linux-hardened/drivers/scsi/aic7xxx_old.c
Arjan van de Ven 858119e159 [PATCH] Unlinline a bunch of other functions
Remove the "inline" keyword from a bunch of big functions in the kernel with
the goal of shrinking it by 30kb to 40kb

Signed-off-by: Arjan van de Ven <arjan@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Jeff Garzik <jgarzik@pobox.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-14 18:27:06 -08:00

11203 lines
361 KiB
C

/*+M*************************************************************************
* Adaptec AIC7xxx device driver for Linux.
*
* Copyright (c) 1994 John Aycock
* The University of Calgary Department of Computer Science.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Sources include the Adaptec 1740 driver (aha1740.c), the Ultrastor 24F
* driver (ultrastor.c), various Linux kernel source, the Adaptec EISA
* config file (!adp7771.cfg), the Adaptec AHA-2740A Series User's Guide,
* the Linux Kernel Hacker's Guide, Writing a SCSI Device Driver for Linux,
* the Adaptec 1542 driver (aha1542.c), the Adaptec EISA overlay file
* (adp7770.ovl), the Adaptec AHA-2740 Series Technical Reference Manual,
* the Adaptec AIC-7770 Data Book, the ANSI SCSI specification, the
* ANSI SCSI-2 specification (draft 10c), ...
*
* --------------------------------------------------------------------------
*
* Modifications by Daniel M. Eischen (deischen@iworks.InterWorks.org):
*
* Substantially modified to include support for wide and twin bus
* adapters, DMAing of SCBs, tagged queueing, IRQ sharing, bug fixes,
* SCB paging, and other rework of the code.
*
* Parts of this driver were also based on the FreeBSD driver by
* Justin T. Gibbs. His copyright follows:
*
* --------------------------------------------------------------------------
* Copyright (c) 1994-1997 Justin Gibbs.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* Where this Software is combined with software released under the terms of
* the GNU General Public License ("GPL") and the terms of the GPL would require the
* combined work to also be released under the terms of the GPL, the terms
* and conditions of this License will apply in addition to those of the
* GPL with the exception of any terms or conditions of this License that
* conflict with, or are expressly prohibited by, the GPL.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $Id: aic7xxx.c,v 1.119 1997/06/27 19:39:18 gibbs Exp $
*---------------------------------------------------------------------------
*
* Thanks also go to (in alphabetical order) the following:
*
* Rory Bolt - Sequencer bug fixes
* Jay Estabrook - Initial DEC Alpha support
* Doug Ledford - Much needed abort/reset bug fixes
* Kai Makisara - DMAing of SCBs
*
* A Boot time option was also added for not resetting the scsi bus.
*
* Form: aic7xxx=extended
* aic7xxx=no_reset
* aic7xxx=ultra
* aic7xxx=irq_trigger:[0,1] # 0 edge, 1 level
* aic7xxx=verbose
*
* Daniel M. Eischen, deischen@iworks.InterWorks.org, 1/23/97
*
* $Id: aic7xxx.c,v 4.1 1997/06/12 08:23:42 deang Exp $
*-M*************************************************************************/
/*+M**************************************************************************
*
* Further driver modifications made by Doug Ledford <dledford@redhat.com>
*
* Copyright (c) 1997-1999 Doug Ledford
*
* These changes are released under the same licensing terms as the FreeBSD
* driver written by Justin Gibbs. Please see his Copyright notice above
* for the exact terms and conditions covering my changes as well as the
* warranty statement.
*
* Modifications made to the aic7xxx.c,v 4.1 driver from Dan Eischen include
* but are not limited to:
*
* 1: Import of the latest FreeBSD sequencer code for this driver
* 2: Modification of kernel code to accommodate different sequencer semantics
* 3: Extensive changes throughout kernel portion of driver to improve
* abort/reset processing and error hanndling
* 4: Other work contributed by various people on the Internet
* 5: Changes to printk information and verbosity selection code
* 6: General reliability related changes, especially in IRQ management
* 7: Modifications to the default probe/attach order for supported cards
* 8: SMP friendliness has been improved
*
* Overall, this driver represents a significant departure from the official
* aic7xxx driver released by Dan Eischen in two ways. First, in the code
* itself. A diff between the two version of the driver is now a several
* thousand line diff. Second, in approach to solving the same problem. The
* problem is importing the FreeBSD aic7xxx driver code to linux can be a
* difficult and time consuming process, that also can be error prone. Dan
* Eischen's official driver uses the approach that the linux and FreeBSD
* drivers should be as identical as possible. To that end, his next version
* of this driver will be using a mid-layer code library that he is developing
* to moderate communications between the linux mid-level SCSI code and the
* low level FreeBSD driver. He intends to be able to essentially drop the
* FreeBSD driver into the linux kernel with only a few minor tweaks to some
* include files and the like and get things working, making for fast easy
* imports of the FreeBSD code into linux.
*
* I disagree with Dan's approach. Not that I don't think his way of doing
* things would be nice, easy to maintain, and create a more uniform driver
* between FreeBSD and Linux. I have no objection to those issues. My
* disagreement is on the needed functionality. There simply are certain
* things that are done differently in FreeBSD than linux that will cause
* problems for this driver regardless of any middle ware Dan implements.
* The biggest example of this at the moment is interrupt semantics. Linux
* doesn't provide the same protection techniques as FreeBSD does, nor can
* they be easily implemented in any middle ware code since they would truly
* belong in the kernel proper and would effect all drivers. For the time
* being, I see issues such as these as major stumbling blocks to the
* reliability of code based upon such middle ware. Therefore, I choose to
* use a different approach to importing the FreeBSD code that doesn't
* involve any middle ware type code. My approach is to import the sequencer
* code from FreeBSD wholesale. Then, to only make changes in the kernel
* portion of the driver as they are needed for the new sequencer semantics.
* In this way, the portion of the driver that speaks to the rest of the
* linux kernel is fairly static and can be changed/modified to solve
* any problems one might encounter without concern for the FreeBSD driver.
*
* Note: If time and experience should prove me wrong that the middle ware
* code Dan writes is reliable in its operation, then I'll retract my above
* statements. But, for those that don't know, I'm from Missouri (in the US)
* and our state motto is "The Show-Me State". Well, before I will put
* faith into it, you'll have to show me that it works :)
*
*_M*************************************************************************/
/*
* The next three defines are user configurable. These should be the only
* defines a user might need to get in here and change. There are other
* defines buried deeper in the code, but those really shouldn't need touched
* under normal conditions.
*/
/*
* AIC7XXX_STRICT_PCI_SETUP
* Should we assume the PCI config options on our controllers are set with
* sane and proper values, or should we be anal about our PCI config
* registers and force them to what we want? The main advantage to
* defining this option is on non-Intel hardware where the BIOS may not
* have been run to set things up, or if you have one of the BIOSless
* Adaptec controllers, such as a 2910, that don't get set up by the
* BIOS. However, keep in mind that we really do set the most important
* items in the driver regardless of this setting, this only controls some
* of the more esoteric PCI options on these cards. In that sense, I
* would default to leaving this off. However, if people wish to try
* things both ways, that would also help me to know if there are some
* machines where it works one way but not another.
*
* -- July 7, 17:09
* OK...I need this on my machine for testing, so the default is to
* leave it defined.
*
* -- July 7, 18:49
* I needed it for testing, but it didn't make any difference, so back
* off she goes.
*
* -- July 16, 23:04
* I turned it back on to try and compensate for the 2.1.x PCI code
* which no longer relies solely on the BIOS and now tries to set
* things itself.
*/
#define AIC7XXX_STRICT_PCI_SETUP
/*
* AIC7XXX_VERBOSE_DEBUGGING
* This option enables a lot of extra printk();s in the code, surrounded
* by if (aic7xxx_verbose ...) statements. Executing all of those if
* statements and the extra checks can get to where it actually does have
* an impact on CPU usage and such, as well as code size. Disabling this
* define will keep some of those from becoming part of the code.
*
* NOTE: Currently, this option has no real effect, I will be adding the
* various #ifdef's in the code later when I've decided a section is
* complete and no longer needs debugging. OK...a lot of things are now
* surrounded by this define, so turning this off does have an impact.
*/
/*
* #define AIC7XXX_VERBOSE_DEBUGGING
*/
#include <linux/module.h>
#include <stdarg.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/byteorder.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/pci.h>
#include <linux/proc_fs.h>
#include <linux/blkdev.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/interrupt.h>
#include "scsi.h"
#include <scsi/scsi_host.h>
#include "aic7xxx_old/aic7xxx.h"
#include "aic7xxx_old/sequencer.h"
#include "aic7xxx_old/scsi_message.h"
#include "aic7xxx_old/aic7xxx_reg.h"
#include <scsi/scsicam.h>
#include <linux/stat.h>
#include <linux/slab.h> /* for kmalloc() */
#include <linux/config.h> /* for CONFIG_PCI */
#define AIC7XXX_C_VERSION "5.2.6"
#define ALL_TARGETS -1
#define ALL_CHANNELS -1
#define ALL_LUNS -1
#define MAX_TARGETS 16
#define MAX_LUNS 8
#ifndef TRUE
# define TRUE 1
#endif
#ifndef FALSE
# define FALSE 0
#endif
#if defined(__powerpc__) || defined(__i386__) || defined(__x86_64__)
# define MMAPIO
#endif
/*
* You can try raising me for better performance or lowering me if you have
* flaky devices that go off the scsi bus when hit with too many tagged
* commands (like some IBM SCSI-3 LVD drives).
*/
#define AIC7XXX_CMDS_PER_DEVICE 32
typedef struct
{
unsigned char tag_commands[16]; /* Allow for wide/twin adapters. */
} adapter_tag_info_t;
/*
* Make a define that will tell the driver not to the default tag depth
* everywhere.
*/
#define DEFAULT_TAG_COMMANDS {0, 0, 0, 0, 0, 0, 0, 0,\
0, 0, 0, 0, 0, 0, 0, 0}
/*
* Modify this as you see fit for your system. By setting tag_commands
* to 0, the driver will use it's own algorithm for determining the
* number of commands to use (see above). When 255, the driver will
* not enable tagged queueing for that particular device. When positive
* (> 0) and (< 255) the values in the array are used for the queue_depth.
* Note that the maximum value for an entry is 254, but you're insane if
* you try to use that many commands on one device.
*
* In this example, the first line will disable tagged queueing for all
* the devices on the first probed aic7xxx adapter.
*
* The second line enables tagged queueing with 4 commands/LUN for IDs
* (1, 2-11, 13-15), disables tagged queueing for ID 12, and tells the
* driver to use its own algorithm for ID 1.
*
* The third line is the same as the first line.
*
* The fourth line disables tagged queueing for devices 0 and 3. It
* enables tagged queueing for the other IDs, with 16 commands/LUN
* for IDs 1 and 4, 127 commands/LUN for ID 8, and 4 commands/LUN for
* IDs 2, 5-7, and 9-15.
*/
/*
* NOTE: The below structure is for reference only, the actual structure
* to modify in order to change things is found after this fake one.
*
adapter_tag_info_t aic7xxx_tag_info[] =
{
{DEFAULT_TAG_COMMANDS},
{{4, 0, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 255, 4, 4, 4}},
{DEFAULT_TAG_COMMANDS},
{{255, 16, 4, 255, 16, 4, 4, 4, 127, 4, 4, 4, 4, 4, 4, 4}}
};
*/
static adapter_tag_info_t aic7xxx_tag_info[] =
{
{DEFAULT_TAG_COMMANDS},
{DEFAULT_TAG_COMMANDS},
{DEFAULT_TAG_COMMANDS},
{DEFAULT_TAG_COMMANDS},
{DEFAULT_TAG_COMMANDS},
{DEFAULT_TAG_COMMANDS},
{DEFAULT_TAG_COMMANDS},
{DEFAULT_TAG_COMMANDS},
{DEFAULT_TAG_COMMANDS},
{DEFAULT_TAG_COMMANDS},
{DEFAULT_TAG_COMMANDS},
{DEFAULT_TAG_COMMANDS},
{DEFAULT_TAG_COMMANDS},
{DEFAULT_TAG_COMMANDS},
{DEFAULT_TAG_COMMANDS},
{DEFAULT_TAG_COMMANDS}
};
/*
* Define an array of board names that can be indexed by aha_type.
* Don't forget to change this when changing the types!
*/
static const char *board_names[] = {
"AIC-7xxx Unknown", /* AIC_NONE */
"Adaptec AIC-7810 Hardware RAID Controller", /* AIC_7810 */
"Adaptec AIC-7770 SCSI host adapter", /* AIC_7770 */
"Adaptec AHA-274X SCSI host adapter", /* AIC_7771 */
"Adaptec AHA-284X SCSI host adapter", /* AIC_284x */
"Adaptec AIC-7850 SCSI host adapter", /* AIC_7850 */
"Adaptec AIC-7855 SCSI host adapter", /* AIC_7855 */
"Adaptec AIC-7860 Ultra SCSI host adapter", /* AIC_7860 */
"Adaptec AHA-2940A Ultra SCSI host adapter", /* AIC_7861 */
"Adaptec AIC-7870 SCSI host adapter", /* AIC_7870 */
"Adaptec AHA-294X SCSI host adapter", /* AIC_7871 */
"Adaptec AHA-394X SCSI host adapter", /* AIC_7872 */
"Adaptec AHA-398X SCSI host adapter", /* AIC_7873 */
"Adaptec AHA-2944 SCSI host adapter", /* AIC_7874 */
"Adaptec AIC-7880 Ultra SCSI host adapter", /* AIC_7880 */
"Adaptec AHA-294X Ultra SCSI host adapter", /* AIC_7881 */
"Adaptec AHA-394X Ultra SCSI host adapter", /* AIC_7882 */
"Adaptec AHA-398X Ultra SCSI host adapter", /* AIC_7883 */
"Adaptec AHA-2944 Ultra SCSI host adapter", /* AIC_7884 */
"Adaptec AHA-2940UW Pro Ultra SCSI host adapter", /* AIC_7887 */
"Adaptec AIC-7895 Ultra SCSI host adapter", /* AIC_7895 */
"Adaptec AIC-7890/1 Ultra2 SCSI host adapter", /* AIC_7890 */
"Adaptec AHA-293X Ultra2 SCSI host adapter", /* AIC_7890 */
"Adaptec AHA-294X Ultra2 SCSI host adapter", /* AIC_7890 */
"Adaptec AIC-7896/7 Ultra2 SCSI host adapter", /* AIC_7896 */
"Adaptec AHA-394X Ultra2 SCSI host adapter", /* AIC_7897 */
"Adaptec AHA-395X Ultra2 SCSI host adapter", /* AIC_7897 */
"Adaptec PCMCIA SCSI controller", /* card bus stuff */
"Adaptec AIC-7892 Ultra 160/m SCSI host adapter", /* AIC_7892 */
"Adaptec AIC-7899 Ultra 160/m SCSI host adapter", /* AIC_7899 */
};
/*
* There should be a specific return value for this in scsi.h, but
* it seems that most drivers ignore it.
*/
#define DID_UNDERFLOW DID_ERROR
/*
* What we want to do is have the higher level scsi driver requeue
* the command to us. There is no specific driver status for this
* condition, but the higher level scsi driver will requeue the
* command on a DID_BUS_BUSY error.
*
* Upon further inspection and testing, it seems that DID_BUS_BUSY
* will *always* retry the command. We can get into an infinite loop
* if this happens when we really want some sort of counter that
* will automatically abort/reset the command after so many retries.
* Using DID_ERROR will do just that. (Made by a suggestion by
* Doug Ledford 8/1/96)
*/
#define DID_RETRY_COMMAND DID_ERROR
#define HSCSIID 0x07
#define SCSI_RESET 0x040
/*
* EISA/VL-bus stuff
*/
#define MINSLOT 1
#define MAXSLOT 15
#define SLOTBASE(x) ((x) << 12)
#define BASE_TO_SLOT(x) ((x) >> 12)
/*
* Standard EISA Host ID regs (Offset from slot base)
*/
#define AHC_HID0 0x80 /* 0,1: msb of ID2, 2-7: ID1 */
#define AHC_HID1 0x81 /* 0-4: ID3, 5-7: LSB ID2 */
#define AHC_HID2 0x82 /* product */
#define AHC_HID3 0x83 /* firmware revision */
/*
* AIC-7770 I/O range to reserve for a card
*/
#define MINREG 0xC00
#define MAXREG 0xCFF
#define INTDEF 0x5C /* Interrupt Definition Register */
/*
* AIC-78X0 PCI registers
*/
#define CLASS_PROGIF_REVID 0x08
#define DEVREVID 0x000000FFul
#define PROGINFC 0x0000FF00ul
#define SUBCLASS 0x00FF0000ul
#define BASECLASS 0xFF000000ul
#define CSIZE_LATTIME 0x0C
#define CACHESIZE 0x0000003Ful /* only 5 bits */
#define LATTIME 0x0000FF00ul
#define DEVCONFIG 0x40
#define SCBSIZE32 0x00010000ul /* aic789X only */
#define MPORTMODE 0x00000400ul /* aic7870 only */
#define RAMPSM 0x00000200ul /* aic7870 only */
#define RAMPSM_ULTRA2 0x00000004
#define VOLSENSE 0x00000100ul
#define SCBRAMSEL 0x00000080ul
#define SCBRAMSEL_ULTRA2 0x00000008
#define MRDCEN 0x00000040ul
#define EXTSCBTIME 0x00000020ul /* aic7870 only */
#define EXTSCBPEN 0x00000010ul /* aic7870 only */
#define BERREN 0x00000008ul
#define DACEN 0x00000004ul
#define STPWLEVEL 0x00000002ul
#define DIFACTNEGEN 0x00000001ul /* aic7870 only */
#define SCAMCTL 0x1a /* Ultra2 only */
#define CCSCBBADDR 0xf0 /* aic7895/6/7 */
/*
* Define the different types of SEEPROMs on aic7xxx adapters
* and make it also represent the address size used in accessing
* its registers. The 93C46 chips have 1024 bits organized into
* 64 16-bit words, while the 93C56 chips have 2048 bits organized
* into 128 16-bit words. The C46 chips use 6 bits to address
* each word, while the C56 and C66 (4096 bits) use 8 bits to
* address each word.
*/
typedef enum {C46 = 6, C56_66 = 8} seeprom_chip_type;
/*
*
* Define the format of the SEEPROM registers (16 bits).
*
*/
struct seeprom_config {
/*
* SCSI ID Configuration Flags
*/
#define CFXFER 0x0007 /* synchronous transfer rate */
#define CFSYNCH 0x0008 /* enable synchronous transfer */
#define CFDISC 0x0010 /* enable disconnection */
#define CFWIDEB 0x0020 /* wide bus device (wide card) */
#define CFSYNCHISULTRA 0x0040 /* CFSYNC is an ultra offset */
#define CFNEWULTRAFORMAT 0x0080 /* Use the Ultra2 SEEPROM format */
#define CFSTART 0x0100 /* send start unit SCSI command */
#define CFINCBIOS 0x0200 /* include in BIOS scan */
#define CFRNFOUND 0x0400 /* report even if not found */
#define CFMULTILUN 0x0800 /* probe mult luns in BIOS scan */
#define CFWBCACHEYES 0x4000 /* Enable W-Behind Cache on drive */
#define CFWBCACHENC 0xc000 /* Don't change W-Behind Cache */
/* UNUSED 0x3000 */
unsigned short device_flags[16]; /* words 0-15 */
/*
* BIOS Control Bits
*/
#define CFSUPREM 0x0001 /* support all removable drives */
#define CFSUPREMB 0x0002 /* support removable drives for boot only */
#define CFBIOSEN 0x0004 /* BIOS enabled */
/* UNUSED 0x0008 */
#define CFSM2DRV 0x0010 /* support more than two drives */
#define CF284XEXTEND 0x0020 /* extended translation (284x cards) */
/* UNUSED 0x0040 */
#define CFEXTEND 0x0080 /* extended translation enabled */
/* UNUSED 0xFF00 */
unsigned short bios_control; /* word 16 */
/*
* Host Adapter Control Bits
*/
#define CFAUTOTERM 0x0001 /* Perform Auto termination */
#define CFULTRAEN 0x0002 /* Ultra SCSI speed enable (Ultra cards) */
#define CF284XSELTO 0x0003 /* Selection timeout (284x cards) */
#define CF284XFIFO 0x000C /* FIFO Threshold (284x cards) */
#define CFSTERM 0x0004 /* SCSI low byte termination */
#define CFWSTERM 0x0008 /* SCSI high byte termination (wide card) */
#define CFSPARITY 0x0010 /* SCSI parity */
#define CF284XSTERM 0x0020 /* SCSI low byte termination (284x cards) */
#define CFRESETB 0x0040 /* reset SCSI bus at boot */
#define CFBPRIMARY 0x0100 /* Channel B primary on 7895 chipsets */
#define CFSEAUTOTERM 0x0400 /* aic7890 Perform SE Auto Term */
#define CFLVDSTERM 0x0800 /* aic7890 LVD Termination */
/* UNUSED 0xF280 */
unsigned short adapter_control; /* word 17 */
/*
* Bus Release, Host Adapter ID
*/
#define CFSCSIID 0x000F /* host adapter SCSI ID */
/* UNUSED 0x00F0 */
#define CFBRTIME 0xFF00 /* bus release time */
unsigned short brtime_id; /* word 18 */
/*
* Maximum targets
*/
#define CFMAXTARG 0x00FF /* maximum targets */
/* UNUSED 0xFF00 */
unsigned short max_targets; /* word 19 */
unsigned short res_1[11]; /* words 20-30 */
unsigned short checksum; /* word 31 */
};
#define SELBUS_MASK 0x0a
#define SELNARROW 0x00
#define SELBUSB 0x08
#define SINGLE_BUS 0x00
#define SCB_TARGET(scb) \
(((scb)->hscb->target_channel_lun & TID) >> 4)
#define SCB_LUN(scb) \
((scb)->hscb->target_channel_lun & LID)
#define SCB_IS_SCSIBUS_B(scb) \
(((scb)->hscb->target_channel_lun & SELBUSB) != 0)
/*
* If an error occurs during a data transfer phase, run the command
* to completion - it's easier that way - making a note of the error
* condition in this location. This then will modify a DID_OK status
* into an appropriate error for the higher-level SCSI code.
*/
#define aic7xxx_error(cmd) ((cmd)->SCp.Status)
/*
* Keep track of the targets returned status.
*/
#define aic7xxx_status(cmd) ((cmd)->SCp.sent_command)
/*
* The position of the SCSI commands scb within the scb array.
*/
#define aic7xxx_position(cmd) ((cmd)->SCp.have_data_in)
/*
* The stored DMA mapping for single-buffer data transfers.
*/
#define aic7xxx_mapping(cmd) ((cmd)->SCp.phase)
/*
* Get out private data area from a scsi cmd pointer
*/
#define AIC_DEV(cmd) ((struct aic_dev_data *)(cmd)->device->hostdata)
/*
* So we can keep track of our host structs
*/
static struct aic7xxx_host *first_aic7xxx = NULL;
/*
* As of Linux 2.1, the mid-level SCSI code uses virtual addresses
* in the scatter-gather lists. We need to convert the virtual
* addresses to physical addresses.
*/
struct hw_scatterlist {
unsigned int address;
unsigned int length;
};
/*
* Maximum number of SG segments these cards can support.
*/
#define AIC7XXX_MAX_SG 128
/*
* The maximum number of SCBs we could have for ANY type
* of card. DON'T FORGET TO CHANGE THE SCB MASK IN THE
* SEQUENCER CODE IF THIS IS MODIFIED!
*/
#define AIC7XXX_MAXSCB 255
struct aic7xxx_hwscb {
/* ------------ Begin hardware supported fields ---------------- */
/* 0*/ unsigned char control;
/* 1*/ unsigned char target_channel_lun; /* 4/1/3 bits */
/* 2*/ unsigned char target_status;
/* 3*/ unsigned char SG_segment_count;
/* 4*/ unsigned int SG_list_pointer;
/* 8*/ unsigned char residual_SG_segment_count;
/* 9*/ unsigned char residual_data_count[3];
/*12*/ unsigned int data_pointer;
/*16*/ unsigned int data_count;
/*20*/ unsigned int SCSI_cmd_pointer;
/*24*/ unsigned char SCSI_cmd_length;
/*25*/ unsigned char tag; /* Index into our kernel SCB array.
* Also used as the tag for tagged I/O
*/
#define SCB_PIO_TRANSFER_SIZE 26 /* amount we need to upload/download
* via PIO to initialize a transaction.
*/
/*26*/ unsigned char next; /* Used to thread SCBs awaiting selection
* or disconnected down in the sequencer.
