeding the BIOS limitation of 1024 cylinders, Extended
* Translation should be enabled. With Extended Translation enabled,
* drives between 1 GB inclusive and 2 GB exclusive are given a disk
* geometry of 128 heads and 32 sectors, and drives above 2 GB inclusive
* are given a disk geometry of 255 heads and 63 sectors. However, if
* the BIOS detects that the Extended Translation setting does not match
* the geometry in the partition table, then the translation inferred
* from the partition table will be used by the BIOS, and a warning may
* be displayed.
*/
static int aac_biosparm(struct scsi_device *sdev, struct block_device *bdev,
sector_t capacity, int *geom)
{
struct diskparm *param = (struct diskparm *)geom;
unsigned char *buf;
dprintk((KERN_DEBUG "aac_biosparm.\n"));
/*
* Assuming extended translation is enabled - #REVISIT#
*/
if (capacity >= 2 * 1024 * 1024) { /* 1 GB in 512 byte sectors */
if(capacity >= 4 * 1024 * 1024) { /* 2 GB in 512 byte sectors */
param->heads = 255;
param->sectors = 63;
} else {
param->heads = 128;
param->sectors = 32;
}
} else {
param->heads = 64;
param->sectors = 32;
}
param->cylinders = cap_to_cyls(capacity, param->heads * param->sectors);
/*
* Read the first 1024 bytes from the disk device, if the boot
* sector partition table is valid, search for a partition table
* entry whose end_head matches one of the standard geometry
* translations ( 64/32, 128/32, 255/63 ).
*/
buf = scsi_bios_ptable(bdev);
if (!buf)
return 0;
if(*(__le16 *)(buf + 0x40) == cpu_to_le16(0xaa55)) {
struct partition *first = (struct partition * )buf;
struct partition *entry = first;
int saved_cylinders = param->cylinders;
int num;
unsigned char end_head, end_sec;
for(num = 0; num < 4; num++) {
end_head = entry->end_head;
end_sec = entry->end_sector & 0x3f;
if(end_head == 63) {
param->heads = 64;
param->sectors = 32;
break;
} else if(end_head == 127) {
param->heads = 128;
param->sectors = 32;
break;
} else if(end_head == 254) {
param->heads = 255;
param->sectors = 63;
break;
}
entry++;
}
if (num == 4) {
end_head = first->end_head;
end_sec = first->end_sector & 0x3f;
}
param->cylinders = cap_to_cyls(capacity, param->heads * param->sectors);
if (num < 4 && end_sec == param->sectors) {
if (param->cylinders != saved_cylinders)
dprintk((KERN_DEBUG "Adopting geometry: heads=%d, sectors=%d from partition table %d.\n",
param->heads, param->sectors, num));
} else if (end_head > 0 || end_sec > 0) {
dprintk((KERN_DEBUG "Strange geometry: heads=%d, sectors=%d in partition table %d.\n",
end_head + 1, end_sec, num));
dprintk((KERN_DEBUG "Using geometry: heads=%d, sectors=%d.\n",
param->heads, param->sectors));
}
}
kfree(buf);
return 0;
}
/**
* aac_slave_configure - compute queue depths
* @sdev: SCSI device we are considering
*
* Selects queue depths for each target device based on the host adapter's
* total capacity and the queue depth supported by the target device.
* A queue depth of one automatically disables tagged queueing.
*/
static int aac_slave_configure(struct scsi_device *sdev)
{
if ((sdev->type == TYPE_DISK) &&
(sdev_channel(sdev) != CONTAINER_CHANNEL)) {
if (expose_physicals == 0)
return -ENXIO;
if (expose_physicals < 0) {
struct aac_dev *aac =
(struct aac_dev *)sdev->host->hostdata;
if (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2))
sdev->no_uld_attach = 1;
}
}
if (sdev->tagged_supported && (sdev->type == TYPE_DISK) &&
(sdev_channel(sdev) == CONTAINER_CHANNEL)) {
struct scsi_device * dev;
struct Scsi_Host *host = sdev->host;
unsigned num_lsu = 0;
unsigned num_one = 0;
unsigned depth;
/*
* Firmware has an individual device recovery time typically
* of 35 seconds, give us a margin.