*/
/*27*/ unsigned char prev;
/*28*/ unsigned int pad; /*
* Unused by the kernel, but we require
* the padding so that the array of
* hardware SCBs is aligned on 32 byte
* boundaries so the sequencer can index
*/
};
typedef enum {
SCB_FREE = 0x0000,
SCB_DTR_SCB = 0x0001,
SCB_WAITINGQ = 0x0002,
SCB_ACTIVE = 0x0004,
SCB_SENSE = 0x0008,
SCB_ABORT = 0x0010,
SCB_DEVICE_RESET = 0x0020,
SCB_RESET = 0x0040,
SCB_RECOVERY_SCB = 0x0080,
SCB_MSGOUT_PPR = 0x0100,
SCB_MSGOUT_SENT = 0x0200,
SCB_MSGOUT_SDTR = 0x0400,
SCB_MSGOUT_WDTR = 0x0800,
SCB_MSGOUT_BITS = SCB_MSGOUT_PPR |
SCB_MSGOUT_SENT |
SCB_MSGOUT_SDTR |
SCB_MSGOUT_WDTR,
SCB_QUEUED_ABORT = 0x1000,
SCB_QUEUED_FOR_DONE = 0x2000,
SCB_WAS_BUSY = 0x4000,
SCB_QUEUE_FULL = 0x8000
} scb_flag_type;
typedef enum {
AHC_FNONE = 0x00000000,
AHC_PAGESCBS = 0x00000001,
AHC_CHANNEL_B_PRIMARY = 0x00000002,
AHC_USEDEFAULTS = 0x00000004,
AHC_INDIRECT_PAGING = 0x00000008,
AHC_CHNLB = 0x00000020,
AHC_CHNLC = 0x00000040,
AHC_EXTEND_TRANS_A = 0x00000100,
AHC_EXTEND_TRANS_B = 0x00000200,
AHC_TERM_ENB_A = 0x00000400,
AHC_TERM_ENB_SE_LOW = 0x00000400,
AHC_TERM_ENB_B = 0x00000800,
AHC_TERM_ENB_SE_HIGH = 0x00000800,
AHC_HANDLING_REQINITS = 0x00001000,
AHC_TARGETMODE = 0x00002000,
AHC_NEWEEPROM_FMT = 0x00004000,
/*
* Here ends the FreeBSD defined flags and here begins the linux defined
* flags. NOTE: I did not preserve the old flag name during this change
* specifically to force me to evaluate what flags were being used properly
* and what flags weren't. This way, I could clean up the flag usage on
* a use by use basis. Doug Ledford
*/
AHC_MOTHERBOARD = 0x00020000,
AHC_NO_STPWEN = 0x00040000,
AHC_RESET_DELAY = 0x00080000,
AHC_A_SCANNED = 0x00100000,
AHC_B_SCANNED = 0x00200000,
AHC_MULTI_CHANNEL = 0x00400000,
AHC_BIOS_ENABLED = 0x00800000,
AHC_SEEPROM_FOUND = 0x01000000,
AHC_TERM_ENB_LVD = 0x02000000,
AHC_ABORT_PENDING = 0x04000000,
AHC_RESET_PENDING = 0x08000000,
#define AHC_IN_ISR_BIT 28
AHC_IN_ISR = 0x10000000,
AHC_IN_ABORT = 0x20000000,
AHC_IN_RESET = 0x40000000,
AHC_EXTERNAL_SRAM = 0x80000000
} ahc_flag_type;
typedef enum {
AHC_NONE = 0x0000,
AHC_CHIPID_MASK = 0x00ff,
AHC_AIC7770 = 0x0001,
AHC_AIC7850 = 0x0002,
AHC_AIC7860 = 0x0003,
AHC_AIC7870 = 0x0004,
AHC_AIC7880 = 0x0005,
AHC_AIC7890 = 0x0006,
AHC_AIC7895 = 0x0007,
AHC_AIC7896 = 0x0008,
AHC_AIC7892 = 0x0009,
AHC_AIC7899 = 0x000a,
AHC_VL = 0x0100,
AHC_EISA = 0x0200,
AHC_PCI = 0x0400,
} ahc_chip;
typedef enum {
AHC_FENONE = 0x0000,
AHC_ULTRA = 0x0001,
AHC_ULTRA2 = 0x0002,
AHC_WIDE = 0x0004,
AHC_TWIN = 0x0008,
AHC_MORE_SRAM = 0x0010,
AHC_CMD_CHAN = 0x0020,
AHC_QUEUE_REGS = 0x0040,
AHC_SG_PRELOAD = 0x0080,
AHC_SPIOCAP = 0x0100,
AHC_ULTRA3 = 0x0200,
AHC_NEW_AUTOTERM = 0x0400,
AHC_AIC7770_FE = AHC_FENONE,
AHC_AIC7850_FE = AHC_SPIOCAP,
AHC_AIC7860_FE = AHC_ULTRA|AHC_SPIOCAP,
AHC_AIC7870_FE = AHC_FENONE,
AHC_AIC7880_FE = AHC_ULTRA,
AHC_AIC7890_FE = AHC_MORE_SRAM|AHC_CMD_CHAN|AHC_ULTRA2|
AHC_QUEUE_REGS|AHC_SG_PRELOAD|AHC_NEW_AUTOTERM,
AHC_AIC7895_FE = AHC_MORE_SRAM|AHC_CMD_CHAN|AHC_ULTRA,
AHC_AIC7896_FE = AHC_AIC7890_FE,
AHC_AIC7892_FE = AHC_AIC7890_FE|AHC_ULTRA3,
AHC_AIC7899_FE = AHC_AIC7890_FE|AHC_ULTRA3,
} ahc_feature;
#define SCB_DMA_ADDR(scb, addr) ((unsigned long)(addr) + (scb)->scb_dma->dma_offset)
struct aic7xxx_scb_dma {
unsigned long dma_offset; /* Correction you have to add
* to virtual address to get
* dma handle in this region */
dma_addr_t dma_address; /* DMA handle of the start,
* for unmap */
unsigned int dma_len; /* DMA length */
};
typedef enum {
AHC_BUG_NONE = 0x0000,
AHC_BUG_TMODE_WIDEODD = 0x0001,
AHC_BUG_AUTOFLUSH = 0x0002,
AHC_BUG_CACHETHEN = 0x0004,
AHC_BUG_CACHETHEN_DIS = 0x0008,
AHC_BUG_PCI_2_1_RETRY = 0x0010,
AHC_BUG_PCI_MWI = 0x0020,
AHC_BUG_SCBCHAN_UPLOAD = 0x0040,
} ahc_bugs;
struct aic7xxx_scb {
struct aic7xxx_hwscb *hscb; /* corresponding hardware scb */
Scsi_Cmnd *cmd; /* Scsi_Cmnd for this scb */
struct aic7xxx_scb *q_next; /* next scb in queue */
volatile scb_flag_type flags; /* current state of scb */
struct hw_scatterlist *sg_list; /* SG list in adapter format */
unsigned char tag_action;
unsigned char sg_count;
unsigned char *sense_cmd; /*
* Allocate 6 characters for
* sense command.
*/
unsigned char *cmnd;
unsigned int sg_length; /* We init this during buildscb so we
* don't have to calculate anything
* during underflow/overflow/stat code
*/
void *kmalloc_ptr;
struct aic7xxx_scb_dma *scb_dma;
};
/*
* Define a linked list of SCBs.
*/
typedef struct {
struct aic7xxx_scb *head;
struct aic7xxx_scb *tail;
} scb_queue_type;
static struct {
unsigned char errno;
const char *errmesg;
} hard_error[] = {
{ ILLHADDR, "Illegal Host Access" },
{ ILLSADDR, "Illegal Sequencer Address referenced" },
{ ILLOPCODE, "Illegal Opcode in sequencer program" },
{ SQPARERR, "Sequencer Ram Parity Error" },
{ DPARERR, "Data-Path Ram Parity Error" },
{ MPARERR, "Scratch Ram/SCB Array Ram Parity Error" },
{ PCIERRSTAT,"PCI Error detected" },
{ CIOPARERR, "CIOBUS Parity Error" }
};
static unsigned char
generic_sense[] = { REQUEST_SENSE, 0, 0, 0, 255, 0 };
typedef struct {
scb_queue_type free_scbs; /*
* SCBs assigned to free slot on
* card (no paging required)
*/
struct aic7xxx_scb *scb_array[AIC7XXX_MAXSCB];
struct aic7xxx_hwscb *hscbs;
unsigned char numscbs; /* current number of scbs */
unsigned char maxhscbs; /* hardware scbs */
unsigned char maxscbs; /* max scbs including pageable scbs */
dma_addr_t hscbs_dma; /* DMA handle to hscbs */
unsigned int hscbs_dma_len; /* length of the above DMA area */
void *hscb_kmalloc_ptr;
} scb_data_type;
struct target_cmd {
unsigned char mesg_bytes[4];
unsigned char command[28];
};
#define AHC_TRANS_CUR 0x0001
#define AHC_TRANS_ACTIVE 0x0002
#define AHC_TRANS_GOAL 0x0004
#define AHC_TRANS_USER 0x0008
#define AHC_TRANS_QUITE 0x0010
typedef struct {
unsigned char width;
unsigned char period;
unsigned char offset;
unsigned char options;
} transinfo_type;
struct aic_dev_data {
volatile scb_queue_type delayed_scbs;
volatile unsigned short temp_q_depth;
unsigned short max_q_depth;
volatile unsigned char active_cmds;
/*
* Statistics Kept:
*
* Total Xfers (count for each command that has a data xfer),
* broken down by reads && writes.
*
* Further sorted into a few bins for keeping tabs on how many commands
* we get of various sizes.
*
*/
long w_total; /* total writes */
long r_total; /* total reads */
long barrier_total; /* total num of REQ_BARRIER commands */
long ordered_total; /* How many REQ_BARRIER commands we
used ordered tags to satisfy */
long w_bins[6]; /* binned write */
long r_bins[6]; /* binned reads */
transinfo_type cur;
transinfo_type goal;
#define BUS_DEVICE_RESET_PENDING 0x01
#define DEVICE_RESET_DELAY 0x02
#define DEVICE_PRINT_DTR 0x04
#define DEVICE_WAS_BUSY 0x08
#define DEVICE_DTR_SCANNED 0x10
#define DEVICE_SCSI_3 0x20
volatile unsigned char flags;
unsigned needppr:1;
unsigned needppr_copy:1;
unsigned needsdtr:1;
unsigned needsdtr_copy:1;
unsigned needwdtr:1;
unsigned needwdtr_copy:1;
unsigned dtr_pending:1;
struct scsi_device *SDptr;
struct list_head list;
};
/*
* Define a structure used for each host adapter. Note, in order to avoid
* problems with architectures I can't test on (because I don't have one,
* such as the Alpha based systems) which happen to give faults for
* non-aligned memory accesses, care was taken to align this structure
* in a way that gauranteed all accesses larger than 8 bits were aligned
* on the appropriate boundary. It's also organized to try and be more
* cache line efficient. Be careful when changing this lest you might hurt
* overall performance and bring down the wrath of the masses.
*/
struct aic7xxx_host {
/*
* This is the first 64 bytes in the host struct
*/
/*
* We are grouping things here....first, items that get either read or
* written with nearly every interrupt
*/
volatile long flags;
ahc_feature features; /* chip features */
unsigned long base; /* card base address */
volatile unsigned char __iomem *maddr; /* memory mapped address */
unsigned long isr_count; /* Interrupt count */
unsigned long spurious_int;
scb_data_type *scb_data;
struct aic7xxx_cmd_queue {
Scsi_Cmnd *head;
Scsi_Cmnd *tail;
} completeq;
/*
* Things read/written on nearly every entry into aic7xxx_queue()
*/
volatile scb_queue_type waiting_scbs;
unsigned char unpause; /* unpause value for HCNTRL */
unsigned char pause; /* pause value for HCNTRL */
volatile unsigned char qoutfifonext;
volatile unsigned char activescbs; /* active scbs */
volatile unsigned char max_activescbs;
volatile unsigned char qinfifonext;
volatile unsigned char *untagged_scbs;
volatile unsigned char *qoutfifo;
volatile unsigned char *qinfifo;
unsigned char dev_last_queue_full[MAX_TARGETS];
unsigned char dev_last_queue_full_count[MAX_TARGETS];
unsigned short ultraenb; /* Gets downloaded to card as a
bitmap */
unsigned short discenable; /* Gets downloaded to card as a
bitmap */
transinfo_type user[MAX_TARGETS];
unsigned char msg_buf[13]; /* The message for the target */
unsigned char msg_type;
#define MSG_TYPE_NONE 0x00
#define MSG_TYPE_INITIATOR_MSGOUT 0x01
#define MSG_TYPE_INITIATOR_MSGIN 0x02
unsigned char msg_len; /* Length of message */
unsigned char msg_index; /* Index into msg_buf array */
/*
* We put the less frequently used host structure items after the more
* frequently used items to try and ease the burden on the cache subsystem.
* These entries are not *commonly* accessed, whereas the preceding entries
* are accessed very often.
*/
unsigned int irq; /* IRQ for this adapter */
int instance; /* aic7xxx instance number */
int scsi_id; /* host adapter SCSI ID */
int scsi_id_b; /* channel B for twin adapters */
unsigned int bios_address;
int board_name_index;
unsigned short bios_control; /* bios control - SEEPROM */
unsigned short adapter_control; /* adapter control - SEEPROM */
struct pci_dev *pdev;
unsigned char pci_bus;
unsigned char pci_device_fn;
struct seeprom_config sc;
unsigned short sc_type;
unsigned short sc_size;
struct aic7xxx_host *next; /* allow for multiple IRQs */
struct Scsi_Host *host; /* pointer to scsi host */
struct list_head aic_devs; /* all aic_dev structs on host */
int host_no; /* SCSI host number */
unsigned long mbase; /* I/O memory address */
ahc_chip chip; /* chip type */
ahc_bugs bugs;
dma_addr_t fifo_dma; /* DMA handle for fifo arrays */
};
/*
* Valid SCSIRATE values. (p. 3-17)
* Provides a mapping of transfer periods in ns/4 to the proper value to
* stick in the SCSIRATE reg to use that transfer rate.
*/
#define AHC_SYNCRATE_ULTRA3 0
#define AHC_SYNCRATE_ULTRA2 1
#define AHC_SYNCRATE_ULTRA 3
#define AHC_SYNCRATE_FAST 6
#define AHC_SYNCRATE_CRC 0x40
#define AHC_SYNCRATE_SE 0x10
static struct aic7xxx_syncrate {
/* Rates in Ultra mode have bit 8 of sxfr set */
#define ULTRA_SXFR 0x100
int sxfr_ultra2;
int sxfr;
unsigned char period;
const char *rate[2];
} aic7xxx_syncrates[] = {
{ 0x42, 0x000, 9, {"80.0", "160.0"} },
{ 0x13, 0x000, 10, {"40.0", "80.0"} },
{ 0x14, 0x000, 11, {"33.0", "66.6"} },
{ 0x15, 0x100, 12, {"20.0", "40.0"} },
{ 0x16, 0x110, 15, {"16.0", "32.0"} },
{ 0x17, 0x120, 18, {"13.4", "26.8"} },
{ 0x18, 0x000, 25, {"10.0", "20.0"} },
{ 0x19, 0x010, 31, {"8.0", "16.0"} },
{ 0x1a, 0x020, 37, {"6.67", "13.3"} },
{ 0x1b, 0x030, 43, {"5.7", "11.4"} },
{ 0x10, 0x040, 50, {"5.0", "10.0"} },
{ 0x00, 0x050, 56, {"4.4", "8.8" } },
{ 0x00, 0x060, 62, {"4.0", "8.0" } },
{ 0x00, 0x070, 68, {"3.6", "7.2" } },
{ 0x00, 0x000, 0, {NULL, NULL} },
};
#define CTL_OF_SCB(scb) (((scb->hscb)->target_channel_lun >> 3) & 0x1), \
(((scb->hscb)->target_channel_lun >> 4) & 0xf), \
((scb->hscb)->target_channel_lun & 0x07)
#define CTL_OF_CMD(cmd) ((cmd->device->channel) & 0x01), \
((cmd->device->id) & 0x0f), \
((cmd->device->lun) & 0x07)
#define TARGET_INDEX(cmd) ((cmd)->device->id | ((cmd)->device->channel << 3))
/*
* A nice little define to make doing our printks a little easier
*/
#define WARN_LEAD KERN_WARNING "(scsi%d:%d:%d:%d) "
#define INFO_LEAD KERN_INFO "(scsi%d:%d:%d:%d) "
/*
* XXX - these options apply unilaterally to _all_ 274x/284x/294x
* cards in the system. This should be fixed. Exceptions to this
* rule are noted in the comments.
*/
/*
* Use this as the default queue depth when setting tagged queueing on.
*/
static unsigned int aic7xxx_default_queue_depth = AIC7XXX_CMDS_PER_DEVICE;
/*
* Skip the scsi bus reset. Non 0 make us skip the reset at startup. This
* has no effect on any later resets that might occur due to things like
* SCSI bus timeouts.
*/
static unsigned int aic7xxx_no_reset = 0;
/*
* Certain PCI motherboards will scan PCI devices from highest to lowest,
* others scan from lowest to highest, and they tend to do all kinds of
* strange things when they come into contact with PCI bridge chips. The
* net result of all this is that the PCI card that is actually used to boot
* the machine is very hard to detect. Most motherboards go from lowest
* PCI slot number to highest, and the first SCSI controller found is the
* one you boot from. The only exceptions to this are when a controller
* has its BIOS disabled. So, we by default sort all of our SCSI controllers
* from lowest PCI slot number to highest PCI slot number. We also force
* all controllers with their BIOS disabled to the end of the list. This
* works on *almost* all computers. Where it doesn't work, we have this
* option. Setting this option to non-0 will reverse the order of the sort
* to highest first, then lowest, but will still leave cards with their BIOS
* disabled at the very end. That should fix everyone up unless there are
* really strange cirumstances.
*/
static int aic7xxx_reverse_scan = 0;
/*
* Should we force EXTENDED translation on a controller.
* 0 == Use whatever is in the SEEPROM or default to off
* 1 == Use whatever is in the SEEPROM or default to on
*/
static unsigned int aic7xxx_extended = 0;
/*
* The IRQ trigger method used on EISA controllers. Does not effect PCI cards.
* -1 = Use detected settings.
* 0 = Force Edge triggered mode.
* 1 = Force Level triggered mode.
*/
static int aic7xxx_irq_trigger = -1;
/*
* This variable is used to override the termination settings on a controller.
* This should not be used under normal conditions. However, in the case
* that a controller does not have a readable SEEPROM (so that we can't
* read the SEEPROM settings directly) and that a controller has a buggered
* version of the cable detection logic, this can be used to force the
* correct termination. It is preferable to use the manual termination
* settings in the BIOS if possible, but some motherboard controllers store
* those settings in a format we can't read. In other cases, auto term
* should also work, but the chipset was put together with no auto term
* logic (common on motherboard controllers). In those cases, we have
* 32 bits here to work with. That's good for 8 controllers/channels. The
* bits are organized as 4 bits per channel, with scsi0 getting the lowest
* 4 bits in the int. A 1 in a bit position indicates the termination setting
* that corresponds to that bit should be enabled, a 0 is disabled.
* It looks something like this:
*
* 0x0f = 1111-Single Ended Low Byte Termination on/off
* ||\-Single Ended High Byte Termination on/off
* |\-LVD Low Byte Termination on/off
* \-LVD High Byte Termination on/off
*
* For non-Ultra2 controllers, the upper 2 bits are not important. So, to
* enable both high byte and low byte termination on scsi0, I would need to
* make sure that the override_term variable was set to 0x03 (bits 0011).
* To make sure that all termination is enabled on an Ultra2 controller at
* scsi2 and only high byte termination on scsi1 and high and low byte
* termination on scsi0, I would set override_term=0xf23 (bits 1111 0010 0011)
*
* For the most part, users should never have to use this, that's why I
* left it fairly cryptic instead of easy to understand. If you need it,
* most likely someone will be telling you what your's needs to be set to.
*/
static int aic7xxx_override_term = -1;
/*
* Certain motherboard chipset controllers tend to screw
* up the polarity of the term enable output pin. Use this variable
* to force the correct polarity for your system. This is a bitfield variable
* similar to the previous one, but this one has one bit per channel instead
* of four.
* 0 = Force the setting to active low.
* 1 = Force setting to active high.
* Most Adaptec cards are active high, several motherboards are active low.
* To force a 2940 card at SCSI 0 to active high and a motherboard 7895
* controller at scsi1 and scsi2 to active low, and a 2910 card at scsi3
* to active high, you would need to set stpwlev=0x9 (bits 1001).
*
* People shouldn't need to use this, but if you are experiencing lots of
* SCSI timeout problems, this may help. There is one sure way to test what
* this option needs to be. Using a boot floppy to boot the system, configure
* your system to enable all SCSI termination (in the Adaptec SCSI BIOS) and
* if needed then also pass a value to override_term to make sure that the
* driver is enabling SCSI termination, then set this variable to either 0
* or 1. When the driver boots, make sure there are *NO* SCSI cables
* connected to your controller. If it finds and inits the controller
* without problem, then the setting you passed to stpwlev was correct. If
* the driver goes into a reset loop and hangs the system, then you need the
* other setting for this variable. If neither setting lets the machine
* boot then you have definite termination problems that may not be fixable.
*/
static int aic7xxx_stpwlev = -1;
/*
* Set this to non-0 in order to force the driver to panic the kernel
* and print out debugging info on a SCSI abort or reset cycle.
*/
static int aic7xxx_panic_on_abort = 0;
/*
* PCI bus parity checking of the Adaptec controllers. This is somewhat
* dubious at best. To my knowledge, this option has never actually
* solved a PCI parity problem, but on certain machines with broken PCI
* chipset configurations, it can generate tons of false error messages.
* It's included in the driver for completeness.
* 0 = Shut off PCI parity check
* -1 = Normal polarity pci parity checking
* 1 = reverse polarity pci parity checking
*
* NOTE: you can't actually pass -1 on the lilo prompt. So, to set this
* variable to -1 you would actually want to simply pass the variable
* name without a number. That will invert the 0 which will result in
* -1.
*/
static int aic7xxx_pci_parity = 0;
/*
* Set this to any non-0 value to cause us to dump the contents of all
* the card's registers in a hex dump format tailored to each model of
* controller.
*
* NOTE: THE CONTROLLER IS LEFT IN AN UNUSEABLE STATE BY THIS OPTION.
* YOU CANNOT BOOT UP WITH THIS OPTION, IT IS FOR DEBUGGING PURPOSES
* ONLY
*/
static int aic7xxx_dump_card = 0;
/*
* Set this to a non-0 value to make us dump out the 32 bit instruction
* registers on the card after completing the sequencer download. This
* allows the actual sequencer download to be verified. It is possible
* to use this option and still boot up and run your system. This is
* only intended for debugging purposes.
*/
static int aic7xxx_dump_sequencer = 0;
/*
* Certain newer motherboards have put new PCI based devices into the
* IO spaces that used to typically be occupied by VLB or EISA cards.
* This overlap can cause these newer motherboards to lock up when scanned
* for older EISA and VLB devices. Setting this option to non-0 will
* cause the driver to skip scanning for any VLB or EISA controllers and
* only support the PCI controllers. NOTE: this means that if the kernel
* os compiled with PCI support disabled, then setting this to non-0
* would result in never finding any devices :)
*/
static int aic7xxx_no_probe = 0;
/*
* On some machines, enabling the external SCB RAM isn't reliable yet. I
* haven't had time to make test patches for things like changing the
* timing mode on that external RAM either. Some of those changes may
* fix the problem. Until then though, we default to external SCB RAM
* off and give a command line option to enable it.
*/
static int aic7xxx_scbram = 0;
/*
* So that we can set how long each device is given as a selection timeout.
* The table of values goes like this:
* 0 - 256ms
* 1 - 128ms
* 2 - 64ms
* 3 - 32ms
* We default to 64ms because it's fast. Some old SCSI-I devices need a
* longer time. The final value has to be left shifted by 3, hence 0x10
* is the final value.
*/
static int aic7xxx_seltime = 0x10;
/*
* So that insmod can find the variable and make it point to something
*/
#ifdef MODULE
static char * aic7xxx = NULL;
module_param(aic7xxx, charp, 0);
#endif
#define VERBOSE_NORMAL 0x0000
#define VERBOSE_NEGOTIATION 0x0001
#define VERBOSE_SEQINT 0x0002
#define VERBOSE_SCSIINT 0x0004
#define VERBOSE_PROBE 0x0008
#define VERBOSE_PROBE2 0x0010
#define VERBOSE_NEGOTIATION2 0x0020
#define VERBOSE_MINOR_ERROR 0x0040
#define VERBOSE_TRACING 0x0080
#define VERBOSE_ABORT 0x0f00
#define VERBOSE_ABORT_MID 0x0100
#define VERBOSE_ABORT_FIND 0x0200
#define VERBOSE_ABORT_PROCESS 0x0400
#define VERBOSE_ABORT_RETURN 0x0800
#define VERBOSE_RESET 0xf000
#define VERBOSE_RESET_MID 0x1000
#define VERBOSE_RESET_FIND 0x2000
#define VERBOSE_RESET_PROCESS 0x4000
#define VERBOSE_RESET_RETURN 0x8000
static int aic7xxx_verbose = VERBOSE_NORMAL | VERBOSE_NEGOTIATION |
VERBOSE_PROBE; /* verbose messages */
/****************************************************************************
*
* We're going to start putting in function declarations so that order of
* functions is no longer important. As needed, they are added here.
*
***************************************************************************/
static int aic7xxx_release(struct Scsi_Host *host);
static void aic7xxx_set_syncrate(struct aic7xxx_host *p,
struct aic7xxx_syncrate *syncrate, int target, int channel,
unsigned int period, unsigned int offset, unsigned char options,
unsigned int type, struct aic_dev_data *aic_dev);
static void aic7xxx_set_width(struct aic7xxx_host *p, int target, int channel,
int lun, unsigned int width, unsigned int type,
struct aic_dev_data *aic_dev);
static void aic7xxx_panic_abort(struct aic7xxx_host *p, Scsi_Cmnd *cmd);
static void aic7xxx_print_card(struct aic7xxx_host *p);
static void aic7xxx_print_scratch_ram(struct aic7xxx_host *p);
static void aic7xxx_print_sequencer(struct aic7xxx_host *p, int downloaded);
#ifdef AIC7XXX_VERBOSE_DEBUGGING
static void aic7xxx_check_scbs(struct aic7xxx_host *p, char *buffer);
#endif
/****************************************************************************
*
* These functions are now used. They happen to be wrapped in useless
* inb/outb port read/writes around the real reads and writes because it
* seems that certain very fast CPUs have a problem dealing with us when
* going at full speed.
*
***************************************************************************/
static unsigned char
aic_inb(struct aic7xxx_host *p, long port)
{
#ifdef MMAPIO
unsigned char x;
if(p->maddr)
{
x = readb(p->maddr + port);
}
else
{
x = inb(p->base + port);
}
return(x);
#else
return(inb(p->base + port));
#endif
}
static void
aic_outb(struct aic7xxx_host *p, unsigned char val, long port)
{
#ifdef MMAPIO
if(p->maddr)
{
writeb(val, p->maddr + port);
mb(); /* locked operation in order to force CPU ordering */
readb(p->maddr + HCNTRL); /* dummy read to flush the PCI write */
}
else
{
outb(val, p->base + port);
mb(); /* locked operation in order to force CPU ordering */
}
#else
outb(val, p->base + port);
mb(); /* locked operation in order to force CPU ordering */
#endif
}
/*+F*************************************************************************
* Function:
* aic7xxx_setup
*
* Description:
* Handle Linux boot parameters. This routine allows for assigning a value
* to a parameter with a ':' between the parameter and the value.