*/
if (sdev->timeout < (45 * HZ))
sdev->timeout = 45 * HZ;
__shost_for_each_device(dev, host) {
if (dev->tagged_supported && (dev->type == TYPE_DISK) &&
(sdev_channel(dev) == CONTAINER_CHANNEL))
++num_lsu;
else
++num_one;
}
if (num_lsu == 0)
++num_lsu;
depth = (host->can_queue - num_one) / num_lsu;
if (depth > 256)
depth = 256;
else if (depth < 2)
depth = 2;
scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG, depth);
if (!(((struct aac_dev *)host->hostdata)->adapter_info.options &
AAC_OPT_NEW_COMM))
blk_queue_max_segment_size(sdev->request_queue, 65536);
} else
scsi_adjust_queue_depth(sdev, 0, 1);
return 0;
}
/**
* aac_change_queue_depth - alter queue depths
* @sdev: SCSI device we are considering
* @depth: desired queue depth
*
* Alters queue depths for target device based on the host adapter's
* total capacity and the queue depth supported by the target device.
*/
static int aac_change_queue_depth(struct scsi_device *sdev, int depth)
{
if (sdev->tagged_supported && (sdev->type == TYPE_DISK) &&
(sdev_channel(sdev) == CONTAINER_CHANNEL)) {
struct scsi_device * dev;
struct Scsi_Host *host = sdev->host;
unsigned num = 0;
__shost_for_each_device(dev, host) {
if (dev->tagged_supported && (dev->type == TYPE_DISK) &&
(sdev_channel(dev) == CONTAINER_CHANNEL))
++num;
++num;
}
if (num >= host->can_queue)
num = host->can_queue - 1;
if (depth > (host->can_queue - num))
depth = host->can_queue - num;
if (depth > 256)
depth = 256;
else if (depth < 2)
depth = 2;
scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG, depth);
} else
scsi_adjust_queue_depth(sdev, 0, 1);
return sdev->queue_depth;
}
static int aac_ioctl(struct scsi_device *sdev, int cmd, void __user * arg)
{
struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata;
return aac_do_ioctl(dev, cmd, arg);
}
static int aac_eh_abort(struct scsi_cmnd* cmd)
{
struct scsi_device * dev = cmd->device;
struct Scsi_Host * host = dev->host;
struct aac_dev * aac = (struct aac_dev *)host->hostdata;
int count;
int ret = FAILED;
printk(KERN_ERR "%s: Host adapter abort request (%d,%d,%d,%d)\n",
AAC_DRIVERNAME,
host->host_no, sdev_channel(dev), sdev_id(dev), dev->lun);
switch (cmd->cmnd[0]) {
case SERVICE_ACTION_IN:
if (!(aac->raw_io_interface) ||
!(aac->raw_io_64) ||
((cmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
break;
case INQUIRY:
case READ_CAPACITY:
case TEST_UNIT_READY:
/* Mark associated FIB to not complete, eh handler does this */
for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) {
struct fib * fib = &aac->fibs[count];
if (fib->hw_fib_va->header.XferState &&
(fib->callback_data == cmd)) {
fib->flags |= FIB_CONTEXT_FLAG_TIMED_OUT;
cmd->SCp.phase = AAC_OWNER_ERROR_HANDLER;
ret = SUCCESS;
}
}
}
return ret;
}
/*
* aac_eh_reset - Reset command handling
* @scsi_cmd: SCSI command block causing the reset
*
*/
static int aac_eh_reset(struct scsi_cmnd* cmd)
{
struct scsi_device * dev = cmd->device;
struct Scsi_Host * host = dev->host;
struct scsi_cmnd * command;
int count;
struct aac_dev * aac = (struct aac_dev *)host->hostdata;
unsigned long flags;
/* Mark the associated FIB to not complete, eh handler does this */
for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) {
struct fib * fib = &aac->fibs[count];
if (fib->hw_fib_va->header.XferState &&
(fib->callback_data == cmd)) {
fib->flags |= FIB_CONTEXT_FLAG_TIMED_OUT;
cmd->SCp.phase = AAC_OWNER_ERROR_HANDLER;
}
}
printk(KERN_ERR "%s: Host adapter reset request. SCSI hang ?\n",
AAC_DRIVERNAME);
if ((count = aac_check_health(aac)))
return count;
/*
* Wait for all commands to complete to this specific
* target (block maximum 60 seconds).