* ie. aic7xxx=unpause:0x0A,extended
*-F*************************************************************************/
static int
aic7xxx_setup(char *s)
{
int i, n;
char *p;
char *end;
static struct {
const char *name;
unsigned int *flag;
} options[] = {
{ "extended", &aic7xxx_extended },
{ "no_reset", &aic7xxx_no_reset },
{ "irq_trigger", &aic7xxx_irq_trigger },
{ "verbose", &aic7xxx_verbose },
{ "reverse_scan",&aic7xxx_reverse_scan },
{ "override_term", &aic7xxx_override_term },
{ "stpwlev", &aic7xxx_stpwlev },
{ "no_probe", &aic7xxx_no_probe },
{ "panic_on_abort", &aic7xxx_panic_on_abort },
{ "pci_parity", &aic7xxx_pci_parity },
{ "dump_card", &aic7xxx_dump_card },
{ "dump_sequencer", &aic7xxx_dump_sequencer },
{ "default_queue_depth", &aic7xxx_default_queue_depth },
{ "scbram", &aic7xxx_scbram },
{ "seltime", &aic7xxx_seltime },
{ "tag_info", NULL }
};
end = strchr(s, '\0');
while ((p = strsep(&s, ",.")) != NULL)
{
for (i = 0; i < ARRAY_SIZE(options); i++)
{
n = strlen(options[i].name);
if (!strncmp(options[i].name, p, n))
{
if (!strncmp(p, "tag_info", n))
{
if (p[n] == ':')
{
char *base;
char *tok, *tok_end, *tok_end2;
char tok_list[] = { '.', ',', '{', '}', '\0' };
int i, instance = -1, device = -1;
unsigned char done = FALSE;
base = p;
tok = base + n + 1; /* Forward us just past the ':' */
tok_end = strchr(tok, '\0');
if (tok_end < end)
*tok_end = ',';
while(!done)
{
switch(*tok)
{
case '{':
if (instance == -1)
instance = 0;
else if (device == -1)
device = 0;
tok++;
break;
case '}':
if (device != -1)
device = -1;
else if (instance != -1)
instance = -1;
tok++;
break;
case ',':
case '.':
if (instance == -1)
done = TRUE;
else if (device >= 0)
device++;
else if (instance >= 0)
instance++;
if ( (device >= MAX_TARGETS) ||
(instance >= ARRAY_SIZE(aic7xxx_tag_info)) )
done = TRUE;
tok++;
if (!done)
{
base = tok;
}
break;
case '\0':
done = TRUE;
break;
default:
done = TRUE;
tok_end = strchr(tok, '\0');
for(i=0; tok_list[i]; i++)
{
tok_end2 = strchr(tok, tok_list[i]);
if ( (tok_end2) && (tok_end2 < tok_end) )
{
tok_end = tok_end2;
done = FALSE;
}
}
if ( (instance >= 0) && (device >= 0) &&
(instance < ARRAY_SIZE(aic7xxx_tag_info)) &&
(device < MAX_TARGETS) )
aic7xxx_tag_info[instance].tag_commands[device] =
simple_strtoul(tok, NULL, 0) & 0xff;
tok = tok_end;
break;
}
}
while((p != base) && (p != NULL))
p = strsep(&s, ",.");
}
}
else if (p[n] == ':')
{
*(options[i].flag) = simple_strtoul(p + n + 1, NULL, 0);
if(!strncmp(p, "seltime", n))
{
*(options[i].flag) = (*(options[i].flag) % 4) << 3;
}
}
else if (!strncmp(p, "verbose", n))
{
*(options[i].flag) = 0xff29;
}
else
{
*(options[i].flag) = ~(*(options[i].flag));
if(!strncmp(p, "seltime", n))
{
*(options[i].flag) = (*(options[i].flag) % 4) << 3;
}
}
}
}
}
return 1;
}
__setup("aic7xxx=", aic7xxx_setup);
/*+F*************************************************************************
* Function:
* pause_sequencer
*
* Description:
* Pause the sequencer and wait for it to actually stop - this
* is important since the sequencer can disable pausing for critical
* sections.
*-F*************************************************************************/
static void
pause_sequencer(struct aic7xxx_host *p)
{
aic_outb(p, p->pause, HCNTRL);
while ((aic_inb(p, HCNTRL) & PAUSE) == 0)
{
;
}
if(p->features & AHC_ULTRA2)
{
aic_inb(p, CCSCBCTL);
}
}
/*+F*************************************************************************
* Function:
* unpause_sequencer
*
* Description:
* Unpause the sequencer. Unremarkable, yet done often enough to
* warrant an easy way to do it.
*-F*************************************************************************/
static void
unpause_sequencer(struct aic7xxx_host *p, int unpause_always)
{
if (unpause_always ||
( !(aic_inb(p, INTSTAT) & (SCSIINT | SEQINT | BRKADRINT)) &&
!(p->flags & AHC_HANDLING_REQINITS) ) )
{
aic_outb(p, p->unpause, HCNTRL);
}
}
/*+F*************************************************************************
* Function:
* restart_sequencer
*
* Description:
* Restart the sequencer program from address zero. This assumes
* that the sequencer is already paused.
*-F*************************************************************************/
static void
restart_sequencer(struct aic7xxx_host *p)
{
aic_outb(p, 0, SEQADDR0);
aic_outb(p, 0, SEQADDR1);
aic_outb(p, FASTMODE, SEQCTL);
}
/*
* We include the aic7xxx_seq.c file here so that the other defines have
* already been made, and so that it comes before the code that actually
* downloads the instructions (since we don't typically use function
* prototype, our code has to be ordered that way, it's a left-over from
* the original driver days.....I should fix it some time DL).
*/
#include "aic7xxx_old/aic7xxx_seq.c"
/*+F*************************************************************************
* Function:
* aic7xxx_check_patch
*
* Description:
* See if the next patch to download should be downloaded.
*-F*************************************************************************/
static int
aic7xxx_check_patch(struct aic7xxx_host *p,
struct sequencer_patch **start_patch, int start_instr, int *skip_addr)
{
struct sequencer_patch *cur_patch;
struct sequencer_patch *last_patch;
int num_patches;
num_patches = sizeof(sequencer_patches)/sizeof(struct sequencer_patch);
last_patch = &sequencer_patches[num_patches];
cur_patch = *start_patch;
while ((cur_patch < last_patch) && (start_instr == cur_patch->begin))
{
if (cur_patch->patch_func(p) == 0)
{
/*
* Start rejecting code.
*/
*skip_addr = start_instr + cur_patch->skip_instr;
cur_patch += cur_patch->skip_patch;
}
else
{
/*
* Found an OK patch. Advance the patch pointer to the next patch
* and wait for our instruction pointer to get here.
*/
cur_patch++;
}
}
*start_patch = cur_patch;
if (start_instr < *skip_addr)
/*
* Still skipping
*/
return (0);
return(1);
}
/*+F*************************************************************************
* Function:
* aic7xxx_download_instr
*
* Description:
* Find the next patch to download.
*-F*************************************************************************/
static void
aic7xxx_download_instr(struct aic7xxx_host *p, int instrptr,
unsigned char *dconsts)
{
union ins_formats instr;
struct ins_format1 *fmt1_ins;
struct ins_format3 *fmt3_ins;
unsigned char opcode;
instr = *(union ins_formats*) &seqprog[instrptr * 4];
instr.integer = le32_to_cpu(instr.integer);
fmt1_ins = &instr.format1;
fmt3_ins = NULL;
/* Pull the opcode */
opcode = instr.format1.opcode;
switch (opcode)
{
case AIC_OP_JMP:
case AIC_OP_JC:
case AIC_OP_JNC:
case AIC_OP_CALL:
case AIC_OP_JNE:
case AIC_OP_JNZ:
case AIC_OP_JE:
case AIC_OP_JZ:
{
struct sequencer_patch *cur_patch;
int address_offset;
unsigned int address;
int skip_addr;
int i;
fmt3_ins = &instr.format3;
address_offset = 0;
address = fmt3_ins->address;
cur_patch = sequencer_patches;
skip_addr = 0;
for (i = 0; i < address;)
{
aic7xxx_check_patch(p, &cur_patch, i, &skip_addr);
if (skip_addr > i)
{
int end_addr;
end_addr = min_t(int, address, skip_addr);
address_offset += end_addr - i;
i = skip_addr;
}
else
{
i++;
}
}
address -= address_offset;
fmt3_ins->address = address;
/* Fall Through to the next code section */
}
case AIC_OP_OR:
case AIC_OP_AND:
case AIC_OP_XOR:
case AIC_OP_ADD:
case AIC_OP_ADC:
case AIC_OP_BMOV:
if (fmt1_ins->parity != 0)
{
fmt1_ins->immediate = dconsts[fmt1_ins->immediate];
}
fmt1_ins->parity = 0;
/* Fall Through to the next code section */
case AIC_OP_ROL:
if ((p->features & AHC_ULTRA2) != 0)
{
int i, count;
/* Calculate odd parity for the instruction */
for ( i=0, count=0; i < 31; i++)
{
unsigned int mask;
mask = 0x01 << i;
if ((instr.integer & mask) != 0)
count++;
}
if (!(count & 0x01))
instr.format1.parity = 1;
}
else
{
if (fmt3_ins != NULL)
{
instr.integer = fmt3_ins->immediate |
(fmt3_ins->source << 8) |
(fmt3_ins->address << 16) |
(fmt3_ins->opcode << 25);
}
else
{
instr.integer = fmt1_ins->immediate |
(fmt1_ins->source << 8) |
(fmt1_ins->destination << 16) |
(fmt1_ins->ret << 24) |
(fmt1_ins->opcode << 25);
}
}
aic_outb(p, (instr.integer & 0xff), SEQRAM);
aic_outb(p, ((instr.integer >> 8) & 0xff), SEQRAM);
aic_outb(p, ((instr.integer >> 16) & 0xff), SEQRAM);
aic_outb(p, ((instr.integer >> 24) & 0xff), SEQRAM);
udelay(10);
break;
default:
panic("aic7xxx: Unknown opcode encountered in sequencer program.");
break;
}
}
/*+F*************************************************************************
* Function:
* aic7xxx_loadseq
*
* Description:
* Load the sequencer code into the controller memory.
*-F*************************************************************************/
static void
aic7xxx_loadseq(struct aic7xxx_host *p)
{
struct sequencer_patch *cur_patch;
int i;
int downloaded;
int skip_addr;
unsigned char download_consts[4] = {0, 0, 0, 0};
if (aic7xxx_verbose & VERBOSE_PROBE)
{
printk(KERN_INFO "(scsi%d) Downloading sequencer code...", p->host_no);
}
#if 0
download_consts[TMODE_NUMCMDS] = p->num_targetcmds;
#endif
download_consts[TMODE_NUMCMDS] = 0;
cur_patch = &sequencer_patches[0];
downloaded = 0;
skip_addr = 0;
aic_outb(p, PERRORDIS|LOADRAM|FAILDIS|FASTMODE, SEQCTL);
aic_outb(p, 0, SEQADDR0);
aic_outb(p, 0, SEQADDR1);
for (i = 0; i < sizeof(seqprog) / 4; i++)
{
if (aic7xxx_check_patch(p, &cur_patch, i, &skip_addr) == 0)
{
/* Skip this instruction for this configuration. */
continue;
}
aic7xxx_download_instr(p, i, &download_consts[0]);
downloaded++;
}
aic_outb(p, 0, SEQADDR0);
aic_outb(p, 0, SEQADDR1);
aic_outb(p, FASTMODE | FAILDIS, SEQCTL);
unpause_sequencer(p, TRUE);
mdelay(1);
pause_sequencer(p);
aic_outb(p, FASTMODE, SEQCTL);
if (aic7xxx_verbose & VERBOSE_PROBE)
{
printk(" %d instructions downloaded\n", downloaded);
}
if (aic7xxx_dump_sequencer)
aic7xxx_print_sequencer(p, downloaded);
}
/*+F*************************************************************************
* Function:
* aic7xxx_print_sequencer
*
* Description:
* Print the contents of the sequencer memory to the screen.
*-F*************************************************************************/
static void
aic7xxx_print_sequencer(struct aic7xxx_host *p, int downloaded)
{
int i, k, temp;
aic_outb(p, PERRORDIS|LOADRAM|FAILDIS|FASTMODE, SEQCTL);
aic_outb(p, 0, SEQADDR0);
aic_outb(p, 0, SEQADDR1);
k = 0;
for (i=0; i < downloaded; i++)
{
if ( k == 0 )
printk("%03x: ", i);
temp = aic_inb(p, SEQRAM);
temp |= (aic_inb(p, SEQRAM) << 8);
temp |= (aic_inb(p, SEQRAM) << 16);
temp |= (aic_inb(p, SEQRAM) << 24);
printk("%08x", temp);
if ( ++k == 8 )
{
printk("\n");
k = 0;
}
else
printk(" ");
}
aic_outb(p, 0, SEQADDR0);
aic_outb(p, 0, SEQADDR1);
aic_outb(p, FASTMODE | FAILDIS, SEQCTL);
unpause_sequencer(p, TRUE);
mdelay(1);
pause_sequencer(p);
aic_outb(p, FASTMODE, SEQCTL);
printk("\n");
}
/*+F*************************************************************************
* Function:
* aic7xxx_info
*
* Description:
* Return a string describing the driver.
*-F*************************************************************************/
static const char *
aic7xxx_info(struct Scsi_Host *dooh)
{
static char buffer[256];
char *bp;
struct aic7xxx_host *p;
bp = &buffer[0];
p = (struct aic7xxx_host *)dooh->hostdata;
memset(bp, 0, sizeof(buffer));
strcpy(bp, "Adaptec AHA274x/284x/294x (EISA/VLB/PCI-Fast SCSI) ");
strcat(bp, AIC7XXX_C_VERSION);
strcat(bp, "/");
strcat(bp, AIC7XXX_H_VERSION);
strcat(bp, "\n");
strcat(bp, " <");
strcat(bp, board_names[p->board_name_index]);
strcat(bp, ">");
return(bp);
}
/*+F*************************************************************************
* Function:
* aic7xxx_find_syncrate
*
* Description:
* Look up the valid period to SCSIRATE conversion in our table
*-F*************************************************************************/
static struct aic7xxx_syncrate *
aic7xxx_find_syncrate(struct aic7xxx_host *p, unsigned int *period,
unsigned int maxsync, unsigned char *options)
{
struct aic7xxx_syncrate *syncrate;
int done = FALSE;
switch(*options)
{
case MSG_EXT_PPR_OPTION_DT_CRC:
case MSG_EXT_PPR_OPTION_DT_UNITS:
if(!(p->features & AHC_ULTRA3))
{
*options = 0;
maxsync = max_t(unsigned int, maxsync, AHC_SYNCRATE_ULTRA2);
}
break;
case MSG_EXT_PPR_OPTION_DT_CRC_QUICK:
case MSG_EXT_PPR_OPTION_DT_UNITS_QUICK:
if(!(p->features & AHC_ULTRA3))
{
*options = 0;
maxsync = max_t(unsigned int, maxsync, AHC_SYNCRATE_ULTRA2);
}
else
{
/*
* we don't support the Quick Arbitration variants of dual edge
* clocking. As it turns out, we want to send back the
* same basic option, but without the QA attribute.
* We know that we are responding because we would never set
* these options ourself, we would only respond to them.
*/
switch(*options)
{
case MSG_EXT_PPR_OPTION_DT_CRC_QUICK:
*options = MSG_EXT_PPR_OPTION_DT_CRC;
break;
case MSG_EXT_PPR_OPTION_DT_UNITS_QUICK:
*options = MSG_EXT_PPR_OPTION_DT_UNITS;
break;
}
}
break;
default:
*options = 0;
maxsync = max_t(unsigned int, maxsync, AHC_SYNCRATE_ULTRA2);
break;
}
syncrate = &aic7xxx_syncrates[maxsync];
while ( (syncrate->rate[0] != NULL) &&
(!(p->features & AHC_ULTRA2) || syncrate->sxfr_ultra2) )
{
if (*period <= syncrate->period)
{
switch(*options)
{
case MSG_EXT_PPR_OPTION_DT_CRC:
case MSG_EXT_PPR_OPTION_DT_UNITS:
if(!(syncrate->sxfr_ultra2 & AHC_SYNCRATE_CRC))
{
done = TRUE;
/*
* oops, we went too low for the CRC/DualEdge signalling, so
* clear the options byte
*/
*options = 0;
/*
* We'll be sending a reply to this packet to set the options
* properly, so unilaterally set the period as well.
*/
*period = syncrate->period;
}
else
{
done = TRUE;
if(syncrate == &aic7xxx_syncrates[maxsync])
{
*period = syncrate->period;
}
}
break;
default:
if(!(syncrate->sxfr_ultra2 & AHC_SYNCRATE_CRC))
{
done = TRUE;
if(syncrate == &aic7xxx_syncrates[maxsync])
{
*period = syncrate->period;
}
}
break;
}
if(done)
{
break;
}
}
syncrate++;
}
if ( (*period == 0) || (syncrate->rate[0] == NULL) ||
((p->features & AHC_ULTRA2) && (syncrate->sxfr_ultra2 == 0)) )
{
/*
* Use async transfers for this target
*/
*options = 0;
*period = 255;
syncrate = NULL;
}
return (syncrate);
}
/*+F*************************************************************************
* Function:
* aic7xxx_find_period
*
* Description:
* Look up the valid SCSIRATE to period conversion in our table
*-F*************************************************************************/
static unsigned int
aic7xxx_find_period(struct aic7xxx_host *p, unsigned int scsirate,
unsigned int maxsync)
{
struct aic7xxx_syncrate *syncrate;
if (p->features & AHC_ULTRA2)
{
scsirate &= SXFR_ULTRA2;
}
else
{
scsirate &= SXFR;
}
syncrate = &aic7xxx_syncrates[maxsync];
while (syncrate->rate[0] != NULL)
{
if (p->features & AHC_ULTRA2)
{
if (syncrate->sxfr_ultra2 == 0)
break;
else if (scsirate == syncrate->sxfr_ultra2)
return (syncrate->period);
else if (scsirate == (syncrate->sxfr_ultra2 & ~AHC_SYNCRATE_CRC))
return (syncrate->period);
}
else if (scsirate == (syncrate->sxfr & ~ULTRA_SXFR))
{
return (syncrate->period);
}
syncrate++;
}
return (0); /* async */
}
/*+F*************************************************************************
* Function:
* aic7xxx_validate_offset
*
* Description:
* Set a valid offset value for a particular card in use and transfer
* settings in use.
*-F*************************************************************************/
static void
aic7xxx_validate_offset(struct aic7xxx_host *p,
struct aic7xxx_syncrate *syncrate, unsigned int *offset, int wide)
{
unsigned int maxoffset;
/* Limit offset to what the card (and device) can do */
if (syncrate == NULL)
{
maxoffset = 0;
}
else if (p->features & AHC_ULTRA2)
{
maxoffset = MAX_OFFSET_ULTRA2;
}
else
{
if (wide)
maxoffset = MAX_OFFSET_16BIT;
else
maxoffset = MAX_OFFSET_8BIT;
}
*offset = min(*offset, maxoffset);
}
/*+F*************************************************************************
* Function:
* aic7xxx_set_syncrate
*
* Description:
* Set the actual syncrate down in the card and in our host structs
*-F*************************************************************************/
static void
aic7xxx_set_syncrate(struct aic7xxx_host *p, struct aic7xxx_syncrate *syncrate,
int target, int channel, unsigned int period, unsigned int offset,
unsigned char options, unsigned int type, struct aic_dev_data *aic_dev)
{
unsigned char tindex;
unsigned short target_mask;
unsigned char lun, old_options;
unsigned int old_period, old_offset;
tindex = target | (channel << 3);
target_mask = 0x01 << tindex;
lun = aic_inb(p, SCB_TCL) & 0x07;
if (syncrate == NULL)
{
period = 0;
offset = 0;
}
old_period = aic_dev->cur.period;
old_offset = aic_dev->cur.offset;
old_options = aic_dev->cur.options;
if (type & AHC_TRANS_CUR)
{
unsigned int scsirate;
scsirate = aic_inb(p, TARG_SCSIRATE + tindex);
if (p->features & AHC_ULTRA2)
{
scsirate &= ~SXFR_ULTRA2;
if (syncrate != NULL)
{
switch(options)
{
case MSG_EXT_PPR_OPTION_DT_UNITS:
/*
* mask off the CRC bit in the xfer settings
*/
scsirate |= (syncrate->sxfr_ultra2 & ~AHC_SYNCRATE_CRC);
break;
default:
scsirate |= syncrate->sxfr_ultra2;
break;
}
}
if (type & AHC_TRANS_ACTIVE)
{
aic_outb(p, offset, SCSIOFFSET);
}
aic_outb(p, offset, TARG_OFFSET + tindex);
}
else /* Not an Ultra2 controller */
{
scsirate &= ~(SXFR|SOFS);
p->ultraenb &= ~target_mask;
if (syncrate != NULL)
{
if (syncrate->sxfr & ULTRA_SXFR)
{
p->ultraenb |= target_mask;
}
scsirate |= (syncrate->sxfr & SXFR);
scsirate |= (offset & SOFS);
}
if (type & AHC_TRANS_ACTIVE)
{
unsigned char sxfrctl0;
sxfrctl0 = aic_inb(p, SXFRCTL0);
sxfrctl0 &= ~FAST20;
if (p->ultraenb & target_mask)
sxfrctl0 |= FAST20;
aic_outb(p, sxfrctl0, SXFRCTL0);
}
aic_outb(p, p->ultraenb & 0xff, ULTRA_ENB);
aic_outb(p, (p->ultraenb >> 8) & 0xff, ULTRA_ENB + 1 );
}
if (type & AHC_TRANS_ACTIVE)
{
aic_outb(p, scsirate, SCSIRATE);
}
aic_outb(p, scsirate, TARG_SCSIRATE + tindex);
aic_dev->cur.period = period;
aic_dev->cur.offset = offset;
aic_dev->cur.options = options;
if ( !(type & AHC_TRANS_QUITE) &&
(aic7xxx_verbose & VERBOSE_NEGOTIATION) &&
(aic_dev->flags & DEVICE_PRINT_DTR) )
{
if (offset)
{
int rate_mod = (scsirate & WIDEXFER) ? 1 : 0;
printk(INFO_LEAD "Synchronous at %s Mbyte/sec, "
"offset %d.\n", p->host_no, channel, target, lun,
syncrate->rate[rate_mod], offset);
}
else
{
printk(INFO_LEAD "Using asynchronous transfers.\n",
p->host_no, channel, target, lun);
}
aic_dev->flags &= ~DEVICE_PRINT_DTR;
}
}
if (type & AHC_TRANS_GOAL)
{
aic_dev->goal.period = period;
aic_dev->goal.offset = offset;
aic_dev->goal.options = options;
}
if (type & AHC_TRANS_USER)
{
p->user[tindex].period = period;
p->user[tindex].offset = offset;
p->user[tindex].options = options;
}
}
/*+F*************************************************************************
* Function:
* aic7xxx_set_width
*
* Description:
* Set the actual width down in the card and in our host structs
*-F*************************************************************************/
static void
aic7xxx_set_width(struct aic7xxx_host *p, int target, int channel, int lun,
unsigned int width, unsigned int type, struct aic_dev_data *aic_dev)
{
unsigned char tindex;
unsigned short target_mask;
unsigned int old_width;
tindex = target | (channel << 3);
target_mask = 1 << tindex;
old_width = aic_dev->cur.width;
if (type & AHC_TRANS_CUR)
{
unsigned char scsirate;
scsirate = aic_inb(p, TARG_SCSIRATE + tindex);
scsirate &= ~WIDEXFER;
if (width == MSG_EXT_WDTR_BUS_16_BIT)
scsirate |= WIDEXFER;
aic_outb(p, scsirate, TARG_SCSIRATE + tindex);
if (type & AHC_TRANS_ACTIVE)
aic_outb(p, scsirate, SCSIRATE);
aic_dev->cur.width = width;
if ( !(type & AHC_TRANS_QUITE) &&
(aic7xxx_verbose & VERBOSE_NEGOTIATION2) &&
(aic_dev->flags & DEVICE_PRINT_DTR) )
{
printk(INFO_LEAD "Using %s transfers\n", p->host_no, channel, target,
lun, (scsirate & WIDEXFER) ? "Wide(16bit)" : "Narrow(8bit)" );
}
}
if (type & AHC_TRANS_GOAL)
aic_dev->goal.width = width;
if (type & AHC_TRANS_USER)
p->user[tindex].width = width;
if (aic_dev->goal.offset)
{
if (p->features & AHC_ULTRA2)
{
aic_dev->goal.offset = MAX_OFFSET_ULTRA2;
}
else if (width == MSG_EXT_WDTR_BUS_16_BIT)
{
aic_dev->goal.offset = MAX_OFFSET_16BIT;
}
else
{
aic_dev->goal.offset = MAX_OFFSET_8BIT;
}
}
}
/*+F*************************************************************************
* Function:
* scbq_init
*
* Description:
* SCB queue initialization.
*
*-F*************************************************************************/
static void
scbq_init(volatile scb_queue_type *queue)
{
queue->head = NULL;
queue->tail = NULL;
}
/*+F*************************************************************************
* Function:
* scbq_insert_head
*
* Description:
* Add an SCB to the head of the list.
*
*-F*************************************************************************/
static inline void
scbq_insert_head(volatile scb_queue_type *queue, struct aic7xxx_scb *scb)
{
scb->q_next = queue->head;
queue->head = scb;
if (queue->tail == NULL) /* If list was empty, update tail. */
queue->tail = queue->head;
}
/*+F*************************************************************************
* Function:
* scbq_remove_head
*
* Description:
* Remove an SCB from the head of the list.