*/
for (count = 60; count; --count) {
int active = aac->in_reset;
if (active == 0)
__shost_for_each_device(dev, host) {
spin_lock_irqsave(&dev->list_lock, flags);
list_for_each_entry(command, &dev->cmd_list, list) {
if ((command != cmd) &&
(command->SCp.phase == AAC_OWNER_FIRMWARE)) {
active++;
break;
}
}
spin_unlock_irqrestore(&dev->list_lock, flags);
if (active)
break;
}
/*
* We can exit If all the commands are complete
*/
if (active == 0)
return SUCCESS;
ssleep(1);
}
printk(KERN_ERR "%s: SCSI bus appears hung\n", AAC_DRIVERNAME);
/*
* This adapter needs a blind reset, only do so for Adapters that
* support a register, instead of a commanded, reset.
*/
if ((aac->supplement_adapter_info.SupportedOptions2 &
cpu_to_le32(AAC_OPTION_MU_RESET)) &&
aac_check_reset &&
((aac_check_reset != 1) ||
(aac->supplement_adapter_info.SupportedOptions2 &
cpu_to_le32(AAC_OPTION_IGNORE_RESET))))
aac_reset_adapter(aac, 2); /* Bypass wait for command quiesce */
return SUCCESS; /* Cause an immediate retry of the command with a ten second delay after successful tur */
}
/**
* aac_cfg_open - open a configuration file
* @inode: inode being opened
* @file: file handle attached
*
* Called when the configuration device is opened. Does the needed
* set up on the handle and then returns
*
* Bugs: This needs extending to check a given adapter is present
* so we can support hot plugging, and to ref count adapters.
*/
static int aac_cfg_open(struct inode *inode, struct file *file)
{
struct aac_dev *aac;
unsigned minor_number = iminor(inode);
int err = -ENODEV;
list_for_each_entry(aac, &aac_devices, entry) {
if (aac->id == minor_number) {
file->private_data = aac;
err = 0;
break;
}
}
return err;
}
/**
* aac_cfg_ioctl - AAC configuration request
* @inode: inode of device
* @file: file handle
* @cmd: ioctl command code
* @arg: argument
*
* Handles a configuration ioctl. Currently this involves wrapping it
* up and feeding it into the nasty windowsalike glue layer.
*
* Bugs: Needs locking against parallel ioctls lower down
* Bugs: Needs to handle hot plugging
*/
static int aac_cfg_ioctl(struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg)
{
if (!capable(CAP_SYS_RAWIO))
return -EPERM;
return aac_do_ioctl(file->private_data, cmd, (void __user *)arg);
}
#ifdef CONFIG_COMPAT
static long aac_compat_do_ioctl(struct aac_dev *dev, unsigned cmd, unsigned long arg)
{
long ret;
lock_kernel();
switch (cmd) {
case FSACTL_MINIPORT_REV_CHECK:
case FSACTL_SENDFIB:
case FSACTL_OPEN_GET_ADAPTER_FIB:
case FSACTL_CLOSE_GET_ADAPTER_FIB:
case FSACTL_SEND_RAW_SRB:
case FSACTL_GET_PCI_INFO:
case FSACTL_QUERY_DISK:
case FSACTL_DELETE_DISK:
case FSACTL_FORCE_DELETE_DISK:
case FSACTL_GET_CONTAINERS:
case FSACTL_SEND_LARGE_FIB:
ret = aac_do_ioctl(dev, cmd, (void __user *)arg);
break;
case FSACTL_GET_NEXT_ADAPTER_FIB: {
struct fib_ioctl __user *f;
f = compat_alloc_user_space(sizeof(*f));
ret = 0;
if (clear_user(f, sizeof(*f)))
ret = -EFAULT;
if (copy_in_user(f, (void __user *)arg, sizeof(struct fib_ioctl) - sizeof(u32)))
ret = -EFAULT;
if (!ret)
ret = aac_do_ioctl(dev, cmd, f);
break;
}
default:
ret = -ENOIOCTLCMD;
break;
}
unlock_kernel();
return ret;
}
static int aac_compat_ioctl(struct scsi_device *sdev, int cmd, void __user *arg)
{
struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata;
return aac_compat_do_ioctl(dev, cmd, (unsigned long)arg);
}
static long aac_compat_cfg_ioctl(struct file *file, unsigned cmd, unsigned long arg)
{
if (!capable(CAP_SYS_RAWIO))
return -EPERM;
return aac_compat_do_ioctl((struct aac_dev *)file->private_data, cmd, arg);
}
#endif
static ssize_t aac_show_model(struct class_device *class_dev,
char *buf)
{
struct aac_dev *dev = (struct aac_dev*)class_to_shost(class_dev)->hostdata;
int len;
if (dev->supplement_adapter_info.AdapterTypeText[0]) {
char * cp = dev->supplement_adapter_info.AdapterTypeText;
while (*cp && *cp != ' ')
++cp;
while (*cp == ' ')
++cp;
len = snprintf(buf, PAGE_SIZE, "%s\n", cp);
} else
len = snprintf(buf, PAGE_SIZE, "%s\n",
aac_drivers[dev->cardtype].model);
return len;
}
static ssize_t aac_show_vendor(struct class_device *class_dev,
char *buf)
{
struct aac_dev *dev = (struct aac_dev*)class_to_shost(class_dev)->hostdata;
int len;
if (dev->supplement_adapter_info.AdapterTypeText[0]) {
char * cp = dev->supplement_adapter_info.AdapterTypeText;
while (*cp && *cp != ' ')
++cp;
len = snprintf(buf, PAGE_SIZE, "%.*s\n",
(int)(cp - (char *)dev->supplement_adapter_info.AdapterTypeText),
dev->supplement_adapter_info.AdapterTypeText);
} else
len = snprintf(buf, PAGE_SIZE, "%s\n",
aac_drivers[dev->cardtype].vname);
return len;
}
static ssize_t aac_show_kernel_version(struct class_device *class_dev,
char *buf)
{
struct aac_dev *dev = (struct aac_dev*)class_to_shost(class_dev)->hostdata;
int len, tmp;
tmp = le32_to_cpu(dev->adapter_info.kernelrev);
len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n",
tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff,
le32_to_cpu(dev->adapter_info.kernelbuild));
return len;
}
static ssize_t aac_show_monitor_version(struct class_device *class_dev,
char *buf)
{
struct aac_dev *dev = (struct aac_dev*)class_to_shost(class_dev)->hostdata;
int len, tmp;
tmp = le32_to_cpu(dev->adapter_info.monitorrev);
len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n",
tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff,
le32_to_cpu(dev->adapter_info.monitorbuild));
return len;
}
static ssize_t aac_show_bios_version(struct class_device *class_dev,
char *buf)
{
struct aac_dev *dev = (struct aac_dev*)class_to_shost(class_dev)->hostdata;
int len, tmp;
tmp = le32_to_cpu(dev->adapter_info.biosrev);
len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n",
tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff,
le32_to_cpu(dev->adapter_info.biosbuild));
return len;
}
ssize_t aac_show_serial_number(struct class_device *class_dev, char *buf)
{
struct aac_dev *dev = (struct aac_dev*)class_to_shost(class_dev)->hostdata;
int len = 0;
if (le32_to_cpu(dev->adapter_info.serial[0]) != 0xBAD0)
len = snprintf(buf, PAGE_SIZE, "%06X\n",
le32_to_cpu(dev->adapter_info.serial[0]));
if (len &&
!memcmp(&dev->supplement_adapter_info.MfgPcbaSerialNo[
sizeof(dev->supplement_adapter_info.MfgPcbaSerialNo)+2-len],
buf, len))
len = snprintf(buf, PAGE_SIZE, "%.*s\n",
(int)sizeof(dev->supplement_adapter_info.MfgPcbaSerialNo),
dev->supplement_adapter_info.MfgPcbaSerialNo);
return len;
}