*
*-F*************************************************************************/
static inline struct aic7xxx_scb *
scbq_remove_head(volatile scb_queue_type *queue)
{
struct aic7xxx_scb * scbp;
scbp = queue->head;
if (queue->head != NULL)
queue->head = queue->head->q_next;
if (queue->head == NULL) /* If list is now empty, update tail. */
queue->tail = NULL;
return(scbp);
}
/*+F*************************************************************************
* Function:
* scbq_remove
*
* Description:
* Removes an SCB from the list.
*
*-F*************************************************************************/
static inline void
scbq_remove(volatile scb_queue_type *queue, struct aic7xxx_scb *scb)
{
if (queue->head == scb)
{
/* At beginning of queue, remove from head. */
scbq_remove_head(queue);
}
else
{
struct aic7xxx_scb *curscb = queue->head;
/*
* Search until the next scb is the one we're looking for, or
* we run out of queue.
*/
while ((curscb != NULL) && (curscb->q_next != scb))
{
curscb = curscb->q_next;
}
if (curscb != NULL)
{
/* Found it. */
curscb->q_next = scb->q_next;
if (scb->q_next == NULL)
{
/* Update the tail when removing the tail. */
queue->tail = curscb;
}
}
}
}
/*+F*************************************************************************
* Function:
* scbq_insert_tail
*
* Description:
* Add an SCB at the tail of the list.
*
*-F*************************************************************************/
static inline void
scbq_insert_tail(volatile scb_queue_type *queue, struct aic7xxx_scb *scb)
{
scb->q_next = NULL;
if (queue->tail != NULL) /* Add the scb at the end of the list. */
queue->tail->q_next = scb;
queue->tail = scb; /* Update the tail. */
if (queue->head == NULL) /* If list was empty, update head. */
queue->head = queue->tail;
}
/*+F*************************************************************************
* Function:
* aic7xxx_match_scb
*
* Description:
* Checks to see if an scb matches the target/channel as specified.
* If target is ALL_TARGETS (-1), then we're looking for any device
* on the specified channel; this happens when a channel is going
* to be reset and all devices on that channel must be aborted.
*-F*************************************************************************/
static int
aic7xxx_match_scb(struct aic7xxx_host *p, struct aic7xxx_scb *scb,
int target, int channel, int lun, unsigned char tag)
{
int targ = (scb->hscb->target_channel_lun >> 4) & 0x0F;
int chan = (scb->hscb->target_channel_lun >> 3) & 0x01;
int slun = scb->hscb->target_channel_lun & 0x07;
int match;
match = ((chan == channel) || (channel == ALL_CHANNELS));
if (match != 0)
match = ((targ == target) || (target == ALL_TARGETS));
if (match != 0)
match = ((lun == slun) || (lun == ALL_LUNS));
if (match != 0)
match = ((tag == scb->hscb->tag) || (tag == SCB_LIST_NULL));
return (match);
}
/*+F*************************************************************************
* Function:
* aic7xxx_add_curscb_to_free_list
*
* Description:
* Adds the current scb (in SCBPTR) to the list of free SCBs.
*-F*************************************************************************/
static void
aic7xxx_add_curscb_to_free_list(struct aic7xxx_host *p)
{
/*
* Invalidate the tag so that aic7xxx_find_scb doesn't think
* it's active
*/
aic_outb(p, SCB_LIST_NULL, SCB_TAG);
aic_outb(p, 0, SCB_CONTROL);
aic_outb(p, aic_inb(p, FREE_SCBH), SCB_NEXT);
aic_outb(p, aic_inb(p, SCBPTR), FREE_SCBH);
}
/*+F*************************************************************************
* Function:
* aic7xxx_rem_scb_from_disc_list
*
* Description:
* Removes the current SCB from the disconnected list and adds it
* to the free list.
*-F*************************************************************************/
static unsigned char
aic7xxx_rem_scb_from_disc_list(struct aic7xxx_host *p, unsigned char scbptr,
unsigned char prev)
{
unsigned char next;
aic_outb(p, scbptr, SCBPTR);
next = aic_inb(p, SCB_NEXT);
aic7xxx_add_curscb_to_free_list(p);
if (prev != SCB_LIST_NULL)
{
aic_outb(p, prev, SCBPTR);
aic_outb(p, next, SCB_NEXT);
}
else
{
aic_outb(p, next, DISCONNECTED_SCBH);
}
return next;
}
/*+F*************************************************************************
* Function:
* aic7xxx_busy_target
*
* Description:
* Set the specified target busy.
*-F*************************************************************************/
static inline void
aic7xxx_busy_target(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
{
p->untagged_scbs[scb->hscb->target_channel_lun] = scb->hscb->tag;
}
/*+F*************************************************************************
* Function:
* aic7xxx_index_busy_target
*
* Description:
* Returns the index of the busy target, and optionally sets the
* target inactive.
*-F*************************************************************************/
static inline unsigned char
aic7xxx_index_busy_target(struct aic7xxx_host *p, unsigned char tcl,
int unbusy)
{
unsigned char busy_scbid;
busy_scbid = p->untagged_scbs[tcl];
if (unbusy)
{
p->untagged_scbs[tcl] = SCB_LIST_NULL;
}
return (busy_scbid);
}
/*+F*************************************************************************
* Function:
* aic7xxx_find_scb
*
* Description:
* Look through the SCB array of the card and attempt to find the
* hardware SCB that corresponds to the passed in SCB. Return
* SCB_LIST_NULL if unsuccessful. This routine assumes that the
* card is already paused.
*-F*************************************************************************/
static unsigned char
aic7xxx_find_scb(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
{
unsigned char saved_scbptr;
unsigned char curindex;
saved_scbptr = aic_inb(p, SCBPTR);
curindex = 0;
for (curindex = 0; curindex < p->scb_data->maxhscbs; curindex++)
{
aic_outb(p, curindex, SCBPTR);
if (aic_inb(p, SCB_TAG) == scb->hscb->tag)
{
break;
}
}
aic_outb(p, saved_scbptr, SCBPTR);
if (curindex >= p->scb_data->maxhscbs)
{
curindex = SCB_LIST_NULL;
}
return (curindex);
}
/*+F*************************************************************************
* Function:
* aic7xxx_allocate_scb
*
* Description:
* Get an SCB from the free list or by allocating a new one.
*-F*************************************************************************/
static int
aic7xxx_allocate_scb(struct aic7xxx_host *p)
{
struct aic7xxx_scb *scbp = NULL;
int scb_size = (sizeof (struct hw_scatterlist) * AIC7XXX_MAX_SG) + 12 + 6;
int i;
int step = PAGE_SIZE / 1024;
unsigned long scb_count = 0;
struct hw_scatterlist *hsgp;
struct aic7xxx_scb *scb_ap;
struct aic7xxx_scb_dma *scb_dma;
unsigned char *bufs;
if (p->scb_data->numscbs < p->scb_data->maxscbs)
{
/*
* Calculate the optimal number of SCBs to allocate.
*
* NOTE: This formula works because the sizeof(sg_array) is always
* 1024. Therefore, scb_size * i would always be > PAGE_SIZE *
* (i/step). The (i-1) allows the left hand side of the equation
* to grow into the right hand side to a point of near perfect
* efficiency since scb_size * (i -1) is growing slightly faster
* than the right hand side. If the number of SG array elements
* is changed, this function may not be near so efficient any more.
*
* Since the DMA'able buffers are now allocated in a separate
* chunk this algorithm has been modified to match. The '12'
* and '6' factors in scb_size are for the DMA'able command byte
* and sensebuffers respectively. -DaveM
*/
for ( i=step;; i *= 2 )
{
if ( (scb_size * (i-1)) >= ( (PAGE_SIZE * (i/step)) - 64 ) )
{
i /= 2;
break;
}
}
scb_count = min( (i-1), p->scb_data->maxscbs - p->scb_data->numscbs);
scb_ap = (struct aic7xxx_scb *)kmalloc(sizeof (struct aic7xxx_scb) * scb_count
+ sizeof(struct aic7xxx_scb_dma), GFP_ATOMIC);
if (scb_ap == NULL)
return(0);
scb_dma = (struct aic7xxx_scb_dma *)&scb_ap[scb_count];
hsgp = (struct hw_scatterlist *)
pci_alloc_consistent(p->pdev, scb_size * scb_count,
&scb_dma->dma_address);
if (hsgp == NULL)
{
kfree(scb_ap);
return(0);
}
bufs = (unsigned char *)&hsgp[scb_count * AIC7XXX_MAX_SG];
#ifdef AIC7XXX_VERBOSE_DEBUGGING
if (aic7xxx_verbose > 0xffff)
{
if (p->scb_data->numscbs == 0)
printk(INFO_LEAD "Allocating initial %ld SCB structures.\n",
p->host_no, -1, -1, -1, scb_count);
else
printk(INFO_LEAD "Allocating %ld additional SCB structures.\n",
p->host_no, -1, -1, -1, scb_count);
}
#endif
memset(scb_ap, 0, sizeof (struct aic7xxx_scb) * scb_count);
scb_dma->dma_offset = (unsigned long)scb_dma->dma_address
- (unsigned long)hsgp;
scb_dma->dma_len = scb_size * scb_count;
for (i=0; i < scb_count; i++)
{
scbp = &scb_ap[i];
scbp->hscb = &p->scb_data->hscbs[p->scb_data->numscbs];
scbp->sg_list = &hsgp[i * AIC7XXX_MAX_SG];
scbp->sense_cmd = bufs;
scbp->cmnd = bufs + 6;
bufs += 12 + 6;
scbp->scb_dma = scb_dma;
memset(scbp->hscb, 0, sizeof(struct aic7xxx_hwscb));
scbp->hscb->tag = p->scb_data->numscbs;
/*
* Place in the scb array; never is removed
*/
p->scb_data->scb_array[p->scb_data->numscbs++] = scbp;
scbq_insert_tail(&p->scb_data->free_scbs, scbp);
}
scbp->kmalloc_ptr = scb_ap;
}
return(scb_count);
}
/*+F*************************************************************************
* Function:
* aic7xxx_queue_cmd_complete
*
* Description:
* Due to race conditions present in the SCSI subsystem, it is easier
* to queue completed commands, then call scsi_done() on them when
* we're finished. This function queues the completed commands.
*-F*************************************************************************/
static void
aic7xxx_queue_cmd_complete(struct aic7xxx_host *p, Scsi_Cmnd *cmd)
{
aic7xxx_position(cmd) = SCB_LIST_NULL;
cmd->host_scribble = (char *)p->completeq.head;
p->completeq.head = cmd;
}
/*+F*************************************************************************
* Function:
* aic7xxx_done_cmds_complete
*
* Description:
* Process the completed command queue.
*-F*************************************************************************/
static void
aic7xxx_done_cmds_complete(struct aic7xxx_host *p)
{
Scsi_Cmnd *cmd;
while (p->completeq.head != NULL)
{
cmd = p->completeq.head;
p->completeq.head = (Scsi_Cmnd *)cmd->host_scribble;
cmd->host_scribble = NULL;
cmd->scsi_done(cmd);
}
}
/*+F*************************************************************************
* Function:
* aic7xxx_free_scb
*
* Description:
* Free the scb and insert into the free scb list.
*-F*************************************************************************/
static void
aic7xxx_free_scb(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
{
scb->flags = SCB_FREE;
scb->cmd = NULL;
scb->sg_count = 0;
scb->sg_length = 0;
scb->tag_action = 0;
scb->hscb->control = 0;
scb->hscb->target_status = 0;
scb->hscb->target_channel_lun = SCB_LIST_NULL;
scbq_insert_head(&p->scb_data->free_scbs, scb);
}
/*+F*************************************************************************
* Function:
* aic7xxx_done
*
* Description:
* Calls the higher level scsi done function and frees the scb.
*-F*************************************************************************/
static void
aic7xxx_done(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
{
Scsi_Cmnd *cmd = scb->cmd;
struct aic_dev_data *aic_dev = cmd->device->hostdata;
int tindex = TARGET_INDEX(cmd);
struct aic7xxx_scb *scbp;
unsigned char queue_depth;
if (cmd->use_sg > 1)
{
struct scatterlist *sg;
sg = (struct scatterlist *)cmd->request_buffer;
pci_unmap_sg(p->pdev, sg, cmd->use_sg, cmd->sc_data_direction);
}
else if (cmd->request_bufflen)
pci_unmap_single(p->pdev, aic7xxx_mapping(cmd),
cmd->request_bufflen,
cmd->sc_data_direction);
if (scb->flags & SCB_SENSE)
{
pci_unmap_single(p->pdev,
le32_to_cpu(scb->sg_list[0].address),
sizeof(cmd->sense_buffer),
PCI_DMA_FROMDEVICE);
}
if (scb->flags & SCB_RECOVERY_SCB)
{
p->flags &= ~AHC_ABORT_PENDING;
}
if (scb->flags & (SCB_RESET|SCB_ABORT))
{
cmd->result |= (DID_RESET << 16);
}
if ((scb->flags & SCB_MSGOUT_BITS) != 0)
{
unsigned short mask;
int message_error = FALSE;
mask = 0x01 << tindex;
/*
* Check to see if we get an invalid message or a message error
* after failing to negotiate a wide or sync transfer message.
*/
if ((scb->flags & SCB_SENSE) &&
((scb->cmd->sense_buffer[12] == 0x43) || /* INVALID_MESSAGE */
(scb->cmd->sense_buffer[12] == 0x49))) /* MESSAGE_ERROR */
{
message_error = TRUE;
}
if (scb->flags & SCB_MSGOUT_WDTR)
{
if (message_error)
{
if ( (aic7xxx_verbose & VERBOSE_NEGOTIATION2) &&
(aic_dev->flags & DEVICE_PRINT_DTR) )
{
printk(INFO_LEAD "Device failed to complete Wide Negotiation "
"processing and\n", p->host_no, CTL_OF_SCB(scb));
printk(INFO_LEAD "returned a sense error code for invalid message, "
"disabling future\n", p->host_no, CTL_OF_SCB(scb));
printk(INFO_LEAD "Wide negotiation to this device.\n", p->host_no,
CTL_OF_SCB(scb));
}
aic_dev->needwdtr = aic_dev->needwdtr_copy = 0;
}
}
if (scb->flags & SCB_MSGOUT_SDTR)
{
if (message_error)
{
if ( (aic7xxx_verbose & VERBOSE_NEGOTIATION2) &&
(aic_dev->flags & DEVICE_PRINT_DTR) )
{
printk(INFO_LEAD "Device failed to complete Sync Negotiation "
"processing and\n", p->host_no, CTL_OF_SCB(scb));
printk(INFO_LEAD "returned a sense error code for invalid message, "
"disabling future\n", p->host_no, CTL_OF_SCB(scb));
printk(INFO_LEAD "Sync negotiation to this device.\n", p->host_no,
CTL_OF_SCB(scb));
aic_dev->flags &= ~DEVICE_PRINT_DTR;
}
aic_dev->needsdtr = aic_dev->needsdtr_copy = 0;
}
}
if (scb->flags & SCB_MSGOUT_PPR)
{
if(message_error)
{
if ( (aic7xxx_verbose & VERBOSE_NEGOTIATION2) &&
(aic_dev->flags & DEVICE_PRINT_DTR) )
{
printk(INFO_LEAD "Device failed to complete Parallel Protocol "
"Request processing and\n", p->host_no, CTL_OF_SCB(scb));
printk(INFO_LEAD "returned a sense error code for invalid message, "
"disabling future\n", p->host_no, CTL_OF_SCB(scb));
printk(INFO_LEAD "Parallel Protocol Request negotiation to this "
"device.\n", p->host_no, CTL_OF_SCB(scb));
}
/*
* Disable PPR negotiation and revert back to WDTR and SDTR setup
*/
aic_dev->needppr = aic_dev->needppr_copy = 0;
aic_dev->needsdtr = aic_dev->needsdtr_copy = 1;
aic_dev->needwdtr = aic_dev->needwdtr_copy = 1;
}
}
}
queue_depth = aic_dev->temp_q_depth;
if (queue_depth >= aic_dev->active_cmds)
{
scbp = scbq_remove_head(&aic_dev->delayed_scbs);
if (scbp)
{
if (queue_depth == 1)
{
/*
* Give extra preference to untagged devices, such as CD-R devices
* This makes it more likely that a drive *won't* stuff up while
* waiting on data at a critical time, such as CD-R writing and
* audio CD ripping operations. Should also benefit tape drives.
*/
scbq_insert_head(&p->waiting_scbs, scbp);
}
else
{
scbq_insert_tail(&p->waiting_scbs, scbp);
}
#ifdef AIC7XXX_VERBOSE_DEBUGGING
if (aic7xxx_verbose > 0xffff)
printk(INFO_LEAD "Moving SCB from delayed to waiting queue.\n",
p->host_no, CTL_OF_SCB(scbp));
#endif
if (queue_depth > aic_dev->active_cmds)
{
scbp = scbq_remove_head(&aic_dev->delayed_scbs);
if (scbp)
scbq_insert_tail(&p->waiting_scbs, scbp);
}
}
}
if (!(scb->tag_action))
{
aic7xxx_index_busy_target(p, scb->hscb->target_channel_lun,
/* unbusy */ TRUE);
if (cmd->device->simple_tags)
{
aic_dev->temp_q_depth = aic_dev->max_q_depth;
}
}
if(scb->flags & SCB_DTR_SCB)
{
aic_dev->dtr_pending = 0;
}
aic_dev->active_cmds--;
p->activescbs--;
if ((scb->sg_length >= 512) && (((cmd->result >> 16) & 0xf) == DID_OK))
{
long *ptr;
int x, i;
if (rq_data_dir(cmd->request) == WRITE)
{
aic_dev->w_total++;
ptr = aic_dev->w_bins;
}
else
{
aic_dev->r_total++;
ptr = aic_dev->r_bins;
}
if(cmd->device->simple_tags && cmd->request->flags & REQ_HARDBARRIER)
{
aic_dev->barrier_total++;
if(scb->tag_action == MSG_ORDERED_Q_TAG)
aic_dev->ordered_total++;
}
x = scb->sg_length;
x >>= 10;
for(i=0; i<6; i++)
{
x >>= 2;
if(!x) {
ptr[i]++;
break;
}
}
if(i == 6 && x)
ptr[5]++;
}
aic7xxx_free_scb(p, scb);
aic7xxx_queue_cmd_complete(p, cmd);
}
/*+F*************************************************************************
* Function:
* aic7xxx_run_done_queue
*
* Description:
* Calls the aic7xxx_done() for the Scsi_Cmnd of each scb in the
* aborted list, and adds each scb to the free list. If complete
* is TRUE, we also process the commands complete list.
*-F*************************************************************************/
static void
aic7xxx_run_done_queue(struct aic7xxx_host *p, /*complete*/ int complete)
{
struct aic7xxx_scb *scb;
int i, found = 0;
for (i = 0; i < p->scb_data->numscbs; i++)
{
scb = p->scb_data->scb_array[i];
if (scb->flags & SCB_QUEUED_FOR_DONE)
{
if (scb->flags & SCB_QUEUE_FULL)
{
scb->cmd->result = QUEUE_FULL << 1;
}
else
{
if (aic7xxx_verbose & (VERBOSE_ABORT_PROCESS | VERBOSE_RESET_PROCESS))
printk(INFO_LEAD "Aborting scb %d\n",
p->host_no, CTL_OF_SCB(scb), scb->hscb->tag);
/*
* Clear any residual information since the normal aic7xxx_done() path
* doesn't touch the residuals.
*/
scb->hscb->residual_SG_segment_count = 0;
scb->hscb->residual_data_count[0] = 0;
scb->hscb->residual_data_count[1] = 0;
scb->hscb->residual_data_count[2] = 0;
}
found++;
aic7xxx_done(p, scb);
}
}
if (aic7xxx_verbose & (VERBOSE_ABORT_RETURN | VERBOSE_RESET_RETURN))
{
printk(INFO_LEAD "%d commands found and queued for "
"completion.\n", p->host_no, -1, -1, -1, found);
}
if (complete)
{
aic7xxx_done_cmds_complete(p);
}
}
/*+F*************************************************************************
* Function:
* aic7xxx_abort_waiting_scb
*
* Description:
* Manipulate the waiting for selection list and return the
* scb that follows the one that we remove.
*-F*************************************************************************/
static unsigned char
aic7xxx_abort_waiting_scb(struct aic7xxx_host *p, struct aic7xxx_scb *scb,
unsigned char scbpos, unsigned char prev)
{
unsigned char curscb, next;
/*
* Select the SCB we want to abort and pull the next pointer out of it.
*/
curscb = aic_inb(p, SCBPTR);
aic_outb(p, scbpos, SCBPTR);
next = aic_inb(p, SCB_NEXT);
aic7xxx_add_curscb_to_free_list(p);
/*
* Update the waiting list
*/
if (prev == SCB_LIST_NULL)
{
/*
* First in the list
*/
aic_outb(p, next, WAITING_SCBH);
}
else
{
/*
* Select the scb that pointed to us and update its next pointer.
*/
aic_outb(p, prev, SCBPTR);
aic_outb(p, next, SCB_NEXT);
}
/*
* Point us back at the original scb position and inform the SCSI
* system that the command has been aborted.
*/
aic_outb(p, curscb, SCBPTR);
return (next);
}
/*+F*************************************************************************
* Function:
* aic7xxx_search_qinfifo
*
* Description:
* Search the queue-in FIFO for matching SCBs and conditionally
* requeue. Returns the number of matching SCBs.
*-F*************************************************************************/
static int
aic7xxx_search_qinfifo(struct aic7xxx_host *p, int target, int channel,
int lun, unsigned char tag, int flags, int requeue,
volatile scb_queue_type *queue)
{
int found;
unsigned char qinpos, qintail;
struct aic7xxx_scb *scbp;
found = 0;
qinpos = aic_inb(p, QINPOS);
qintail = p->qinfifonext;
p->qinfifonext = qinpos;
while (qinpos != qintail)
{
scbp = p->scb_data->scb_array[p->qinfifo[qinpos++]];
if (aic7xxx_match_scb(p, scbp, target, channel, lun, tag))
{
/*
* We found an scb that needs to be removed.
*/
if (requeue && (queue != NULL))
{
if (scbp->flags & SCB_WAITINGQ)
{
scbq_remove(queue, scbp);
scbq_remove(&p->waiting_scbs, scbp);
scbq_remove(&AIC_DEV(scbp->cmd)->delayed_scbs, scbp);
AIC_DEV(scbp->cmd)->active_cmds++;
p->activescbs++;
}
scbq_insert_tail(queue, scbp);
AIC_DEV(scbp->cmd)->active_cmds--;
p->activescbs--;
scbp->flags |= SCB_WAITINGQ;
if ( !(scbp->tag_action & TAG_ENB) )
{
aic7xxx_index_busy_target(p, scbp->hscb->target_channel_lun,
TRUE);
}
}
else if (requeue)
{
p->qinfifo[p->qinfifonext++] = scbp->hscb->tag;
}
else
{
/*
* Preserve any SCB_RECOVERY_SCB flags on this scb then set the
* flags we were called with, presumeably so aic7xxx_run_done_queue
* can find this scb
*/
scbp->flags = flags | (scbp->flags & SCB_RECOVERY_SCB);
if (aic7xxx_index_busy_target(p, scbp->hscb->target_channel_lun,
FALSE) == scbp->hscb->tag)
{
aic7xxx_index_busy_target(p, scbp->hscb->target_channel_lun,
TRUE);
}
}
found++;
}
else
{
p->qinfifo[p->qinfifonext++] = scbp->hscb->tag;
}
}
/*
* Now that we've done the work, clear out any left over commands in the
* qinfifo and update the KERNEL_QINPOS down on the card.
*
* NOTE: This routine expect the sequencer to already be paused when
* it is run....make sure it's that way!
*/
qinpos = p->qinfifonext;
while(qinpos != qintail)
{
p->qinfifo[qinpos++] = SCB_LIST_NULL;
}
if (p->features & AHC_QUEUE_REGS)
aic_outb(p, p->qinfifonext, HNSCB_QOFF);
else
aic_outb(p, p->qinfifonext, KERNEL_QINPOS);
return (found);
}
/*+F*************************************************************************
* Function:
* aic7xxx_scb_on_qoutfifo
*
* Description:
* Is the scb that was passed to us currently on the qoutfifo?
*-F*************************************************************************/
static int
aic7xxx_scb_on_qoutfifo(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
{
int i=0;
while(p->qoutfifo[(p->qoutfifonext + i) & 0xff ] != SCB_LIST_NULL)
{
if(p->qoutfifo[(p->qoutfifonext + i) & 0xff ] == scb->hscb->tag)
return TRUE;
else
i++;
}
return FALSE;
}
/*+F*************************************************************************
* Function:
* aic7xxx_reset_device
*
* Description:
* The device at the given target/channel has been reset. Abort
* all active and queued scbs for that target/channel. This function
* need not worry about linked next pointers because if was a MSG_ABORT_TAG
* then we had a tagged command (no linked next), if it was MSG_ABORT or
* MSG_BUS_DEV_RESET then the device won't know about any commands any more
* and no busy commands will exist, and if it was a bus reset, then nothing
* knows about any linked next commands any more. In all cases, we don't
* need to worry about the linked next or busy scb, we just need to clear
* them.
*-F*************************************************************************/
static void
aic7xxx_reset_device(struct aic7xxx_host *p, int target, int channel,
int lun, unsigned char tag)
{
struct aic7xxx_scb *scbp, *prev_scbp;
struct scsi_device *sd;
unsigned char active_scb, tcl, scb_tag;
int i = 0, init_lists = FALSE;
struct aic_dev_data *aic_dev;
/*
* Restore this when we're done
*/
active_scb = aic_inb(p, SCBPTR);
scb_tag = aic_inb(p, SCB_TAG);
if (aic7xxx_verbose & (VERBOSE_RESET_PROCESS | VERBOSE_ABORT_PROCESS))
{
printk(INFO_LEAD "Reset device, hardware_scb %d,\n",
p->host_no, channel, target, lun, active_scb);
printk(INFO_LEAD "Current scb %d, SEQADDR 0x%x, LASTPHASE "
"0x%x\n",
p->host_no, channel, target, lun, scb_tag,
aic_inb(p, SEQADDR0) | (aic_inb(p, SEQADDR1) << 8),
aic_inb(p, LASTPHASE));
printk(INFO_LEAD "SG_CACHEPTR 0x%x, SG_COUNT %d, SCSISIGI 0x%x\n",
p->host_no, channel, target, lun,
(p->features & AHC_ULTRA2) ? aic_inb(p, SG_CACHEPTR) : 0,
aic_inb(p, SG_COUNT), aic_inb(p, SCSISIGI));
printk(INFO_LEAD "SSTAT0 0x%x, SSTAT1 0x%x, SSTAT2 0x%x\n",
p->host_no, channel, target, lun, aic_inb(p, SSTAT0),
aic_inb(p, SSTAT1), aic_inb(p, SSTAT2));
}
/*
* Deal with the busy target and linked next issues.