static ssize_t aac_show_max_channel(struct class_device *class_dev, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n",
class_to_shost(class_dev)->max_channel);
}
static ssize_t aac_show_max_id(struct class_device *class_dev, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n",
class_to_shost(class_dev)->max_id);
}
static ssize_t aac_store_reset_adapter(struct class_device *class_dev,
const char *buf, size_t count)
{
int retval = -EACCES;
if (!capable(CAP_SYS_ADMIN))
return retval;
retval = aac_reset_adapter((struct aac_dev*)class_to_shost(class_dev)->hostdata, buf[0] == '!');
if (retval >= 0)
retval = count;
return retval;
}
static ssize_t aac_show_reset_adapter(struct class_device *class_dev,
char *buf)
{
struct aac_dev *dev = (struct aac_dev*)class_to_shost(class_dev)->hostdata;
int len, tmp;
tmp = aac_adapter_check_health(dev);
if ((tmp == 0) && dev->in_reset)
tmp = -EBUSY;
len = snprintf(buf, PAGE_SIZE, "0x%x\n", tmp);
return len;
}
static struct class_device_attribute aac_model = {
.attr = {
.name = "model",
.mode = S_IRUGO,
},
.show = aac_show_model,
};
static struct class_device_attribute aac_vendor = {
.attr = {
.name = "vendor",
.mode = S_IRUGO,
},
.show = aac_show_vendor,
};
static struct class_device_attribute aac_kernel_version = {
.attr = {
.name = "hba_kernel_version",
.mode = S_IRUGO,
},
.show = aac_show_kernel_version,
};
static struct class_device_attribute aac_monitor_version = {
.attr = {
.name = "hba_monitor_version",
.mode = S_IRUGO,
},
.show = aac_show_monitor_version,
};
static struct class_device_attribute aac_bios_version = {
.attr = {
.name = "hba_bios_version",
.mode = S_IRUGO,
},
.show = aac_show_bios_version,
};
static struct class_device_attribute aac_serial_number = {
.attr = {
.name = "serial_number",
.mode = S_IRUGO,
},
.show = aac_show_serial_number,
};
static struct class_device_attribute aac_max_channel = {
.attr = {
.name = "max_channel",
.mode = S_IRUGO,
},
.show = aac_show_max_channel,
};
static struct class_device_attribute aac_max_id = {
.attr = {
.name = "max_id",
.mode = S_IRUGO,
},
.show = aac_show_max_id,
};
static struct class_device_attribute aac_reset = {
.attr = {
.name = "reset_host",
.mode = S_IWUSR|S_IRUGO,
},
.store = aac_store_reset_adapter,
.show = aac_show_reset_adapter,
};
static struct class_device_attribute *aac_attrs[] = {
&aac_model,
&aac_vendor,
&aac_kernel_version,
&aac_monitor_version,
&aac_bios_version,
&aac_serial_number,
&aac_max_channel,
&aac_max_id,
&aac_reset,
NULL
};
static const struct file_operations aac_cfg_fops = {
.owner = THIS_MODULE,
.ioctl = aac_cfg_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = aac_compat_cfg_ioctl,
#endif
.open = aac_cfg_open,
};
static struct scsi_host_template aac_driver_template = {
.module = THIS_MODULE,
.name = "AAC",
.proc_name = AAC_DRIVERNAME,
.info = aac_info,
.ioctl = aac_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = aac_compat_ioctl,
#endif
.queuecommand = aac_queuecommand,
.bios_param = aac_biosparm,
.shost_attrs = aac_attrs,
.slave_configure = aac_slave_configure,
.change_queue_depth = aac_change_queue_depth,
.eh_abort_handler = aac_eh_abort,
.eh_host_reset_handler = aac_eh_reset,
.can_queue = AAC_NUM_IO_FIB,
.this_id = MAXIMUM_NUM_CONTAINERS,