*/
list_for_each_entry(aic_dev, &p->aic_devs, list)
{
if (aic7xxx_verbose & (VERBOSE_RESET_PROCESS | VERBOSE_ABORT_PROCESS))
printk(INFO_LEAD "processing aic_dev %p\n", p->host_no, channel, target,
lun, aic_dev);
sd = aic_dev->SDptr;
if((target != ALL_TARGETS && target != sd->id) ||
(channel != ALL_CHANNELS && channel != sd->channel))
continue;
if (aic7xxx_verbose & (VERBOSE_ABORT_PROCESS | VERBOSE_RESET_PROCESS))
printk(INFO_LEAD "Cleaning up status information "
"and delayed_scbs.\n", p->host_no, sd->channel, sd->id, sd->lun);
aic_dev->flags &= ~BUS_DEVICE_RESET_PENDING;
if ( tag == SCB_LIST_NULL )
{
aic_dev->dtr_pending = 0;
aic_dev->needppr = aic_dev->needppr_copy;
aic_dev->needsdtr = aic_dev->needsdtr_copy;
aic_dev->needwdtr = aic_dev->needwdtr_copy;
aic_dev->flags = DEVICE_PRINT_DTR;
aic_dev->temp_q_depth = aic_dev->max_q_depth;
}
tcl = (sd->id << 4) | (sd->channel << 3) | sd->lun;
if ( (aic7xxx_index_busy_target(p, tcl, FALSE) == tag) ||
(tag == SCB_LIST_NULL) )
aic7xxx_index_busy_target(p, tcl, /* unbusy */ TRUE);
prev_scbp = NULL;
scbp = aic_dev->delayed_scbs.head;
while (scbp != NULL)
{
prev_scbp = scbp;
scbp = scbp->q_next;
if (aic7xxx_match_scb(p, prev_scbp, target, channel, lun, tag))
{
scbq_remove(&aic_dev->delayed_scbs, prev_scbp);
if (prev_scbp->flags & SCB_WAITINGQ)
{
aic_dev->active_cmds++;
p->activescbs++;
}
prev_scbp->flags &= ~(SCB_ACTIVE | SCB_WAITINGQ);
prev_scbp->flags |= SCB_RESET | SCB_QUEUED_FOR_DONE;
}
}
}
if (aic7xxx_verbose & (VERBOSE_ABORT_PROCESS | VERBOSE_RESET_PROCESS))
printk(INFO_LEAD "Cleaning QINFIFO.\n", p->host_no, channel, target, lun );
aic7xxx_search_qinfifo(p, target, channel, lun, tag,
SCB_RESET | SCB_QUEUED_FOR_DONE, /* requeue */ FALSE, NULL);
/*
* Search the waiting_scbs queue for matches, this catches any SCB_QUEUED
* ABORT/RESET commands.
*/
if (aic7xxx_verbose & (VERBOSE_ABORT_PROCESS | VERBOSE_RESET_PROCESS))
printk(INFO_LEAD "Cleaning waiting_scbs.\n", p->host_no, channel,
target, lun );
{
struct aic7xxx_scb *scbp, *prev_scbp;
prev_scbp = NULL;
scbp = p->waiting_scbs.head;
while (scbp != NULL)
{
prev_scbp = scbp;
scbp = scbp->q_next;
if (aic7xxx_match_scb(p, prev_scbp, target, channel, lun, tag))
{
scbq_remove(&p->waiting_scbs, prev_scbp);
if (prev_scbp->flags & SCB_WAITINGQ)
{
AIC_DEV(prev_scbp->cmd)->active_cmds++;
p->activescbs++;
}
prev_scbp->flags &= ~(SCB_ACTIVE | SCB_WAITINGQ);
prev_scbp->flags |= SCB_RESET | SCB_QUEUED_FOR_DONE;
}
}
}
/*
* Search waiting for selection list.
*/
if (aic7xxx_verbose & (VERBOSE_ABORT_PROCESS | VERBOSE_RESET_PROCESS))
printk(INFO_LEAD "Cleaning waiting for selection "
"list.\n", p->host_no, channel, target, lun);
{
unsigned char next, prev, scb_index;
next = aic_inb(p, WAITING_SCBH); /* Start at head of list. */
prev = SCB_LIST_NULL;
while (next != SCB_LIST_NULL)
{
aic_outb(p, next, SCBPTR);
scb_index = aic_inb(p, SCB_TAG);
if (scb_index >= p->scb_data->numscbs)
{
/*
* No aic7xxx_verbose check here.....we want to see this since it
* means either the kernel driver or the sequencer screwed things up
*/
printk(WARN_LEAD "Waiting List inconsistency; SCB index=%d, "
"numscbs=%d\n", p->host_no, channel, target, lun, scb_index,
p->scb_data->numscbs);
next = aic_inb(p, SCB_NEXT);
aic7xxx_add_curscb_to_free_list(p);
}
else
{
scbp = p->scb_data->scb_array[scb_index];
if (aic7xxx_match_scb(p, scbp, target, channel, lun, tag))
{
next = aic7xxx_abort_waiting_scb(p, scbp, next, prev);
if (scbp->flags & SCB_WAITINGQ)
{
AIC_DEV(scbp->cmd)->active_cmds++;
p->activescbs++;
}
scbp->flags &= ~(SCB_ACTIVE | SCB_WAITINGQ);
scbp->flags |= SCB_RESET | SCB_QUEUED_FOR_DONE;
if (prev == SCB_LIST_NULL)
{
/*
* This is either the first scb on the waiting list, or we
* have already yanked the first and haven't left any behind.
* Either way, we need to turn off the selection hardware if
* it isn't already off.
*/
aic_outb(p, aic_inb(p, SCSISEQ) & ~ENSELO, SCSISEQ);
aic_outb(p, CLRSELTIMEO, CLRSINT1);
}
}
else
{
prev = next;
next = aic_inb(p, SCB_NEXT);
}
}
}
}
/*
* Go through disconnected list and remove any entries we have queued
* for completion, zeroing their control byte too.
*/
if (aic7xxx_verbose & (VERBOSE_ABORT_PROCESS | VERBOSE_RESET_PROCESS))
printk(INFO_LEAD "Cleaning disconnected scbs "
"list.\n", p->host_no, channel, target, lun);
if (p->flags & AHC_PAGESCBS)
{
unsigned char next, prev, scb_index;
next = aic_inb(p, DISCONNECTED_SCBH);
prev = SCB_LIST_NULL;
while (next != SCB_LIST_NULL)
{
aic_outb(p, next, SCBPTR);
scb_index = aic_inb(p, SCB_TAG);
if (scb_index > p->scb_data->numscbs)
{
printk(WARN_LEAD "Disconnected List inconsistency; SCB index=%d, "
"numscbs=%d\n", p->host_no, channel, target, lun, scb_index,
p->scb_data->numscbs);
next = aic7xxx_rem_scb_from_disc_list(p, next, prev);
}
else
{
scbp = p->scb_data->scb_array[scb_index];
if (aic7xxx_match_scb(p, scbp, target, channel, lun, tag))
{
next = aic7xxx_rem_scb_from_disc_list(p, next, prev);
if (scbp->flags & SCB_WAITINGQ)
{
AIC_DEV(scbp->cmd)->active_cmds++;
p->activescbs++;
}
scbp->flags &= ~(SCB_ACTIVE | SCB_WAITINGQ);
scbp->flags |= SCB_RESET | SCB_QUEUED_FOR_DONE;
scbp->hscb->control = 0;
}
else
{
prev = next;
next = aic_inb(p, SCB_NEXT);
}
}
}
}
/*
* Walk the free list making sure no entries on the free list have
* a valid SCB_TAG value or SCB_CONTROL byte.
*/
if (p->flags & AHC_PAGESCBS)
{
unsigned char next;
next = aic_inb(p, FREE_SCBH);
while (next != SCB_LIST_NULL)
{
aic_outb(p, next, SCBPTR);
if (aic_inb(p, SCB_TAG) < p->scb_data->numscbs)
{
printk(WARN_LEAD "Free list inconsistency!.\n", p->host_no, channel,
target, lun);
init_lists = TRUE;
next = SCB_LIST_NULL;
}
else
{
aic_outb(p, SCB_LIST_NULL, SCB_TAG);
aic_outb(p, 0, SCB_CONTROL);
next = aic_inb(p, SCB_NEXT);
}
}
}
/*
* Go through the hardware SCB array looking for commands that
* were active but not on any list.
*/
if (init_lists)
{
aic_outb(p, SCB_LIST_NULL, FREE_SCBH);
aic_outb(p, SCB_LIST_NULL, WAITING_SCBH);
aic_outb(p, SCB_LIST_NULL, DISCONNECTED_SCBH);
}
for (i = p->scb_data->maxhscbs - 1; i >= 0; i--)
{
unsigned char scbid;
aic_outb(p, i, SCBPTR);
if (init_lists)
{
aic_outb(p, SCB_LIST_NULL, SCB_TAG);
aic_outb(p, SCB_LIST_NULL, SCB_NEXT);
aic_outb(p, 0, SCB_CONTROL);
aic7xxx_add_curscb_to_free_list(p);
}
else
{
scbid = aic_inb(p, SCB_TAG);
if (scbid < p->scb_data->numscbs)
{
scbp = p->scb_data->scb_array[scbid];
if (aic7xxx_match_scb(p, scbp, target, channel, lun, tag))
{
aic_outb(p, 0, SCB_CONTROL);
aic_outb(p, SCB_LIST_NULL, SCB_TAG);
aic7xxx_add_curscb_to_free_list(p);
}
}
}
}
/*
* Go through the entire SCB array now and look for commands for
* for this target that are stillactive. These are other (most likely
* tagged) commands that were disconnected when the reset occurred.
* Any commands we find here we know this about, it wasn't on any queue,
* it wasn't in the qinfifo, it wasn't in the disconnected or waiting
* lists, so it really must have been a paged out SCB. In that case,
* we shouldn't need to bother with updating any counters, just mark
* the correct flags and go on.
*/
for (i = 0; i < p->scb_data->numscbs; i++)
{
scbp = p->scb_data->scb_array[i];
if ((scbp->flags & SCB_ACTIVE) &&
aic7xxx_match_scb(p, scbp, target, channel, lun, tag) &&
!aic7xxx_scb_on_qoutfifo(p, scbp))
{
if (scbp->flags & SCB_WAITINGQ)
{
scbq_remove(&p->waiting_scbs, scbp);
scbq_remove(&AIC_DEV(scbp->cmd)->delayed_scbs, scbp);
AIC_DEV(scbp->cmd)->active_cmds++;
p->activescbs++;
}
scbp->flags |= SCB_RESET | SCB_QUEUED_FOR_DONE;
scbp->flags &= ~(SCB_ACTIVE | SCB_WAITINGQ);
}
}
aic_outb(p, active_scb, SCBPTR);
}
/*+F*************************************************************************
* Function:
* aic7xxx_clear_intstat
*
* Description:
* Clears the interrupt status.
*-F*************************************************************************/
static void
aic7xxx_clear_intstat(struct aic7xxx_host *p)
{
/* Clear any interrupt conditions this may have caused. */
aic_outb(p, CLRSELDO | CLRSELDI | CLRSELINGO, CLRSINT0);
aic_outb(p, CLRSELTIMEO | CLRATNO | CLRSCSIRSTI | CLRBUSFREE | CLRSCSIPERR |
CLRPHASECHG | CLRREQINIT, CLRSINT1);
aic_outb(p, CLRSCSIINT | CLRSEQINT | CLRBRKADRINT | CLRPARERR, CLRINT);
}
/*+F*************************************************************************
* Function:
* aic7xxx_reset_current_bus
*
* Description:
* Reset the current SCSI bus.
*-F*************************************************************************/
static void
aic7xxx_reset_current_bus(struct aic7xxx_host *p)
{
/* Disable reset interrupts. */
aic_outb(p, aic_inb(p, SIMODE1) & ~ENSCSIRST, SIMODE1);
/* Turn off the bus' current operations, after all, we shouldn't have any
* valid commands left to cause a RSELI and SELO once we've tossed the
* bus away with this reset, so we might as well shut down the sequencer
* until the bus is restarted as oppossed to saving the current settings
* and restoring them (which makes no sense to me). */
/* Turn on the bus reset. */
aic_outb(p, aic_inb(p, SCSISEQ) | SCSIRSTO, SCSISEQ);
while ( (aic_inb(p, SCSISEQ) & SCSIRSTO) == 0)
mdelay(5);
/*
* Some of the new Ultra2 chipsets need a longer delay after a chip
* reset than just the init setup creates, so we have to delay here
* before we go into a reset in order to make the chips happy.
*/
if (p->features & AHC_ULTRA2)
mdelay(250);
else
mdelay(50);
/* Turn off the bus reset. */
aic_outb(p, 0, SCSISEQ);
mdelay(10);
aic7xxx_clear_intstat(p);
/* Re-enable reset interrupts. */
aic_outb(p, aic_inb(p, SIMODE1) | ENSCSIRST, SIMODE1);
}
/*+F*************************************************************************
* Function:
* aic7xxx_reset_channel
*
* Description:
* Reset the channel.
*-F*************************************************************************/
static void
aic7xxx_reset_channel(struct aic7xxx_host *p, int channel, int initiate_reset)
{
unsigned long offset_min, offset_max;
unsigned char sblkctl;
int cur_channel;
if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
printk(INFO_LEAD "Reset channel called, %s initiate reset.\n",
p->host_no, channel, -1, -1, (initiate_reset==TRUE) ? "will" : "won't" );
if (channel == 1)
{
offset_min = 8;
offset_max = 16;
}
else
{
if (p->features & AHC_TWIN)
{
/* Channel A */
offset_min = 0;
offset_max = 8;
}
else
{
offset_min = 0;
if (p->features & AHC_WIDE)
{
offset_max = 16;
}
else
{
offset_max = 8;
}
}
}
while (offset_min < offset_max)
{
/*
* Revert to async/narrow transfers until we renegotiate.
*/
aic_outb(p, 0, TARG_SCSIRATE + offset_min);
if (p->features & AHC_ULTRA2)
{
aic_outb(p, 0, TARG_OFFSET + offset_min);
}
offset_min++;
}
/*
* Reset the bus and unpause/restart the controller
*/
sblkctl = aic_inb(p, SBLKCTL);
if ( (p->chip & AHC_CHIPID_MASK) == AHC_AIC7770 )
cur_channel = (sblkctl & SELBUSB) >> 3;
else
cur_channel = 0;
if ( (cur_channel != channel) && (p->features & AHC_TWIN) )
{
/*
* Case 1: Command for another bus is active
*/
if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
printk(INFO_LEAD "Stealthily resetting idle channel.\n", p->host_no,
channel, -1, -1);
/*
* Stealthily reset the other bus without upsetting the current bus.
*/
aic_outb(p, sblkctl ^ SELBUSB, SBLKCTL);
aic_outb(p, aic_inb(p, SIMODE1) & ~ENBUSFREE, SIMODE1);
if (initiate_reset)
{
aic7xxx_reset_current_bus(p);
}
aic_outb(p, aic_inb(p, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP), SCSISEQ);
aic7xxx_clear_intstat(p);
aic_outb(p, sblkctl, SBLKCTL);
}
else
{
/*
* Case 2: A command from this bus is active or we're idle.
*/
if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
printk(INFO_LEAD "Resetting currently active channel.\n", p->host_no,
channel, -1, -1);
aic_outb(p, aic_inb(p, SIMODE1) & ~(ENBUSFREE|ENREQINIT),
SIMODE1);
p->flags &= ~AHC_HANDLING_REQINITS;
p->msg_type = MSG_TYPE_NONE;
p->msg_len = 0;
if (initiate_reset)
{
aic7xxx_reset_current_bus(p);
}
aic_outb(p, aic_inb(p, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP), SCSISEQ);
aic7xxx_clear_intstat(p);
}
if (aic7xxx_verbose & VERBOSE_RESET_RETURN)
printk(INFO_LEAD "Channel reset\n", p->host_no, channel, -1, -1);
/*
* Clean up all the state information for the pending transactions
* on this bus.
*/
aic7xxx_reset_device(p, ALL_TARGETS, channel, ALL_LUNS, SCB_LIST_NULL);
if ( !(p->features & AHC_TWIN) )
{
restart_sequencer(p);
}
return;
}
/*+F*************************************************************************
* Function:
* aic7xxx_run_waiting_queues
*
* Description:
* Scan the awaiting_scbs queue downloading and starting as many
* scbs as we can.
*-F*************************************************************************/
static void
aic7xxx_run_waiting_queues(struct aic7xxx_host *p)
{
struct aic7xxx_scb *scb;
struct aic_dev_data *aic_dev;
int sent;
if (p->waiting_scbs.head == NULL)
return;
sent = 0;
/*
* First handle SCBs that are waiting but have been assigned a slot.
*/
while ((scb = scbq_remove_head(&p->waiting_scbs)) != NULL)
{
aic_dev = scb->cmd->device->hostdata;
if ( !scb->tag_action )
{
aic_dev->temp_q_depth = 1;
}
if ( aic_dev->active_cmds >= aic_dev->temp_q_depth)
{
scbq_insert_tail(&aic_dev->delayed_scbs, scb);
}
else
{
scb->flags &= ~SCB_WAITINGQ;
aic_dev->active_cmds++;
p->activescbs++;
if ( !(scb->tag_action) )
{
aic7xxx_busy_target(p, scb);
}
p->qinfifo[p->qinfifonext++] = scb->hscb->tag;
sent++;
}
}
if (sent)
{
if (p->features & AHC_QUEUE_REGS)
aic_outb(p, p->qinfifonext, HNSCB_QOFF);
else
{
pause_sequencer(p);
aic_outb(p, p->qinfifonext, KERNEL_QINPOS);
unpause_sequencer(p, FALSE);
}
if (p->activescbs > p->max_activescbs)
p->max_activescbs = p->activescbs;
}
}
#ifdef CONFIG_PCI
#define DPE 0x80
#define SSE 0x40
#define RMA 0x20
#define RTA 0x10
#define STA 0x08
#define DPR 0x01
/*+F*************************************************************************
* Function:
* aic7xxx_pci_intr
*
* Description:
* Check the scsi card for PCI errors and clear the interrupt
*
* NOTE: If you don't have this function and a 2940 card encounters
* a PCI error condition, the machine will end up locked as the
* interrupt handler gets slammed with non-stop PCI error interrupts
*-F*************************************************************************/
static void
aic7xxx_pci_intr(struct aic7xxx_host *p)
{
unsigned char status1;
pci_read_config_byte(p->pdev, PCI_STATUS + 1, &status1);
if ( (status1 & DPE) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) )
printk(WARN_LEAD "Data Parity Error during PCI address or PCI write"
"phase.\n", p->host_no, -1, -1, -1);
if ( (status1 & SSE) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) )
printk(WARN_LEAD "Signal System Error Detected\n", p->host_no,
-1, -1, -1);
if ( (status1 & RMA) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) )
printk(WARN_LEAD "Received a PCI Master Abort\n", p->host_no,
-1, -1, -1);
if ( (status1 & RTA) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) )
printk(WARN_LEAD "Received a PCI Target Abort\n", p->host_no,
-1, -1, -1);
if ( (status1 & STA) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) )
printk(WARN_LEAD "Signaled a PCI Target Abort\n", p->host_no,
-1, -1, -1);
if ( (status1 & DPR) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) )
printk(WARN_LEAD "Data Parity Error has been reported via PCI pin "
"PERR#\n", p->host_no, -1, -1, -1);
pci_write_config_byte(p->pdev, PCI_STATUS + 1, status1);
if (status1 & (DPR|RMA|RTA))
aic_outb(p, CLRPARERR, CLRINT);
if ( (aic7xxx_panic_on_abort) && (p->spurious_int > 500) )
aic7xxx_panic_abort(p, NULL);
}
#endif /* CONFIG_PCI */
/*+F*************************************************************************
* Function:
* aic7xxx_construct_ppr
*
* Description:
* Build up a Parallel Protocol Request message for use with SCSI-3
* devices.
*-F*************************************************************************/
static void
aic7xxx_construct_ppr(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
{
p->msg_buf[p->msg_index++] = MSG_EXTENDED;
p->msg_buf[p->msg_index++] = MSG_EXT_PPR_LEN;
p->msg_buf[p->msg_index++] = MSG_EXT_PPR;
p->msg_buf[p->msg_index++] = AIC_DEV(scb->cmd)->goal.period;
p->msg_buf[p->msg_index++] = 0;
p->msg_buf[p->msg_index++] = AIC_DEV(scb->cmd)->goal.offset;
p->msg_buf[p->msg_index++] = AIC_DEV(scb->cmd)->goal.width;
p->msg_buf[p->msg_index++] = AIC_DEV(scb->cmd)->goal.options;
p->msg_len += 8;
}
/*+F*************************************************************************
* Function:
* aic7xxx_construct_sdtr
*
* Description:
* Constucts a synchronous data transfer message in the message
* buffer on the sequencer.
*-F*************************************************************************/
static void
aic7xxx_construct_sdtr(struct aic7xxx_host *p, unsigned char period,
unsigned char offset)
{
p->msg_buf[p->msg_index++] = MSG_EXTENDED;
p->msg_buf[p->msg_index++] = MSG_EXT_SDTR_LEN;
p->msg_buf[p->msg_index++] = MSG_EXT_SDTR;
p->msg_buf[p->msg_index++] = period;
p->msg_buf[p->msg_index++] = offset;
p->msg_len += 5;
}
/*+F*************************************************************************
* Function:
* aic7xxx_construct_wdtr
*
* Description:
* Constucts a wide data transfer message in the message buffer
* on the sequencer.
*-F*************************************************************************/
static void
aic7xxx_construct_wdtr(struct aic7xxx_host *p, unsigned char bus_width)
{
p->msg_buf[p->msg_index++] = MSG_EXTENDED;
p->msg_buf[p->msg_index++] = MSG_EXT_WDTR_LEN;
p->msg_buf[p->msg_index++] = MSG_EXT_WDTR;
p->msg_buf[p->msg_index++] = bus_width;
p->msg_len += 4;
}
/*+F*************************************************************************
* Function:
* aic7xxx_calc_residual
*
* Description:
* Calculate the residual data not yet transferred.
*-F*************************************************************************/
static void
aic7xxx_calculate_residual (struct aic7xxx_host *p, struct aic7xxx_scb *scb)
{
struct aic7xxx_hwscb *hscb;
Scsi_Cmnd *cmd;
int actual, i;
cmd = scb->cmd;
hscb = scb->hscb;
/*
* Don't destroy valid residual information with
* residual coming from a check sense operation.
*/
if (((scb->hscb->control & DISCONNECTED) == 0) &&
(scb->flags & SCB_SENSE) == 0)
{
/*
* We had an underflow. At this time, there's only
* one other driver that bothers to check for this,
* and cmd->underflow seems to be set rather half-
* heartedly in the higher-level SCSI code.
*/
actual = scb->sg_length;
for (i=1; i < hscb->residual_SG_segment_count; i++)
{
actual -= scb->sg_list[scb->sg_count - i].length;
}
actual -= (hscb->residual_data_count[2] << 16) |
(hscb->residual_data_count[1] << 8) |
hscb->residual_data_count[0];
if (actual < cmd->underflow)
{
if (aic7xxx_verbose & VERBOSE_MINOR_ERROR)
{
printk(INFO_LEAD "Underflow - Wanted %u, %s %u, residual SG "
"count %d.\n", p->host_no, CTL_OF_SCB(scb), cmd->underflow,
(rq_data_dir(cmd->request) == WRITE) ? "wrote" : "read", actual,
hscb->residual_SG_segment_count);
printk(INFO_LEAD "status 0x%x.\n", p->host_no, CTL_OF_SCB(scb),
hscb->target_status);
}
/*
* In 2.4, only send back the residual information, don't flag this
* as an error. Before 2.4 we had to flag this as an error because
* the mid layer didn't check residual data counts to see if the
* command needs retried.
*/
cmd->resid = scb->sg_length - actual;
aic7xxx_status(cmd) = hscb->target_status;
}
}
/*
* Clean out the residual information in the SCB for the
* next consumer.
*/
hscb->residual_data_count[2] = 0;
hscb->residual_data_count[1] = 0;
hscb->residual_data_count[0] = 0;
hscb->residual_SG_segment_count = 0;
}
/*+F*************************************************************************
* Function:
* aic7xxx_handle_device_reset
*
* Description:
* Interrupt handler for sequencer interrupts (SEQINT).
*-F*************************************************************************/
static void
aic7xxx_handle_device_reset(struct aic7xxx_host *p, int target, int channel)
{
unsigned char tindex = target;
tindex |= ((channel & 0x01) << 3);
/*
* Go back to async/narrow transfers and renegotiate.
*/
aic_outb(p, 0, TARG_SCSIRATE + tindex);
if (p->features & AHC_ULTRA2)
aic_outb(p, 0, TARG_OFFSET + tindex);
aic7xxx_reset_device(p, target, channel, ALL_LUNS, SCB_LIST_NULL);
if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
printk(INFO_LEAD "Bus Device Reset delivered.\n", p->host_no, channel,
target, -1);
aic7xxx_run_done_queue(p, /*complete*/ TRUE);
}
/*+F*************************************************************************
* Function:
* aic7xxx_handle_seqint
*
* Description:
* Interrupt handler for sequencer interrupts (SEQINT).
*-F*************************************************************************/
static void
aic7xxx_handle_seqint(struct aic7xxx_host *p, unsigned char intstat)
{
struct aic7xxx_scb *scb;
struct aic_dev_data *aic_dev;
unsigned short target_mask;
unsigned char target, lun, tindex;
unsigned char queue_flag = FALSE;
char channel;
int result;
target = ((aic_inb(p, SAVED_TCL) >> 4) & 0x0f);
if ( (p->chip & AHC_CHIPID_MASK) == AHC_AIC7770 )
channel = (aic_inb(p, SBLKCTL) & SELBUSB) >> 3;
else
channel = 0;
tindex = target + (channel << 3);
lun = aic_inb(p, SAVED_TCL) & 0x07;
target_mask = (0x01 << tindex);
/*
* Go ahead and clear the SEQINT now, that avoids any interrupt race
* conditions later on in case we enable some other interrupt.
*/
aic_outb(p, CLRSEQINT, CLRINT);
switch (intstat & SEQINT_MASK)
{
case NO_MATCH:
{
aic_outb(p, aic_inb(p, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP),
SCSISEQ);
printk(WARN_LEAD "No active SCB for reconnecting target - Issuing "
"BUS DEVICE RESET.\n", p->host_no, channel, target, lun);
printk(WARN_LEAD " SAVED_TCL=0x%x, ARG_1=0x%x, SEQADDR=0x%x\n",
p->host_no, channel, target, lun,
aic_inb(p, SAVED_TCL), aic_inb(p, ARG_1),
(aic_inb(p, SEQADDR1) << 8) | aic_inb(p, SEQADDR0));
if (aic7xxx_panic_on_abort)
aic7xxx_panic_abort(p, NULL);
}
break;
case SEND_REJECT:
{
if (aic7xxx_verbose & VERBOSE_MINOR_ERROR)
printk(INFO_LEAD "Rejecting unknown message (0x%x) received from "
"target, SEQ_FLAGS=0x%x\n", p->host_no, channel, target, lun,
aic_inb(p, ACCUM), aic_inb(p, SEQ_FLAGS));
}
break;
case NO_IDENT:
{
/*
* The reconnecting target either did not send an identify
* message, or did, but we didn't find an SCB to match and
* before it could respond to our ATN/abort, it hit a dataphase.
* The only safe thing to do is to blow it away with a bus
* reset.
*/
if (aic7xxx_verbose & (VERBOSE_SEQINT | VERBOSE_RESET_MID))
printk(INFO_LEAD "Target did not send an IDENTIFY message; "
"LASTPHASE 0x%x, SAVED_TCL 0x%x\n", p->host_no, channel, target,
lun, aic_inb(p, LASTPHASE), aic_inb(p, SAVED_TCL));
aic7xxx_reset_channel(p, channel, /*initiate reset*/ TRUE);
aic7xxx_run_done_queue(p, TRUE);
}
break;
case BAD_PHASE:
if (aic_inb(p, LASTPHASE) == P_BUSFREE)
{
if (aic7xxx_verbose & VERBOSE_SEQINT)
printk(INFO_LEAD "Missed busfree.\n", p->host_no, channel,
target, lun);
restart_sequencer(p);
}
else
{
if (aic7xxx_verbose & VERBOSE_SEQINT)
printk(INFO_LEAD "Unknown scsi bus phase, continuing\n", p->host_no,
channel, target, lun);
}
break;
case EXTENDED_MSG:
{
p->msg_type = MSG_TYPE_INITIATOR_MSGIN;
p->msg_len = 0;
p->msg_index = 0;
#ifdef AIC7XXX_VERBOSE_DEBUGGING
if (aic7xxx_verbose > 0xffff)
printk(INFO_LEAD "Enabling REQINITs for MSG_IN\n", p->host_no,
channel, target, lun);
#endif
/*
* To actually receive the message, simply turn on
* REQINIT interrupts and let our interrupt handler
* do the rest (REQINIT should already be true).
*/
p->flags |= AHC_HANDLING_REQINITS;
aic_outb(p, aic_inb(p, SIMODE1) | ENREQINIT, SIMODE1);
/*
* We don't want the sequencer unpaused yet so we return early
*/
return;
}
case REJECT_MSG:
{
/*
* What we care about here is if we had an outstanding SDTR
* or WDTR message for this target. If we did, this is a
* signal that the target is refusing negotiation.
*/
unsigned char scb_index;
unsigned char last_msg;
scb_index = aic_inb(p, SCB_TAG);
scb = p->scb_data->scb_array[scb_index];
aic_dev = AIC_DEV(scb->cmd);
last_msg = aic_inb(p, LAST_MSG);
if ( (last_msg == MSG_IDENTIFYFLAG) &&
(scb->tag_action) &&
!(scb->flags & SCB_MSGOUT_BITS) )
{
if (scb->tag_action == MSG_ORDERED_Q_TAG)
{
/*
* OK...the device seems able to accept tagged commands, but
* not ordered tag commands, only simple tag commands. So, we
* disable ordered tag commands and go on with life just like
* normal.
*/
scsi_adjust_queue_depth(scb->cmd->device, MSG_SIMPLE_TAG,
scb->cmd->device->queue_depth);
scb->tag_action = MSG_SIMPLE_Q_TAG;
scb->hscb->control &= ~SCB_TAG_TYPE;
scb->hscb->control |= MSG_SIMPLE_Q_TAG;
aic_outb(p, scb->hscb->control, SCB_CONTROL);
/*
* OK..we set the tag type to simple tag command, now we re-assert
* ATNO and hope this will take us into the identify phase again
* so we can resend the tag type and info to the device.
*/
aic_outb(p, MSG_IDENTIFYFLAG, MSG_OUT);
aic_outb(p, aic_inb(p, SCSISIGI) | ATNO, SCSISIGO);
}
else if (scb->tag_action == MSG_SIMPLE_Q_TAG)
{
unsigned char i;
struct aic7xxx_scb *scbp;
int old_verbose;
/*
* Hmmmm....the device is flaking out on tagged commands.
*/
scsi_adjust_queue_depth(scb->cmd->device, 0 /* untagged */,
p->host->cmd_per_lun);
aic_dev->max_q_depth = aic_dev->temp_q_depth = 1;
/*
* We set this command up as a bus device reset. However, we have
* to clear the tag type as it's causing us problems. We shouldnt
* have to worry about any other commands being active, since if
* the device is refusing tagged commands, this should be the
* first tagged command sent to the device, however, we do have
* to worry about any other tagged commands that may already be
* in the qinfifo. The easiest way to do this, is to issue a BDR,
* send all the commands back to the mid level code, then let them
* come back and get rebuilt as untagged commands.
*/
scb->tag_action = 0;
scb->hscb->control &= ~(TAG_ENB | SCB_TAG_TYPE);
aic_outb(p, scb->hscb->control, SCB_CONTROL);
old_verbose = aic7xxx_verbose;
aic7xxx_verbose &= ~(VERBOSE_RESET|VERBOSE_ABORT);
for (i=0; i < p->scb_data->numscbs; i++)
{
scbp = p->scb_data->scb_array[i];
if ((scbp->flags & SCB_ACTIVE) && (scbp != scb))
{
if (aic7xxx_match_scb(p, scbp, target, channel, lun, i))
{
aic7xxx_reset_device(p, target, channel, lun, i);
}
}
}
aic7xxx_run_done_queue(p, TRUE);
aic7xxx_verbose = old_verbose;
/*
* Wait until after the for loop to set the busy index since
* aic7xxx_reset_device will clear the busy index during its
* operation.
*/
aic7xxx_busy_target(p, scb);
printk(INFO_LEAD "Device is refusing tagged commands, using "
"untagged I/O.\n", p->host_no, channel, target, lun);
aic_outb(p, MSG_IDENTIFYFLAG, MSG_OUT);
aic_outb(p, aic_inb(p, SCSISIGI) | ATNO, SCSISIGO);
}
}
else if (scb->flags & SCB_MSGOUT_PPR)
{
/*
* As per the draft specs, any device capable of supporting any of
* the option values other than 0 are not allowed to reject the
* PPR message. Instead, they must negotiate out what they do
* support instead of rejecting our offering or else they cause
* a parity error during msg_out phase to signal that they don't
* like our settings.
*/
aic_dev->needppr = aic_dev->needppr_copy = 0;
aic7xxx_set_width(p, target, channel, lun, MSG_EXT_WDTR_BUS_8_BIT,
(AHC_TRANS_ACTIVE|AHC_TRANS_CUR|AHC_TRANS_QUITE), aic_dev);
aic7xxx_set_syncrate(p, NULL, target, channel, 0, 0, 0,
AHC_TRANS_ACTIVE|AHC_TRANS_CUR|AHC_TRANS_QUITE,
aic_dev);
aic_dev->goal.options = aic_dev->dtr_pending = 0;
scb->flags &= ~SCB_MSGOUT_BITS;
if(aic7xxx_verbose & VERBOSE_NEGOTIATION2)
{
printk(INFO_LEAD "Device is rejecting PPR messages, falling "
"back.\n", p->host_no, channel, target, lun);
}
if ( aic_dev->goal.width )
{
aic_dev->needwdtr = aic_dev->needwdtr_copy = 1;
aic_dev->dtr_pending = 1;
scb->flags |= SCB_MSGOUT_WDTR;
}
if ( aic_dev->goal.offset )
{
aic_dev->needsdtr = aic_dev->needsdtr_copy = 1;
if( !aic_dev->dtr_pending )
{
aic_dev->dtr_pending = 1;
scb->flags |= SCB_MSGOUT_SDTR;
}
}
if ( aic_dev->dtr_pending )
{
aic_outb(p, HOST_MSG, MSG_OUT);
aic_outb(p, aic_inb(p, SCSISIGI) | ATNO, SCSISIGO);
}
}
else if (scb->flags & SCB_MSGOUT_WDTR)
{
/*
* note 8bit xfers and clear flag
*/
aic_dev->needwdtr = aic_dev->needwdtr_copy = 0;
scb->flags &= ~SCB_MSGOUT_BITS;
aic7xxx_set_width(p, target, channel, lun, MSG_EXT_WDTR_BUS_8_BIT,
(AHC_TRANS_ACTIVE|AHC_TRANS_GOAL|AHC_TRANS_CUR), aic_dev);
aic7xxx_set_syncrate(p, NULL, target, channel, 0, 0, 0,
AHC_TRANS_ACTIVE|AHC_TRANS_CUR|AHC_TRANS_QUITE,
aic_dev);
if(aic7xxx_verbose & VERBOSE_NEGOTIATION2)
{
printk(INFO_LEAD "Device is rejecting WDTR messages, using "
"narrow transfers.\n", p->host_no, channel, target, lun);
}
aic_dev->needsdtr = aic_dev->needsdtr_copy;
}
else if (scb->flags & SCB_MSGOUT_SDTR)
{
/*
* note asynch xfers and clear flag
*/
aic_dev->needsdtr = aic_dev->needsdtr_copy = 0;
scb->flags &= ~SCB_MSGOUT_BITS;
aic7xxx_set_syncrate(p, NULL, target, channel, 0, 0, 0,
(AHC_TRANS_CUR|AHC_TRANS_ACTIVE|AHC_TRANS_GOAL), aic_dev);
if(aic7xxx_verbose & VERBOSE_NEGOTIATION2)
{
printk(INFO_LEAD "Device is rejecting SDTR messages, using "
"async transfers.\n", p->host_no, channel, target, lun);
}
}
else if (aic7xxx_verbose & VERBOSE_SEQINT)
{
/*
* Otherwise, we ignore it.
*/
printk(INFO_LEAD "Received MESSAGE_REJECT for unknown cause. "
"Ignoring.\n", p->host_no, channel, target, lun);
}
}
break;
case BAD_STATUS:
{
unsigned char scb_index;
struct aic7xxx_hwscb *hscb;
Scsi_Cmnd *cmd;
/* The sequencer will notify us when a command has an error that
* would be of interest to the kernel. This allows us to leave
* the sequencer running in the common case of command completes
* without error. The sequencer will have DMA'd the SCB back
* up to us, so we can reference the drivers SCB array.
*
* Set the default return value to 0 indicating not to send
* sense. The sense code will change this if needed and this
* reduces code duplication.
*/
aic_outb(p, 0, RETURN_1);
scb_index = aic_inb(p, SCB_TAG);
if (scb_index > p->scb_data->numscbs)
{
printk(WARN_LEAD "Invalid SCB during SEQINT 0x%02x, SCB_TAG %d.\n",
p->host_no, channel, target, lun, intstat, scb_index);
break;
}
scb = p->scb_data->scb_array[scb_index];
hscb = scb->hscb;
if (!(scb->flags & SCB_ACTIVE) || (scb->cmd == NULL))
{
printk(WARN_LEAD "Invalid SCB during SEQINT 0x%x, scb %d, flags 0x%x,"
" cmd 0x%lx.\n", p->host_no, channel, target, lun, intstat,
scb_index, scb->flags, (unsigned long) scb->cmd);
}
else
{
cmd = scb->cmd;
aic_dev = AIC_DEV(scb->cmd);
hscb->target_status = aic_inb(p, SCB_TARGET_STATUS);
aic7xxx_status(cmd) = hscb->target_status;
cmd->result = hscb->target_status;
switch (status_byte(hscb->target_status))
{
case GOOD:
if (aic7xxx_verbose & VERBOSE_SEQINT)
printk(INFO_LEAD "Interrupted for status of GOOD???\n",
p->host_no, CTL_OF_SCB(scb));
break;
case COMMAND_TERMINATED:
case CHECK_CONDITION:
if ( !(scb->flags & SCB_SENSE) )
{
/*
* Send a sense command to the requesting target.
* XXX - revisit this and get rid of the memcopys.
*/
memcpy(scb->sense_cmd, &generic_sense[0],
sizeof(generic_sense));
scb->sense_cmd[1] = (cmd->device->lun << 5);
scb->sense_cmd[4] = sizeof(cmd->sense_buffer);
scb->sg_list[0].length =
cpu_to_le32(sizeof(cmd->sense_buffer));
scb->sg_list[0].address =
cpu_to_le32(pci_map_single(p->pdev, cmd->sense_buffer,
sizeof(cmd->sense_buffer),
PCI_DMA_FROMDEVICE));
/*
* XXX - We should allow disconnection, but can't as it
* might allow overlapped tagged commands.
*/
/* hscb->control &= DISCENB; */
hscb->control = 0;
hscb->target_status = 0;
hscb->SG_list_pointer =
cpu_to_le32(SCB_DMA_ADDR(scb, scb->sg_list));
hscb->SCSI_cmd_pointer =
cpu_to_le32(SCB_DMA_ADDR(scb, scb->sense_cmd));
hscb->data_count = scb->sg_list[0].length;
hscb->data_pointer = scb->sg_list[0].address;
hscb->SCSI_cmd_length = COMMAND_SIZE(scb->sense_cmd[0]);
hscb->residual_SG_segment_count = 0;
hscb->residual_data_count[0] = 0;
hscb->residual_data_count[1] = 0;
hscb->residual_data_count[2] = 0;
scb->sg_count = hscb->SG_segment_count = 1;
scb->sg_length = sizeof(cmd->sense_buffer);
scb->tag_action = 0;
scb->flags |= SCB_SENSE;
/*
* Ensure the target is busy since this will be an
* an untagged request.
*/
#ifdef AIC7XXX_VERBOSE_DEBUGGING
if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
{
if (scb->flags & SCB_MSGOUT_BITS)
printk(INFO_LEAD "Requesting SENSE with %s\n", p->host_no,
CTL_OF_SCB(scb), (scb->flags & SCB_MSGOUT_SDTR) ?
"SDTR" : "WDTR");
else
printk(INFO_LEAD "Requesting SENSE, no MSG\n", p->host_no,
CTL_OF_SCB(scb));
}
#endif
aic7xxx_busy_target(p, scb);
aic_outb(p, SEND_SENSE, RETURN_1);
aic7xxx_error(cmd) = DID_OK;
break;
} /* first time sense, no errors */
printk(INFO_LEAD "CHECK_CONDITION on REQUEST_SENSE, returning "
"an error.\n", p->host_no, CTL_OF_SCB(scb));
aic7xxx_error(cmd) = DID_ERROR;
scb->flags &= ~SCB_SENSE;
break;
case QUEUE_FULL:
queue_flag = TRUE; /* Mark that this is a QUEUE_FULL and */
case BUSY: /* drop through to here */
{
struct aic7xxx_scb *next_scbp, *prev_scbp;
unsigned char active_hscb, next_hscb, prev_hscb, scb_index;
/*
* We have to look three places for queued commands:
* 1: p->waiting_scbs queue
* 2: QINFIFO
* 3: WAITING_SCBS list on card (for commands that are started
* but haven't yet made it to the device)
*
* Of special note here is that commands on 2 or 3 above will
* have already been marked as active, while commands on 1 will
* not. The aic7xxx_done() function will want to unmark them
* from active, so any commands we pull off of 1 need to
* up the active count.
*/
next_scbp = p->waiting_scbs.head;
while ( next_scbp != NULL )
{
prev_scbp = next_scbp;
next_scbp = next_scbp->q_next;
if ( aic7xxx_match_scb(p, prev_scbp, target, channel, lun,
SCB_LIST_NULL) )
{
scbq_remove(&p->waiting_scbs, prev_scbp);
scb->flags = SCB_QUEUED_FOR_DONE | SCB_QUEUE_FULL;
p->activescbs++;
aic_dev->active_cmds++;
}
}
aic7xxx_search_qinfifo(p, target, channel, lun,
SCB_LIST_NULL, SCB_QUEUED_FOR_DONE | SCB_QUEUE_FULL,
FALSE, NULL);
next_scbp = NULL;
active_hscb = aic_inb(p, SCBPTR);
prev_hscb = next_hscb = scb_index = SCB_LIST_NULL;
next_hscb = aic_inb(p, WAITING_SCBH);
while (next_hscb != SCB_LIST_NULL)
{
aic_outb(p, next_hscb, SCBPTR);
scb_index = aic_inb(p, SCB_TAG);
if (scb_index < p->scb_data->numscbs)
{
next_scbp = p->scb_data->scb_array[scb_index];
if (aic7xxx_match_scb(p, next_scbp, target, channel, lun,
SCB_LIST_NULL) )
{
next_scbp->flags = SCB_QUEUED_FOR_DONE | SCB_QUEUE_FULL;
next_hscb = aic_inb(p, SCB_NEXT);
aic_outb(p, 0, SCB_CONTROL);
aic_outb(p, SCB_LIST_NULL, SCB_TAG);
aic7xxx_add_curscb_to_free_list(p);
if (prev_hscb == SCB_LIST_NULL)
{
/* We were first on the list,
* so we kill the selection
* hardware. Let the sequencer
* re-init the hardware itself
*/
aic_outb(p, aic_inb(p, SCSISEQ) & ~ENSELO, SCSISEQ);
aic_outb(p, CLRSELTIMEO, CLRSINT1);
aic_outb(p, next_hscb, WAITING_SCBH);
}
else
{
aic_outb(p, prev_hscb, SCBPTR);
aic_outb(p, next_hscb, SCB_NEXT);
}
}
else
{
prev_hscb = next_hscb;
next_hscb = aic_inb(p, SCB_NEXT);
}
} /* scb_index >= p->scb_data->numscbs */
}
aic_outb(p, active_hscb, SCBPTR);
aic7xxx_run_done_queue(p, FALSE);
#ifdef AIC7XXX_VERBOSE_DEBUGGING
if( (aic7xxx_verbose & VERBOSE_MINOR_ERROR) ||
(aic7xxx_verbose > 0xffff) )
{
if (queue_flag)
printk(INFO_LEAD "Queue full received; queue depth %d, "
"active %d\n", p->host_no, CTL_OF_SCB(scb),
aic_dev->max_q_depth, aic_dev->active_cmds);
else
printk(INFO_LEAD "Target busy\n", p->host_no, CTL_OF_SCB(scb));
}
#endif
if (queue_flag)
{
int diff;
result = scsi_track_queue_full(cmd->device,
aic_dev->active_cmds);
if ( result < 0 )
{
if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
printk(INFO_LEAD "Tagged Command Queueing disabled.\n",
p->host_no, CTL_OF_SCB(scb));
diff = aic_dev->max_q_depth - p->host->cmd_per_lun;
aic_dev->temp_q_depth = 1;
aic_dev->max_q_depth = 1;
}
else if ( result > 0 )
{
if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
printk(INFO_LEAD "Queue depth reduced to %d\n", p->host_no,
CTL_OF_SCB(scb), result);
diff = aic_dev->max_q_depth - result;
aic_dev->max_q_depth = result;
/* temp_q_depth could have been dropped to 1 for an untagged
* command that might be coming up */
if(aic_dev->temp_q_depth > result)
aic_dev->temp_q_depth = result;
}
/* We should free up the no unused SCB entries. But, that's
* a difficult thing to do because we use a direct indexed
* array, so we can't just take any entries and free them,
* we *have* to free the ones at the end of the array, and
* they very well could be in use right now, which means
* in order to do this right, we have to add a delayed
* freeing mechanism tied into the scb_free() code area.
* We'll add that later.
*/
}
break;
}
default:
if (aic7xxx_verbose & VERBOSE_SEQINT)
printk(INFO_LEAD "Unexpected target status 0x%x.\n", p->host_no,
CTL_OF_SCB(scb), scb->hscb->target_status);
if (!aic7xxx_error(cmd))
{
aic7xxx_error(cmd) = DID_RETRY_COMMAND;
}
break;
} /* end switch */
} /* end else of */
}
break;
case AWAITING_MSG:
{
unsigned char scb_index, msg_out;
scb_index = aic_inb(p, SCB_TAG);
msg_out = aic_inb(p, MSG_OUT);
scb = p->scb_data->scb_array[scb_index];
aic_dev = AIC_DEV(scb->cmd);
p->msg_index = p->msg_len = 0;
/*
* This SCB had a MK_MESSAGE set in its control byte informing
* the sequencer that we wanted to send a special message to
* this target.
*/
if ( !(scb->flags & SCB_DEVICE_RESET) &&
(msg_out == MSG_IDENTIFYFLAG) &&
(scb->hscb->control & TAG_ENB) )
{
p->msg_buf[p->msg_index++] = scb->tag_action;
p->msg_buf[p->msg_index++] = scb->hscb->tag;
p->msg_len += 2;
}
if (scb->flags & SCB_DEVICE_RESET)
{
p->msg_buf[p->msg_index++] = MSG_BUS_DEV_RESET;
p->msg_len++;
if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
printk(INFO_LEAD "Bus device reset mailed.\n",
p->host_no, CTL_OF_SCB(scb));
}
else if (scb->flags & SCB_ABORT)
{
if (scb->tag_action)
{
p->msg_buf[p->msg_index++] = MSG_ABORT_TAG;
}
else
{
p->msg_buf[p->msg_index++] = MSG_ABORT;
}
p->msg_len++;
if (aic7xxx_verbose & VERBOSE_ABORT_PROCESS)
printk(INFO_LEAD "Abort message mailed.\n", p->host_no,
CTL_OF_SCB(scb));
}
else if (scb->flags & SCB_MSGOUT_PPR)
{
if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
{
printk(INFO_LEAD "Sending PPR (%d/%d/%d/%d) message.\n",
p->host_no, CTL_OF_SCB(scb),
aic_dev->goal.period,
aic_dev->goal.offset,
aic_dev->goal.width,
aic_dev->goal.options);
}
aic7xxx_construct_ppr(p, scb);
}
else if (scb->flags & SCB_MSGOUT_WDTR)
{
if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
{
printk(INFO_LEAD "Sending WDTR message.\n", p->host_no,
CTL_OF_SCB(scb));
}
aic7xxx_construct_wdtr(p, aic_dev->goal.width);
}
else if (scb->flags & SCB_MSGOUT_SDTR)
{
unsigned int max_sync, period;
unsigned char options = 0;
/*
* Now that the device is selected, use the bits in SBLKCTL and
* SSTAT2 to determine the max sync rate for this device.
*/
if (p->features & AHC_ULTRA2)
{
if ( (aic_inb(p, SBLKCTL) & ENAB40) &&
!(aic_inb(p, SSTAT2) & EXP_ACTIVE) )
{
max_sync = AHC_SYNCRATE_ULTRA2;
}
else
{
max_sync = AHC_SYNCRATE_ULTRA;
}
}
else if (p->features & AHC_ULTRA)
{
max_sync = AHC_SYNCRATE_ULTRA;
}
else
{
max_sync = AHC_SYNCRATE_FAST;
}
period = aic_dev->goal.period;
aic7xxx_find_syncrate(p, &period, max_sync, &options);
if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
{
printk(INFO_LEAD "Sending SDTR %d/%d message.\n", p->host_no,
CTL_OF_SCB(scb), period,
aic_dev->goal.offset);
}
aic7xxx_construct_sdtr(p, period, aic_dev->goal.offset);
}
else
{
panic("aic7xxx: AWAITING_MSG for an SCB that does "
"not have a waiting message.\n");
}
/*
* We've set everything up to send our message, now to actually do
* so we need to enable reqinit interrupts and let the interrupt
* handler do the rest. We don't want to unpause the sequencer yet
* though so we'll return early. We also have to make sure that
* we clear the SEQINT *BEFORE* we set the REQINIT handler active
* or else it's possible on VLB cards to lose the first REQINIT
* interrupt. Edge triggered EISA cards could also lose this
* interrupt, although PCI and level triggered cards should not
* have this problem since they continually interrupt the kernel
* until we take care of the situation.
*/
scb->flags |= SCB_MSGOUT_SENT;
p->msg_index = 0;
p->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
p->flags |= AHC_HANDLING_REQINITS;
aic_outb(p, aic_inb(p, SIMODE1) | ENREQINIT, SIMODE1);
return;
}
break;
case DATA_OVERRUN:
{
unsigned char scb_index = aic_inb(p, SCB_TAG);
unsigned char lastphase = aic_inb(p, LASTPHASE);
unsigned int i;
scb = (p->scb_data->scb_array[scb_index]);
/*
* XXX - What do we really want to do on an overrun? The
* mid-level SCSI code should handle this, but for now,
* we'll just indicate that the command should retried.
* If we retrieved sense info on this target, then the
* base SENSE info should have been saved prior to the
* overrun error. In that case, we return DID_OK and let
* the mid level code pick up on the sense info. Otherwise
* we return DID_ERROR so the command will get retried.