.sg_tablesize = 16,
.max_sectors = 128,
#if (AAC_NUM_IO_FIB > 256)
.cmd_per_lun = 256,
#else
.cmd_per_lun = AAC_NUM_IO_FIB,
#endif
.use_clustering = ENABLE_CLUSTERING,
.use_sg_chaining = ENABLE_SG_CHAINING,
.emulated = 1,
};
static void __aac_shutdown(struct aac_dev * aac)
{
if (aac->aif_thread)
kthread_stop(aac->thread);
aac_send_shutdown(aac);
aac_adapter_disable_int(aac);
free_irq(aac->pdev->irq, aac);
}
static int __devinit aac_probe_one(struct pci_dev *pdev,
const struct pci_device_id *id)
{
unsigned index = id->driver_data;
struct Scsi_Host *shost;
struct aac_dev *aac;
struct list_head *insert = &aac_devices;
int error = -ENODEV;
int unique_id = 0;
list_for_each_entry(aac, &aac_devices, entry) {
if (aac->id > unique_id)
break;
insert = &aac->entry;
unique_id++;
}
error = pci_enable_device(pdev);
if (error)
goto out;
error = -ENODEV;
if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) ||
pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))
goto out_disable_pdev;
/*
* If the quirk31 bit is set, the adapter needs adapter
* to driver communication memory to be allocated below 2gig
*/
if (aac_drivers[index].quirks & AAC_QUIRK_31BIT)
if (pci_set_dma_mask(pdev, DMA_31BIT_MASK) ||
pci_set_consistent_dma_mask(pdev, DMA_31BIT_MASK))
goto out_disable_pdev;
pci_set_master(pdev);
shost = scsi_host_alloc(&aac_driver_template, sizeof(struct aac_dev));
if (!shost)
goto out_disable_pdev;
shost->irq = pdev->irq;
shost->base = pci_resource_start(pdev, 0);
shost->unique_id = unique_id;
shost->max_cmd_len = 16;
aac = (struct aac_dev *)shost->hostdata;
aac->scsi_host_ptr = shost;
aac->pdev = pdev;
aac->name = aac_driver_template.name;
aac->id = shost->unique_id;
aac->cardtype = index;
INIT_LIST_HEAD(&aac->entry);
aac->fibs = kmalloc(sizeof(struct fib) * (shost->can_queue + AAC_NUM_MGT_FIB), GFP_KERNEL);
if (!aac->fibs)
goto out_free_host;
spin_lock_init(&aac->fib_lock);
/*
* Map in the registers from the adapter.
*/
aac->base_size = AAC_MIN_FOOTPRINT_SIZE;
if ((*aac_drivers[index].init)(aac))
goto out_unmap;
/*
* Start any kernel threads needed
*/
aac->thread = kthread_run(aac_command_thread, aac, AAC_DRIVERNAME);
if (IS_ERR(aac->thread)) {
printk(KERN_ERR "aacraid: Unable to create command thread.\n");
error = PTR_ERR(aac->thread);
goto out_deinit;
}
/*
* If we had set a smaller DMA mask earlier, set it to 4gig
* now since the adapter can dma data to at least a 4gig
* address space.
*/
if (aac_drivers[index].quirks & AAC_QUIRK_31BIT)
if (pci_set_dma_mask(pdev, DMA_32BIT_MASK))
goto out_deinit;
aac->maximum_num_channels = aac_drivers[index].channels;
error = aac_get_adapter_info(aac);
if (error < 0)
goto out_deinit;
/*
* Lets override negotiations and drop the maximum SG limit to 34
*/
if ((aac_drivers[index].quirks & AAC_QUIRK_34SG) &&
(aac->scsi_host_ptr->sg_tablesize > 34)) {
aac->scsi_host_ptr->sg_tablesize = 34;
aac->scsi_host_ptr->max_sectors
= (aac->scsi_host_ptr->sg_tablesize * 8) + 112;
}
if ((aac_drivers[index].quirks & AAC_QUIRK_17SG) &&
(aac->scsi_host_ptr->sg_tablesize > 17)) {
aac->scsi_host_ptr->sg_tablesize = 17;
aac->scsi_host_ptr->max_sectors
= (aac->scsi_host_ptr->sg_tablesize * 8) + 112;
}
/*
* Firware printf works only with older firmware.
*/
if (aac_drivers[index].quirks & AAC_QUIRK_34SG)
aac->printf_enabled = 1;
else
aac->printf_enabled = 0;
/*
* max channel will be the physical channels plus 1 virtual channel
* all containers are on the virtual channel 0 (CONTAINER_CHANNEL)
* physical channels are address by their actual physical number+1
*/
if ((aac->nondasd_support == 1) || expose_physicals)
shost->max_channel = aac->maximum_num_channels;
else
shost->max_channel = 0;
aac_get_config_status(aac, 0);
aac_get_containers(aac);
list_add(&aac->entry, insert);
shost->max_id = aac->maximum_num_containers;
if (shost->max_id < aac->maximum_num_physicals)
shost->max_id = aac->maximum_num_physicals;
if (shost->max_id < MAXIMUM_NUM_CONTAINERS)
shost->max_id = MAXIMUM_NUM_CONTAINERS;
else
shost->this_id = shost->max_id;
/*
* dmb - we may need to move the setting of these parms somewhere else once
* we get a fib that can report the actual numbers
*/
shost->max_lun = AAC_MAX_LUN;
pci_set_drvdata(pdev, shost);
error = scsi_add_host(shost, &pdev->dev);
if (error)
goto out_deinit;
scsi_scan_host(shost);
return 0;
out_deinit:
__aac_shutdown(aac);
out_unmap:
aac_fib_map_free(aac);
if (aac->comm_addr)
pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr,
aac->comm_phys);
kfree(aac->queues);
aac_adapter_ioremap(aac, 0);
kfree(aac->fibs);
kfree(aac->fsa_dev);
out_free_host:
scsi_host_put(shost);
out_disable_pdev:
pci_disable_device(pdev);
out:
return error;
}
static void aac_shutdown(struct pci_dev *dev)
{
struct Scsi_Host *shost = pci_get_drvdata(dev);
scsi_block_requests(shost);
__aac_shutdown((struct aac_dev *)shost->hostdata);
}
static void __devexit aac_remove_one(struct pci_dev *pdev)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct aac_dev *aac = (struct aac_dev *)shost->hostdata;
scsi_remove_host(shost);
__aac_shutdown(aac);
aac_fib_map_free(aac);
pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr,
aac->comm_phys);
kfree(aac->queues);
aac_adapter_ioremap(aac, 0);
kfree(aac->fibs);
kfree(aac->fsa_dev);
list_del(&aac->entry);
scsi_host_put(shost);
pci_disable_device(pdev);
if (list_empty(&aac_devices)) {
unregister_chrdev(aac_cfg_major, "aac");
aac_cfg_major = -1;
}
}
static struct pci_driver aac_pci_driver = {
.name = AAC_DRIVERNAME,
.id_table = aac_pci_tbl,
.probe = aac_probe_one,
.remove = __devexit_p(aac_remove_one),
.shutdown = aac_shutdown,
};
static int __init aac_init(void)
{
int error;
printk(KERN_INFO "Adaptec %s driver %s\n",
AAC_DRIVERNAME, aac_driver_version);
error = pci_register_driver(&aac_pci_driver);
if (error < 0)
return error;
aac_cfg_major = register_chrdev( 0, "aac", &aac_cfg_fops);
if (aac_cfg_major < 0) {
printk(KERN_WARNING
"aacraid: unable to register \"aac\" device.\n");
}
return 0;
}
static void __exit aac_exit(void)
{
if (aac_cfg_major > -1)
unregister_chrdev(aac_cfg_major, "aac");
pci_unregister_driver(&aac_pci_driver);
}
module_init(aac_init);
module_exit(aac_exit);