*/
if ( !(scb->flags & SCB_SENSE) )
{
printk(WARN_LEAD "Data overrun detected in %s phase, tag %d;\n",
p->host_no, CTL_OF_SCB(scb),
(lastphase == P_DATAIN) ? "Data-In" : "Data-Out", scb->hscb->tag);
printk(KERN_WARNING " %s seen Data Phase. Length=%d, NumSGs=%d.\n",
(aic_inb(p, SEQ_FLAGS) & DPHASE) ? "Have" : "Haven't",
scb->sg_length, scb->sg_count);
printk(KERN_WARNING " Raw SCSI Command: 0x");
for (i = 0; i < scb->hscb->SCSI_cmd_length; i++)
{
printk("%02x ", scb->cmd->cmnd[i]);
}
printk("\n");
if(aic7xxx_verbose > 0xffff)
{
for (i = 0; i < scb->sg_count; i++)
{
printk(KERN_WARNING " sg[%d] - Addr 0x%x : Length %d\n",
i,
le32_to_cpu(scb->sg_list[i].address),
le32_to_cpu(scb->sg_list[i].length) );
}
}
aic7xxx_error(scb->cmd) = DID_ERROR;
}
else
printk(INFO_LEAD "Data Overrun during SEND_SENSE operation.\n",
p->host_no, CTL_OF_SCB(scb));
}
break;
case WIDE_RESIDUE:
{
unsigned char resid_sgcnt, index;
unsigned char scb_index = aic_inb(p, SCB_TAG);
unsigned int cur_addr, resid_dcnt;
unsigned int native_addr, native_length, sg_addr;
int i;
if(scb_index > p->scb_data->numscbs)
{
printk(WARN_LEAD "invalid scb_index during WIDE_RESIDUE.\n",
p->host_no, -1, -1, -1);
/*
* XXX: Add error handling here
*/
break;
}
scb = p->scb_data->scb_array[scb_index];
if(!(scb->flags & SCB_ACTIVE) || (scb->cmd == NULL))
{
printk(WARN_LEAD "invalid scb during WIDE_RESIDUE flags:0x%x "
"scb->cmd:0x%lx\n", p->host_no, CTL_OF_SCB(scb),
scb->flags, (unsigned long)scb->cmd);
break;
}
if(aic7xxx_verbose & VERBOSE_MINOR_ERROR)
printk(INFO_LEAD "Got WIDE_RESIDUE message, patching up data "
"pointer.\n", p->host_no, CTL_OF_SCB(scb));
/*
* We have a valid scb to use on this WIDE_RESIDUE message, so
* we need to walk the sg list looking for this particular sg
* segment, then see if we happen to be at the very beginning of
* the segment. If we are, then we have to back things up to
* the previous segment. If not, then we simply need to remove
* one byte from this segments address and add one to the byte
* count.
*/
cur_addr = aic_inb(p, SHADDR) | (aic_inb(p, SHADDR + 1) << 8) |
(aic_inb(p, SHADDR + 2) << 16) | (aic_inb(p, SHADDR + 3) << 24);
sg_addr = aic_inb(p, SG_COUNT + 1) | (aic_inb(p, SG_COUNT + 2) << 8) |
(aic_inb(p, SG_COUNT + 3) << 16) | (aic_inb(p, SG_COUNT + 4) << 24);
resid_sgcnt = aic_inb(p, SCB_RESID_SGCNT);
resid_dcnt = aic_inb(p, SCB_RESID_DCNT) |
(aic_inb(p, SCB_RESID_DCNT + 1) << 8) |
(aic_inb(p, SCB_RESID_DCNT + 2) << 16);
index = scb->sg_count - ((resid_sgcnt) ? resid_sgcnt : 1);
native_addr = le32_to_cpu(scb->sg_list[index].address);
native_length = le32_to_cpu(scb->sg_list[index].length);
/*
* If resid_dcnt == native_length, then we just loaded this SG
* segment and we need to back it up one...
*/
if(resid_dcnt == native_length)
{
if(index == 0)
{
/*
* Oops, this isn't right, we can't back up to before the
* beginning. This must be a bogus message, ignore it.
*/
break;
}
resid_dcnt = 1;
resid_sgcnt += 1;
native_addr = le32_to_cpu(scb->sg_list[index - 1].address);
native_length = le32_to_cpu(scb->sg_list[index - 1].length);
cur_addr = native_addr + (native_length - 1);
sg_addr -= sizeof(struct hw_scatterlist);
}
else
{
/*
* resid_dcnt != native_length, so we are in the middle of a SG
* element. Back it up one byte and leave the rest alone.
*/
resid_dcnt += 1;
cur_addr -= 1;
}
/*
* Output the new addresses and counts to the right places on the
* card.
*/
aic_outb(p, resid_sgcnt, SG_COUNT);
aic_outb(p, resid_sgcnt, SCB_RESID_SGCNT);
aic_outb(p, sg_addr & 0xff, SG_COUNT + 1);
aic_outb(p, (sg_addr >> 8) & 0xff, SG_COUNT + 2);
aic_outb(p, (sg_addr >> 16) & 0xff, SG_COUNT + 3);
aic_outb(p, (sg_addr >> 24) & 0xff, SG_COUNT + 4);
aic_outb(p, resid_dcnt & 0xff, SCB_RESID_DCNT);
aic_outb(p, (resid_dcnt >> 8) & 0xff, SCB_RESID_DCNT + 1);
aic_outb(p, (resid_dcnt >> 16) & 0xff, SCB_RESID_DCNT + 2);
/*
* The sequencer actually wants to find the new address
* in the SHADDR register set. On the Ultra2 and later controllers
* this register set is readonly. In order to get the right number
* into the register, you actually have to enter it in HADDR and then
* use the PRELOADEN bit of DFCNTRL to drop it through from the
* HADDR register to the SHADDR register. On non-Ultra2 controllers,
* we simply write it direct.
*/
if(p->features & AHC_ULTRA2)
{
/*
* We might as well be accurate and drop both the resid_dcnt and
* cur_addr into HCNT and HADDR and have both of them drop
* through to the shadow layer together.
*/
aic_outb(p, resid_dcnt & 0xff, HCNT);
aic_outb(p, (resid_dcnt >> 8) & 0xff, HCNT + 1);
aic_outb(p, (resid_dcnt >> 16) & 0xff, HCNT + 2);
aic_outb(p, cur_addr & 0xff, HADDR);
aic_outb(p, (cur_addr >> 8) & 0xff, HADDR + 1);
aic_outb(p, (cur_addr >> 16) & 0xff, HADDR + 2);
aic_outb(p, (cur_addr >> 24) & 0xff, HADDR + 3);
aic_outb(p, aic_inb(p, DMAPARAMS) | PRELOADEN, DFCNTRL);
udelay(1);
aic_outb(p, aic_inb(p, DMAPARAMS) & ~(SCSIEN|HDMAEN), DFCNTRL);
i=0;
while(((aic_inb(p, DFCNTRL) & (SCSIEN|HDMAEN)) != 0) && (i++ < 1000))
{
udelay(1);
}
}
else
{
aic_outb(p, cur_addr & 0xff, SHADDR);
aic_outb(p, (cur_addr >> 8) & 0xff, SHADDR + 1);
aic_outb(p, (cur_addr >> 16) & 0xff, SHADDR + 2);
aic_outb(p, (cur_addr >> 24) & 0xff, SHADDR + 3);
}
}
break;
case SEQ_SG_FIXUP:
{
unsigned char scb_index, tmp;
int sg_addr, sg_length;
scb_index = aic_inb(p, SCB_TAG);
if(scb_index > p->scb_data->numscbs)
{
printk(WARN_LEAD "invalid scb_index during SEQ_SG_FIXUP.\n",
p->host_no, -1, -1, -1);
printk(INFO_LEAD "SCSISIGI 0x%x, SEQADDR 0x%x, SSTAT0 0x%x, SSTAT1 "
"0x%x\n", p->host_no, -1, -1, -1,
aic_inb(p, SCSISIGI),
aic_inb(p, SEQADDR0) | (aic_inb(p, SEQADDR1) << 8),
aic_inb(p, SSTAT0), aic_inb(p, SSTAT1));
printk(INFO_LEAD "SG_CACHEPTR 0x%x, SSTAT2 0x%x, STCNT 0x%x\n",
p->host_no, -1, -1, -1, aic_inb(p, SG_CACHEPTR),
aic_inb(p, SSTAT2), aic_inb(p, STCNT + 2) << 16 |
aic_inb(p, STCNT + 1) << 8 | aic_inb(p, STCNT));
/*
* XXX: Add error handling here
*/
break;
}
scb = p->scb_data->scb_array[scb_index];
if(!(scb->flags & SCB_ACTIVE) || (scb->cmd == NULL))
{
printk(WARN_LEAD "invalid scb during SEQ_SG_FIXUP flags:0x%x "
"scb->cmd:0x%p\n", p->host_no, CTL_OF_SCB(scb),
scb->flags, scb->cmd);
printk(INFO_LEAD "SCSISIGI 0x%x, SEQADDR 0x%x, SSTAT0 0x%x, SSTAT1 "
"0x%x\n", p->host_no, CTL_OF_SCB(scb),
aic_inb(p, SCSISIGI),
aic_inb(p, SEQADDR0) | (aic_inb(p, SEQADDR1) << 8),
aic_inb(p, SSTAT0), aic_inb(p, SSTAT1));
printk(INFO_LEAD "SG_CACHEPTR 0x%x, SSTAT2 0x%x, STCNT 0x%x\n",
p->host_no, CTL_OF_SCB(scb), aic_inb(p, SG_CACHEPTR),
aic_inb(p, SSTAT2), aic_inb(p, STCNT + 2) << 16 |
aic_inb(p, STCNT + 1) << 8 | aic_inb(p, STCNT));
break;
}
if(aic7xxx_verbose & VERBOSE_MINOR_ERROR)
printk(INFO_LEAD "Fixing up SG address for sequencer.\n", p->host_no,
CTL_OF_SCB(scb));
/*
* Advance the SG pointer to the next element in the list
*/
tmp = aic_inb(p, SG_NEXT);
tmp += SG_SIZEOF;
aic_outb(p, tmp, SG_NEXT);
if( tmp < SG_SIZEOF )
aic_outb(p, aic_inb(p, SG_NEXT + 1) + 1, SG_NEXT + 1);
tmp = aic_inb(p, SG_COUNT) - 1;
aic_outb(p, tmp, SG_COUNT);
sg_addr = le32_to_cpu(scb->sg_list[scb->sg_count - tmp].address);
sg_length = le32_to_cpu(scb->sg_list[scb->sg_count - tmp].length);
/*
* Now stuff the element we just advanced past down onto the
* card so it can be stored in the residual area.
*/
aic_outb(p, sg_addr & 0xff, HADDR);
aic_outb(p, (sg_addr >> 8) & 0xff, HADDR + 1);
aic_outb(p, (sg_addr >> 16) & 0xff, HADDR + 2);
aic_outb(p, (sg_addr >> 24) & 0xff, HADDR + 3);
aic_outb(p, sg_length & 0xff, HCNT);
aic_outb(p, (sg_length >> 8) & 0xff, HCNT + 1);
aic_outb(p, (sg_length >> 16) & 0xff, HCNT + 2);
aic_outb(p, (tmp << 2) | ((tmp == 1) ? LAST_SEG : 0), SG_CACHEPTR);
aic_outb(p, aic_inb(p, DMAPARAMS), DFCNTRL);
while(aic_inb(p, SSTAT0) & SDONE) udelay(1);
while(aic_inb(p, DFCNTRL) & (HDMAEN|SCSIEN)) aic_outb(p, 0, DFCNTRL);
}
break;
#ifdef AIC7XXX_NOT_YET
case TRACEPOINT2:
{
printk(INFO_LEAD "Tracepoint #2 reached.\n", p->host_no,
channel, target, lun);
}
break;
/* XXX Fill these in later */
case MSG_BUFFER_BUSY:
printk("aic7xxx: Message buffer busy.\n");
break;
case MSGIN_PHASEMIS:
printk("aic7xxx: Message-in phasemis.\n");
break;
#endif
default: /* unknown */
printk(WARN_LEAD "Unknown SEQINT, INTSTAT 0x%x, SCSISIGI 0x%x.\n",
p->host_no, channel, target, lun, intstat,
aic_inb(p, SCSISIGI));
break;
}
/*
* Clear the sequencer interrupt and unpause the sequencer.
*/
unpause_sequencer(p, /* unpause always */ TRUE);
}
/*+F*************************************************************************
* Function:
* aic7xxx_parse_msg
*
* Description:
* Parses incoming messages into actions on behalf of
* aic7xxx_handle_reqinit
*_F*************************************************************************/
static int
aic7xxx_parse_msg(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
{
int reject, reply, done;
unsigned char target_scsirate, tindex;
unsigned short target_mask;
unsigned char target, channel, lun;
unsigned char bus_width, new_bus_width;
unsigned char trans_options, new_trans_options;
unsigned int period, new_period, offset, new_offset, maxsync;
struct aic7xxx_syncrate *syncrate;
struct aic_dev_data *aic_dev;
target = scb->cmd->device->id;
channel = scb->cmd->device->channel;
lun = scb->cmd->device->lun;
reply = reject = done = FALSE;
tindex = TARGET_INDEX(scb->cmd);
aic_dev = AIC_DEV(scb->cmd);
target_scsirate = aic_inb(p, TARG_SCSIRATE + tindex);
target_mask = (0x01 << tindex);
/*
* Parse as much of the message as is available,
* rejecting it if we don't support it. When
* the entire message is available and has been
* handled, return TRUE indicating that we have
* parsed an entire message.
*/
if (p->msg_buf[0] != MSG_EXTENDED)
{
reject = TRUE;
}
/*
* Even if we are an Ultra3 card, don't allow Ultra3 sync rates when
* using the SDTR messages. We need the PPR messages to enable the
* higher speeds that include things like Dual Edge clocking.
*/
if (p->features & AHC_ULTRA2)
{
if ( (aic_inb(p, SBLKCTL) & ENAB40) &&
!(aic_inb(p, SSTAT2) & EXP_ACTIVE) )
{
if (p->features & AHC_ULTRA3)
maxsync = AHC_SYNCRATE_ULTRA3;
else
maxsync = AHC_SYNCRATE_ULTRA2;
}
else
{
maxsync = AHC_SYNCRATE_ULTRA;
}
}
else if (p->features & AHC_ULTRA)
{
maxsync = AHC_SYNCRATE_ULTRA;
}
else
{
maxsync = AHC_SYNCRATE_FAST;
}
/*
* Just accept the length byte outright and perform
* more checking once we know the message type.
*/
if ( !reject && (p->msg_len > 2) )
{
switch(p->msg_buf[2])
{
case MSG_EXT_SDTR:
{
if (p->msg_buf[1] != MSG_EXT_SDTR_LEN)
{
reject = TRUE;
break;
}
if (p->msg_len < (MSG_EXT_SDTR_LEN + 2))
{
break;
}
period = new_period = p->msg_buf[3];
offset = new_offset = p->msg_buf[4];
trans_options = new_trans_options = 0;
bus_width = new_bus_width = target_scsirate & WIDEXFER;
/*
* If our current max syncrate is in the Ultra3 range, bump it back
* down to Ultra2 since we can't negotiate DT transfers using SDTR
*/
if(maxsync == AHC_SYNCRATE_ULTRA3)
maxsync = AHC_SYNCRATE_ULTRA2;
/*
* We might have a device that is starting negotiation with us
* before we can start up negotiation with it....be prepared to
* have a device ask for a higher speed then we want to give it
* in that case
*/
if ( (scb->flags & (SCB_MSGOUT_SENT|SCB_MSGOUT_SDTR)) !=
(SCB_MSGOUT_SENT|SCB_MSGOUT_SDTR) )
{
if (!(aic_dev->flags & DEVICE_DTR_SCANNED))
{
/*
* We shouldn't get here unless this is a narrow drive, wide
* devices should trigger this same section of code in the WDTR
* handler first instead.
*/
aic_dev->goal.width = MSG_EXT_WDTR_BUS_8_BIT;
aic_dev->goal.options = 0;
if(p->user[tindex].offset)
{
aic_dev->needsdtr_copy = 1;
aic_dev->goal.period = max_t(unsigned char, 10,p->user[tindex].period);
if(p->features & AHC_ULTRA2)
{
aic_dev->goal.offset = MAX_OFFSET_ULTRA2;
}
else
{
aic_dev->goal.offset = MAX_OFFSET_8BIT;
}
}
else
{
aic_dev->needsdtr_copy = 0;
aic_dev->goal.period = 255;
aic_dev->goal.offset = 0;
}
aic_dev->flags |= DEVICE_DTR_SCANNED | DEVICE_PRINT_DTR;
}
else if (aic_dev->needsdtr_copy == 0)
{
/*
* This is a preemptive message from the target, we've already
* scanned this target and set our options for it, and we
* don't need a SDTR with this target (for whatever reason),
* so reject this incoming SDTR
*/
reject = TRUE;
break;
}
/* The device is sending this message first and we have to reply */
reply = TRUE;
if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
{
printk(INFO_LEAD "Received pre-emptive SDTR message from "
"target.\n", p->host_no, CTL_OF_SCB(scb));
}
/*
* Validate the values the device passed to us against our SEEPROM
* settings. We don't have to do this if we aren't replying since
* the device isn't allowed to send values greater than the ones
* we first sent to it.
*/
new_period = max_t(unsigned int, period, aic_dev->goal.period);
new_offset = min_t(unsigned int, offset, aic_dev->goal.offset);
}
/*
* Use our new_period, new_offset, bus_width, and card options
* to determine the actual syncrate settings
*/
syncrate = aic7xxx_find_syncrate(p, &new_period, maxsync,
&trans_options);
aic7xxx_validate_offset(p, syncrate, &new_offset, bus_width);
/*
* Did we drop to async? If so, send a reply regardless of whether
* or not we initiated this negotiation.
*/
if ((new_offset == 0) && (new_offset != offset))
{
aic_dev->needsdtr_copy = 0;
reply = TRUE;
}
/*
* Did we start this, if not, or if we went too low and had to
* go async, then send an SDTR back to the target
*/
if(reply)
{
/* when sending a reply, make sure that the goal settings are
* updated along with current and active since the code that
* will actually build the message for the sequencer uses the
* goal settings as its guidelines.
*/
aic7xxx_set_syncrate(p, syncrate, target, channel, new_period,
new_offset, trans_options,
AHC_TRANS_GOAL|AHC_TRANS_ACTIVE|AHC_TRANS_CUR,
aic_dev);
scb->flags &= ~SCB_MSGOUT_BITS;
scb->flags |= SCB_MSGOUT_SDTR;
aic_outb(p, HOST_MSG, MSG_OUT);
aic_outb(p, aic_inb(p, SCSISIGO) | ATNO, SCSISIGO);
}
else
{
aic7xxx_set_syncrate(p, syncrate, target, channel, new_period,
new_offset, trans_options,
AHC_TRANS_ACTIVE|AHC_TRANS_CUR, aic_dev);
aic_dev->needsdtr = 0;
}
done = TRUE;
break;
}
case MSG_EXT_WDTR:
{
if (p->msg_buf[1] != MSG_EXT_WDTR_LEN)
{
reject = TRUE;
break;
}
if (p->msg_len < (MSG_EXT_WDTR_LEN + 2))
{
break;
}
bus_width = new_bus_width = p->msg_buf[3];
if ( (scb->flags & (SCB_MSGOUT_SENT|SCB_MSGOUT_WDTR)) ==
(SCB_MSGOUT_SENT|SCB_MSGOUT_WDTR) )
{
switch(bus_width)
{
default:
{
reject = TRUE;
if ( (aic7xxx_verbose & VERBOSE_NEGOTIATION2) &&
((aic_dev->flags & DEVICE_PRINT_DTR) ||
(aic7xxx_verbose > 0xffff)) )
{
printk(INFO_LEAD "Requesting %d bit transfers, rejecting.\n",
p->host_no, CTL_OF_SCB(scb), 8 * (0x01 << bus_width));
}
} /* We fall through on purpose */
case MSG_EXT_WDTR_BUS_8_BIT:
{
aic_dev->goal.width = MSG_EXT_WDTR_BUS_8_BIT;
aic_dev->needwdtr_copy &= ~target_mask;
break;
}
case MSG_EXT_WDTR_BUS_16_BIT:
{
break;
}
}
aic_dev->needwdtr = 0;
aic7xxx_set_width(p, target, channel, lun, new_bus_width,
AHC_TRANS_ACTIVE|AHC_TRANS_CUR, aic_dev);
}
else
{
if ( !(aic_dev->flags & DEVICE_DTR_SCANNED) )
{
/*
* Well, we now know the WDTR and SYNC caps of this device since
* it contacted us first, mark it as such and copy the user stuff
* over to the goal stuff.
*/
if( (p->features & AHC_WIDE) && p->user[tindex].width )
{
aic_dev->goal.width = MSG_EXT_WDTR_BUS_16_BIT;
aic_dev->needwdtr_copy = 1;
}
/*
* Devices that support DT transfers don't start WDTR requests
*/
aic_dev->goal.options = 0;
if(p->user[tindex].offset)
{
aic_dev->needsdtr_copy = 1;
aic_dev->goal.period = max_t(unsigned char, 10, p->user[tindex].period);
if(p->features & AHC_ULTRA2)
{
aic_dev->goal.offset = MAX_OFFSET_ULTRA2;
}
else if( aic_dev->goal.width )
{
aic_dev->goal.offset = MAX_OFFSET_16BIT;
}
else
{
aic_dev->goal.offset = MAX_OFFSET_8BIT;
}
} else {
aic_dev->needsdtr_copy = 0;
aic_dev->goal.period = 255;
aic_dev->goal.offset = 0;
}
aic_dev->flags |= DEVICE_DTR_SCANNED | DEVICE_PRINT_DTR;
}
else if (aic_dev->needwdtr_copy == 0)
{
/*
* This is a preemptive message from the target, we've already
* scanned this target and set our options for it, and we
* don't need a WDTR with this target (for whatever reason),
* so reject this incoming WDTR
*/
reject = TRUE;
break;
}
/* The device is sending this message first and we have to reply */
reply = TRUE;
if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
{
printk(INFO_LEAD "Received pre-emptive WDTR message from "
"target.\n", p->host_no, CTL_OF_SCB(scb));
}
switch(bus_width)
{
case MSG_EXT_WDTR_BUS_16_BIT:
{
if ( (p->features & AHC_WIDE) &&
(aic_dev->goal.width == MSG_EXT_WDTR_BUS_16_BIT) )
{
new_bus_width = MSG_EXT_WDTR_BUS_16_BIT;
break;
}
} /* Fall through if we aren't a wide card */
default:
case MSG_EXT_WDTR_BUS_8_BIT:
{
aic_dev->needwdtr_copy = 0;
new_bus_width = MSG_EXT_WDTR_BUS_8_BIT;
break;
}
}
scb->flags &= ~SCB_MSGOUT_BITS;
scb->flags |= SCB_MSGOUT_WDTR;
aic_dev->needwdtr = 0;
if(aic_dev->dtr_pending == 0)
{
/* there is no other command with SCB_DTR_SCB already set that will
* trigger the release of the dtr_pending bit. Both set the bit
* and set scb->flags |= SCB_DTR_SCB
*/
aic_dev->dtr_pending = 1;
scb->flags |= SCB_DTR_SCB;
}
aic_outb(p, HOST_MSG, MSG_OUT);
aic_outb(p, aic_inb(p, SCSISIGO) | ATNO, SCSISIGO);
/* when sending a reply, make sure that the goal settings are
* updated along with current and active since the code that
* will actually build the message for the sequencer uses the
* goal settings as its guidelines.
*/
aic7xxx_set_width(p, target, channel, lun, new_bus_width,
AHC_TRANS_GOAL|AHC_TRANS_ACTIVE|AHC_TRANS_CUR,
aic_dev);
}
/*
* By virtue of the SCSI spec, a WDTR message negates any existing
* SDTR negotiations. So, even if needsdtr isn't marked for this
* device, we still have to do a new SDTR message if the device
* supports SDTR at all. Therefore, we check needsdtr_copy instead
* of needstr.
*/
aic7xxx_set_syncrate(p, NULL, target, channel, 0, 0, 0,
AHC_TRANS_ACTIVE|AHC_TRANS_CUR|AHC_TRANS_QUITE,
aic_dev);
aic_dev->needsdtr = aic_dev->needsdtr_copy;
done = TRUE;
break;
}
case MSG_EXT_PPR:
{
if (p->msg_buf[1] != MSG_EXT_PPR_LEN)
{
reject = TRUE;
break;
}
if (p->msg_len < (MSG_EXT_PPR_LEN + 2))
{
break;
}
period = new_period = p->msg_buf[3];
offset = new_offset = p->msg_buf[5];
bus_width = new_bus_width = p->msg_buf[6];
trans_options = new_trans_options = p->msg_buf[7] & 0xf;
if(aic7xxx_verbose & VERBOSE_NEGOTIATION2)
{
printk(INFO_LEAD "Parsing PPR message (%d/%d/%d/%d)\n",
p->host_no, CTL_OF_SCB(scb), period, offset, bus_width,
trans_options);
}
/*
* We might have a device that is starting negotiation with us
* before we can start up negotiation with it....be prepared to
* have a device ask for a higher speed then we want to give it
* in that case
*/
if ( (scb->flags & (SCB_MSGOUT_SENT|SCB_MSGOUT_PPR)) !=
(SCB_MSGOUT_SENT|SCB_MSGOUT_PPR) )
{
/* Have we scanned the device yet? */
if (!(aic_dev->flags & DEVICE_DTR_SCANNED))
{
/* The device is electing to use PPR messages, so we will too until
* we know better */
aic_dev->needppr = aic_dev->needppr_copy = 1;
aic_dev->needsdtr = aic_dev->needsdtr_copy = 0;
aic_dev->needwdtr = aic_dev->needwdtr_copy = 0;
/* We know the device is SCSI-3 compliant due to PPR */
aic_dev->flags |= DEVICE_SCSI_3;
/*
* Not only is the device starting this up, but it also hasn't
* been scanned yet, so this would likely be our TUR or our
* INQUIRY command at scan time, so we need to use the
* settings from the SEEPROM if they existed. Of course, even
* if we didn't find a SEEPROM, we stuffed default values into
* the user settings anyway, so use those in all cases.
*/
aic_dev->goal.width = p->user[tindex].width;
if(p->user[tindex].offset)
{
aic_dev->goal.period = p->user[tindex].period;
aic_dev->goal.options = p->user[tindex].options;
if(p->features & AHC_ULTRA2)
{
aic_dev->goal.offset = MAX_OFFSET_ULTRA2;
}
else if( aic_dev->goal.width &&
(bus_width == MSG_EXT_WDTR_BUS_16_BIT) &&
p->features & AHC_WIDE )
{
aic_dev->goal.offset = MAX_OFFSET_16BIT;
}
else
{
aic_dev->goal.offset = MAX_OFFSET_8BIT;
}
}
else
{
aic_dev->goal.period = 255;
aic_dev->goal.offset = 0;
aic_dev->goal.options = 0;
}
aic_dev->flags |= DEVICE_DTR_SCANNED | DEVICE_PRINT_DTR;
}
else if (aic_dev->needppr_copy == 0)
{
/*
* This is a preemptive message from the target, we've already
* scanned this target and set our options for it, and we
* don't need a PPR with this target (for whatever reason),
* so reject this incoming PPR
*/
reject = TRUE;
break;
}
/* The device is sending this message first and we have to reply */
reply = TRUE;
if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
{
printk(INFO_LEAD "Received pre-emptive PPR message from "
"target.\n", p->host_no, CTL_OF_SCB(scb));
}
}
switch(bus_width)
{
case MSG_EXT_WDTR_BUS_16_BIT:
{
if ( (aic_dev->goal.width == MSG_EXT_WDTR_BUS_16_BIT) &&
p->features & AHC_WIDE)
{
break;
}
}
default:
{
if ( (aic7xxx_verbose & VERBOSE_NEGOTIATION2) &&
((aic_dev->flags & DEVICE_PRINT_DTR) ||
(aic7xxx_verbose > 0xffff)) )
{
reply = TRUE;
printk(INFO_LEAD "Requesting %d bit transfers, rejecting.\n",
p->host_no, CTL_OF_SCB(scb), 8 * (0x01 << bus_width));
}
} /* We fall through on purpose */
case MSG_EXT_WDTR_BUS_8_BIT:
{
/*
* According to the spec, if we aren't wide, we also can't be
* Dual Edge so clear the options byte
*/
new_trans_options = 0;
new_bus_width = MSG_EXT_WDTR_BUS_8_BIT;
break;
}
}
if(reply)
{
/* when sending a reply, make sure that the goal settings are
* updated along with current and active since the code that
* will actually build the message for the sequencer uses the
* goal settings as its guidelines.
*/
aic7xxx_set_width(p, target, channel, lun, new_bus_width,
AHC_TRANS_GOAL|AHC_TRANS_ACTIVE|AHC_TRANS_CUR,
aic_dev);
syncrate = aic7xxx_find_syncrate(p, &new_period, maxsync,
&new_trans_options);
aic7xxx_validate_offset(p, syncrate, &new_offset, new_bus_width);
aic7xxx_set_syncrate(p, syncrate, target, channel, new_period,
new_offset, new_trans_options,
AHC_TRANS_GOAL|AHC_TRANS_ACTIVE|AHC_TRANS_CUR,
aic_dev);
}
else
{
aic7xxx_set_width(p, target, channel, lun, new_bus_width,
AHC_TRANS_ACTIVE|AHC_TRANS_CUR, aic_dev);
syncrate = aic7xxx_find_syncrate(p, &new_period, maxsync,
&new_trans_options);
aic7xxx_validate_offset(p, syncrate, &new_offset, new_bus_width);
aic7xxx_set_syncrate(p, syncrate, target, channel, new_period,
new_offset, new_trans_options,
AHC_TRANS_ACTIVE|AHC_TRANS_CUR, aic_dev);
}
/*
* As it turns out, if we don't *have* to have PPR messages, then
* configure ourselves not to use them since that makes some
* external drive chassis work (those chassis can't parse PPR
* messages and they mangle the SCSI bus until you send a WDTR
* and SDTR that they can understand).
*/
if(new_trans_options == 0)
{
aic_dev->needppr = aic_dev->needppr_copy = 0;
if(new_offset)
{
aic_dev->needsdtr = aic_dev->needsdtr_copy = 1;
}
if (new_bus_width)
{
aic_dev->needwdtr = aic_dev->needwdtr_copy = 1;
}
}
if((new_offset == 0) && (offset != 0))
{
/*
* Oops, the syncrate went to low for this card and we fell off
* to async (should never happen with a device that uses PPR
* messages, but have to be complete)
*/
reply = TRUE;
}
if(reply)
{
scb->flags &= ~SCB_MSGOUT_BITS;
scb->flags |= SCB_MSGOUT_PPR;
aic_outb(p, HOST_MSG, MSG_OUT);
aic_outb(p, aic_inb(p, SCSISIGO) | ATNO, SCSISIGO);
}
else
{
aic_dev->needppr = 0;
}
done = TRUE;
break;
}
default:
{
reject = TRUE;
break;
}
} /* end of switch(p->msg_type) */
} /* end of if (!reject && (p->msg_len > 2)) */
if (!reply && reject)
{
aic_outb(p, MSG_MESSAGE_REJECT, MSG_OUT);
aic_outb(p, aic_inb(p, SCSISIGO) | ATNO, SCSISIGO);
done = TRUE;
}
return(done);
}
/*+F*************************************************************************
* Function:
* aic7xxx_handle_reqinit
*
* Description:
* Interrupt handler for REQINIT interrupts (used to transfer messages to
* and from devices).
*_F*************************************************************************/
static void
aic7xxx_handle_reqinit(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
{
unsigned char lastbyte;
unsigned char phasemis;
int done = FALSE;
switch(p->msg_type)
{
case MSG_TYPE_INITIATOR_MSGOUT:
{
if (p->msg_len == 0)
panic("aic7xxx: REQINIT with no active message!\n");
lastbyte = (p->msg_index == (p->msg_len - 1));
phasemis = ( aic_inb(p, SCSISIGI) & PHASE_MASK) != P_MESGOUT;
if (lastbyte || phasemis)
{
/* Time to end the message */
p->msg_len = 0;
p->msg_type = MSG_TYPE_NONE;
/*
* NOTE-TO-MYSELF: If you clear the REQINIT after you
* disable REQINITs, then cases of REJECT_MSG stop working
* and hang the bus
*/
aic_outb(p, aic_inb(p, SIMODE1) & ~ENREQINIT, SIMODE1);
aic_outb(p, CLRSCSIINT, CLRINT);
p->flags &= ~AHC_HANDLING_REQINITS;
if (phasemis == 0)
{
aic_outb(p, p->msg_buf[p->msg_index], SINDEX);
aic_outb(p, 0, RETURN_1);
#ifdef AIC7XXX_VERBOSE_DEBUGGING
if (aic7xxx_verbose > 0xffff)
printk(INFO_LEAD "Completed sending of REQINIT message.\n",
p->host_no, CTL_OF_SCB(scb));
#endif
}
else
{
aic_outb(p, MSGOUT_PHASEMIS, RETURN_1);
#ifdef AIC7XXX_VERBOSE_DEBUGGING
if (aic7xxx_verbose > 0xffff)
printk(INFO_LEAD "PHASEMIS while sending REQINIT message.\n",
p->host_no, CTL_OF_SCB(scb));
#endif
}
unpause_sequencer(p, TRUE);
}
else
{
/*
* Present the byte on the bus (clearing REQINIT) but don't
* unpause the sequencer.
*/
aic_outb(p, CLRREQINIT, CLRSINT1);
aic_outb(p, CLRSCSIINT, CLRINT);
aic_outb(p, p->msg_buf[p->msg_index++], SCSIDATL);
}
break;
}
case MSG_TYPE_INITIATOR_MSGIN:
{
phasemis = ( aic_inb(p, SCSISIGI) & PHASE_MASK ) != P_MESGIN;
if (phasemis == 0)
{
p->msg_len++;
/* Pull the byte in without acking it */
p->msg_buf[p->msg_index] = aic_inb(p, SCSIBUSL);
done = aic7xxx_parse_msg(p, scb);
/* Ack the byte */
aic_outb(p, CLRREQINIT, CLRSINT1);
aic_outb(p, CLRSCSIINT, CLRINT);
aic_inb(p, SCSIDATL);
p->msg_index++;
}
if (phasemis || done)
{
#ifdef AIC7XXX_VERBOSE_DEBUGGING
if (aic7xxx_verbose > 0xffff)
{
if (phasemis)
printk(INFO_LEAD "PHASEMIS while receiving REQINIT message.\n",
p->host_no, CTL_OF_SCB(scb));
else
printk(INFO_LEAD "Completed receipt of REQINIT message.\n",
p->host_no, CTL_OF_SCB(scb));
}
#endif
/* Time to end our message session */
p->msg_len = 0;
p->msg_type = MSG_TYPE_NONE;
aic_outb(p, aic_inb(p, SIMODE1) & ~ENREQINIT, SIMODE1);
aic_outb(p, CLRSCSIINT, CLRINT);
p->flags &= ~AHC_HANDLING_REQINITS;
unpause_sequencer(p, TRUE);
}
break;
}
default:
{
panic("aic7xxx: Unknown REQINIT message type.\n");
break;
}
} /* End of switch(p->msg_type) */
}
/*+F*************************************************************************
* Function:
* aic7xxx_handle_scsiint
*
* Description:
* Interrupt handler for SCSI interrupts (SCSIINT).
*-F*************************************************************************/
static void
aic7xxx_handle_scsiint(struct aic7xxx_host *p, unsigned char intstat)
{
unsigned char scb_index;
unsigned char status;
struct aic7xxx_scb *scb;
struct aic_dev_data *aic_dev;
scb_index = aic_inb(p, SCB_TAG);
status = aic_inb(p, SSTAT1);
if (scb_index < p->scb_data->numscbs)
{
scb = p->scb_data->scb_array[scb_index];
if ((scb->flags & SCB_ACTIVE) == 0)
{
scb = NULL;
}
}
else
{
scb = NULL;
}
if ((status & SCSIRSTI) != 0)
{
int channel;
if ( (p->chip & AHC_CHIPID_MASK) == AHC_AIC7770 )
channel = (aic_inb(p, SBLKCTL) & SELBUSB) >> 3;
else
channel = 0;
if (aic7xxx_verbose & VERBOSE_RESET)
printk(WARN_LEAD "Someone else reset the channel!!\n",
p->host_no, channel, -1, -1);
if (aic7xxx_panic_on_abort)
aic7xxx_panic_abort(p, NULL);
/*
* Go through and abort all commands for the channel, but do not
* reset the channel again.
*/
aic7xxx_reset_channel(p, channel, /* Initiate Reset */ FALSE);
aic7xxx_run_done_queue(p, TRUE);
scb = NULL;
}
else if ( ((status & BUSFREE) != 0) && ((status & SELTO) == 0) )
{
/*
* First look at what phase we were last in. If it's message-out,
* chances are pretty good that the bus free was in response to
* one of our abort requests.
*/
unsigned char lastphase = aic_inb(p, LASTPHASE);
unsigned char saved_tcl = aic_inb(p, SAVED_TCL);
unsigned char target = (saved_tcl >> 4) & 0x0F;
int channel;
int printerror = TRUE;
if ( (p->chip & AHC_CHIPID_MASK) == AHC_AIC7770 )
channel = (aic_inb(p, SBLKCTL) & SELBUSB) >> 3;
else
channel = 0;
aic_outb(p, aic_inb(p, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP),
SCSISEQ);
if (lastphase == P_MESGOUT)
{
unsigned char message;
message = aic_inb(p, SINDEX);
if ((message == MSG_ABORT) || (message == MSG_ABORT_TAG))
{
if (aic7xxx_verbose & VERBOSE_ABORT_PROCESS)
printk(INFO_LEAD "SCB %d abort delivered.\n", p->host_no,
CTL_OF_SCB(scb), scb->hscb->tag);
aic7xxx_reset_device(p, target, channel, ALL_LUNS,
(message == MSG_ABORT) ? SCB_LIST_NULL : scb->hscb->tag );
aic7xxx_run_done_queue(p, TRUE);
scb = NULL;
printerror = 0;
}
else if (message == MSG_BUS_DEV_RESET)
{
aic7xxx_handle_device_reset(p, target, channel);
scb = NULL;
printerror = 0;
}
}
if ( (scb != NULL) && (scb->flags & SCB_DTR_SCB) )
{
/*
* Hmmm...error during a negotiation command. Either we have a
* borken bus, or the device doesn't like our negotiation message.
* Since we check the INQUIRY data of a device before sending it
* negotiation messages, assume the bus is borken for whatever
* reason. Complete the command.
*/
printerror = 0;
aic7xxx_reset_device(p, target, channel, ALL_LUNS, scb->hscb->tag);
aic7xxx_run_done_queue(p, TRUE);
scb = NULL;
}
if (printerror != 0)
{
if (scb != NULL)
{
unsigned char tag;
if ((scb->hscb->control & TAG_ENB) != 0)
{
tag = scb->hscb->tag;
}
else
{
tag = SCB_LIST_NULL;
}
aic7xxx_reset_device(p, target, channel, ALL_LUNS, tag);
aic7xxx_run_done_queue(p, TRUE);
}
else
{
aic7xxx_reset_device(p, target, channel, ALL_LUNS, SCB_LIST_NULL);
aic7xxx_run_done_queue(p, TRUE);
}
printk(INFO_LEAD "Unexpected busfree, LASTPHASE = 0x%x, "
"SEQADDR = 0x%x\n", p->host_no, channel, target, -1, lastphase,
(aic_inb(p, SEQADDR1) << 8) | aic_inb(p, SEQADDR0));
scb = NULL;
}
aic_outb(p, MSG_NOOP, MSG_OUT);
aic_outb(p, aic_inb(p, SIMODE1) & ~(ENBUSFREE|ENREQINIT),
SIMODE1);
p->flags &= ~AHC_HANDLING_REQINITS;
aic_outb(p, CLRBUSFREE, CLRSINT1);
aic_outb(p, CLRSCSIINT, CLRINT);
restart_sequencer(p);
unpause_sequencer(p, TRUE);
}
else if ((status & SELTO) != 0)
{
unsigned char scbptr;
unsigned char nextscb;
Scsi_Cmnd *cmd;
scbptr = aic_inb(p, WAITING_SCBH);
if (scbptr > p->scb_data->maxhscbs)
{
/*
* I'm still trying to track down exactly how this happens, but until
* I find it, this code will make sure we aren't passing bogus values
* into the SCBPTR register, even if that register will just wrap
* things around, we still don't like having out of range variables.
*
* NOTE: Don't check the aic7xxx_verbose variable, I want this message
* to always be displayed.
*/
printk(INFO_LEAD "Invalid WAITING_SCBH value %d, improvising.\n",
p->host_no, -1, -1, -1, scbptr);
if (p->scb_data->maxhscbs > 4)
scbptr &= (p->scb_data->maxhscbs - 1);
else
scbptr &= 0x03;
}
aic_outb(p, scbptr, SCBPTR);
scb_index = aic_inb(p, SCB_TAG);
scb = NULL;
if (scb_index < p->scb_data->numscbs)
{
scb = p->scb_data->scb_array[scb_index];
if ((scb->flags & SCB_ACTIVE) == 0)
{
scb = NULL;
}
}
if (scb == NULL)
{
printk(WARN_LEAD "Referenced SCB %d not valid during SELTO.\n",
p->host_no, -1, -1, -1, scb_index);
printk(KERN_WARNING " SCSISEQ = 0x%x SEQADDR = 0x%x SSTAT0 = 0x%x "
"SSTAT1 = 0x%x\n", aic_inb(p, SCSISEQ),
aic_inb(p, SEQADDR0) | (aic_inb(p, SEQADDR1) << 8),
aic_inb(p, SSTAT0), aic_inb(p, SSTAT1));
if (aic7xxx_panic_on_abort)
aic7xxx_panic_abort(p, NULL);
}
else
{
cmd = scb->cmd;
cmd->result = (DID_TIME_OUT << 16);
/*
* Clear out this hardware SCB
*/
aic_outb(p, 0, SCB_CONTROL);
/*
* Clear out a few values in the card that are in an undetermined
* state.
*/
aic_outb(p, MSG_NOOP, MSG_OUT);
/*
* Shift the waiting for selection queue forward
*/
nextscb = aic_inb(p, SCB_NEXT);
aic_outb(p, nextscb, WAITING_SCBH);
/*
* Put this SCB back on the free list.
*/
aic7xxx_add_curscb_to_free_list(p);
#ifdef AIC7XXX_VERBOSE_DEBUGGING
if (aic7xxx_verbose > 0xffff)
printk(INFO_LEAD "Selection Timeout.\n", p->host_no, CTL_OF_SCB(scb));
#endif
if (scb->flags & SCB_QUEUED_ABORT)
{
/*
* We know that this particular SCB had to be the queued abort since
* the disconnected SCB would have gotten a reconnect instead.
* What we need to do then is to let the command timeout again so
* we get a reset since this abort just failed.
*/
cmd->result = 0;
scb = NULL;
}
}
/*
* Keep the sequencer from trying to restart any selections
*/
aic_outb(p, aic_inb(p, SCSISEQ) & ~ENSELO, SCSISEQ);
/*
* Make sure the data bits on the bus are released
* Don't do this on 7770 chipsets, it makes them give us
* a BRKADDRINT and kills the card.
*/
if( (p->chip & ~AHC_CHIPID_MASK) == AHC_PCI )
aic_outb(p, 0, SCSIBUSL);
/*
* Delay for the selection timeout delay period then stop the selection
*/
udelay(301);
aic_outb(p, CLRSELINGO, CLRSINT0);
/*
* Clear out all the interrupt status bits
*/
aic_outb(p, aic_inb(p, SIMODE1) & ~(ENREQINIT|ENBUSFREE), SIMODE1);
p->flags &= ~AHC_HANDLING_REQINITS;
aic_outb(p, CLRSELTIMEO | CLRBUSFREE, CLRSINT1);
aic_outb(p, CLRSCSIINT, CLRINT);
/*
* Restarting the sequencer will stop the selection and make sure devices
* are allowed to reselect in.
*/
restart_sequencer(p);
unpause_sequencer(p, TRUE);
}
else if (scb == NULL)
{
printk(WARN_LEAD "aic7xxx_isr - referenced scb not valid "
"during scsiint 0x%x scb(%d)\n"
" SIMODE0 0x%x, SIMODE1 0x%x, SSTAT0 0x%x, SEQADDR 0x%x\n",
p->host_no, -1, -1, -1, status, scb_index, aic_inb(p, SIMODE0),
aic_inb(p, SIMODE1), aic_inb(p, SSTAT0),
(aic_inb(p, SEQADDR1) << 8) | aic_inb(p, SEQADDR0));
/*
* Turn off the interrupt and set status to zero, so that it
* falls through the rest of the SCSIINT code.
*/
aic_outb(p, status, CLRSINT1);
aic_outb(p, CLRSCSIINT, CLRINT);
unpause_sequencer(p, /* unpause always */ TRUE);
scb = NULL;
}
else if (status & SCSIPERR)
{
/*
* Determine the bus phase and queue an appropriate message.
*/
char *phase;
Scsi_Cmnd *cmd;
unsigned char mesg_out = MSG_NOOP;
unsigned char lastphase = aic_inb(p, LASTPHASE);
unsigned char sstat2 = aic_inb(p, SSTAT2);
cmd = scb->cmd;
switch (lastphase)
{
case P_DATAOUT:
phase = "Data-Out";
break;
case P_DATAIN:
phase = "Data-In";
mesg_out = MSG_INITIATOR_DET_ERR;
break;
case P_COMMAND:
phase = "Command";
break;
case P_MESGOUT:
phase = "Message-Out";
break;
case P_STATUS:
phase = "Status";
mesg_out = MSG_INITIATOR_DET_ERR;
break;
case P_MESGIN:
phase = "Message-In";
mesg_out = MSG_PARITY_ERROR;
break;
default:
phase = "unknown";
break;
}
/*
* A parity error has occurred during a data
* transfer phase. Flag it and continue.
*/
if( (p->features & AHC_ULTRA3) &&
(aic_inb(p, SCSIRATE) & AHC_SYNCRATE_CRC) &&
(lastphase == P_DATAIN) )
{
printk(WARN_LEAD "CRC error during %s phase.\n",
p->host_no, CTL_OF_SCB(scb), phase);
if(sstat2 & CRCVALERR)
{
printk(WARN_LEAD " CRC error in intermediate CRC packet.\n",
p->host_no, CTL_OF_SCB(scb));
}
if(sstat2 & CRCENDERR)
{
printk(WARN_LEAD " CRC error in ending CRC packet.\n",
p->host_no, CTL_OF_SCB(scb));
}
if(sstat2 & CRCREQERR)
{
printk(WARN_LEAD " Target incorrectly requested a CRC packet.\n",
p->host_no, CTL_OF_SCB(scb));
}
if(sstat2 & DUAL_EDGE_ERROR)
{
printk(WARN_LEAD " Dual Edge transmission error.\n",
p->host_no, CTL_OF_SCB(scb));
}
}
else if( (lastphase == P_MESGOUT) &&
(scb->flags & SCB_MSGOUT_PPR) )
{
/*
* As per the draft specs, any device capable of supporting any of
* the option values other than 0 are not allowed to reject the
* PPR message. Instead, they must negotiate out what they do
* support instead of rejecting our offering or else they cause
* a parity error during msg_out phase to signal that they don't
* like our settings.
*/
aic_dev = AIC_DEV(scb->cmd);
aic_dev->needppr = aic_dev->needppr_copy = 0;
aic7xxx_set_width(p, scb->cmd->device->id, scb->cmd->device->channel, scb->cmd->device->lun,
MSG_EXT_WDTR_BUS_8_BIT,
(AHC_TRANS_ACTIVE|AHC_TRANS_CUR|AHC_TRANS_QUITE),
aic_dev);
aic7xxx_set_syncrate(p, NULL, scb->cmd->device->id, scb->cmd->device->channel, 0, 0,
0, AHC_TRANS_ACTIVE|AHC_TRANS_CUR|AHC_TRANS_QUITE,
aic_dev);
aic_dev->goal.options = 0;
scb->flags &= ~SCB_MSGOUT_BITS;
if(aic7xxx_verbose & VERBOSE_NEGOTIATION2)
{
printk(INFO_LEAD "parity error during PPR message, reverting "
"to WDTR/SDTR\n", p->host_no, CTL_OF_SCB(scb));
}
if ( aic_dev->goal.width )
{
aic_dev->needwdtr = aic_dev->needwdtr_copy = 1;
}
if ( aic_dev->goal.offset )
{
if( aic_dev->goal.period <= 9 )
{
aic_dev->goal.period = 10;
}
aic_dev->needsdtr = aic_dev->needsdtr_copy = 1;
}
scb = NULL;
}
/*
* We've set the hardware to assert ATN if we get a parity
* error on "in" phases, so all we need to do is stuff the
* message buffer with the appropriate message. "In" phases
* have set mesg_out to something other than MSG_NOP.
*/
if (mesg_out != MSG_NOOP)
{
aic_outb(p, mesg_out, MSG_OUT);
aic_outb(p, aic_inb(p, SCSISIGI) | ATNO, SCSISIGO);
scb = NULL;
}
aic_outb(p, CLRSCSIPERR, CLRSINT1);
aic_outb(p, CLRSCSIINT, CLRINT);
unpause_sequencer(p, /* unpause_always */ TRUE);
}
else if ( (status & REQINIT) &&
(p->flags & AHC_HANDLING_REQINITS) )
{
#ifdef AIC7XXX_VERBOSE_DEBUGGING
if (aic7xxx_verbose > 0xffff)
printk(INFO_LEAD "Handling REQINIT, SSTAT1=0x%x.\n", p->host_no,
CTL_OF_SCB(scb), aic_inb(p, SSTAT1));
#endif
aic7xxx_handle_reqinit(p, scb);
return;
}
else
{
/*
* We don't know what's going on. Turn off the
* interrupt source and try to continue.
*/
if (aic7xxx_verbose & VERBOSE_SCSIINT)
printk(INFO_LEAD "Unknown SCSIINT status, SSTAT1(0x%x).\n",
p->host_no, -1, -1, -1, status);
aic_outb(p, status, CLRSINT1);
aic_outb(p, CLRSCSIINT, CLRINT);
unpause_sequencer(p, /* unpause always */ TRUE);
scb = NULL;
}
if (scb != NULL)
{
aic7xxx_done(p, scb);
}
}
#ifdef AIC7XXX_VERBOSE_DEBUGGING
static void
aic7xxx_check_scbs(struct aic7xxx_host *p, char *buffer)
{
unsigned char saved_scbptr, free_scbh, dis_scbh, wait_scbh, temp;
int i, bogus, lost;
static unsigned char scb_status[AIC7XXX_MAXSCB];
#define SCB_NO_LIST 0
#define SCB_FREE_LIST 1
#define SCB_WAITING_LIST 2
#define SCB_DISCONNECTED_LIST 4
#define SCB_CURRENTLY_ACTIVE 8
/*
* Note, these checks will fail on a regular basis once the machine moves
* beyond the bus scan phase. The problem is race conditions concerning
* the scbs and where they are linked in. When you have 30 or so commands
* outstanding on the bus, and run this twice with every interrupt, the
* chances get pretty good that you'll catch the sequencer with an SCB
* only partially linked in. Therefore, once we pass the scan phase
* of the bus, we really should disable this function.
*/
bogus = FALSE;
memset(&scb_status[0], 0, sizeof(scb_status));
pause_sequencer(p);
saved_scbptr = aic_inb(p, SCBPTR);
if (saved_scbptr >= p->scb_data->maxhscbs)
{
printk("Bogus SCBPTR %d\n", saved_scbptr);
bogus = TRUE;
}
scb_status[saved_scbptr] = SCB_CURRENTLY_ACTIVE;
free_scbh = aic_inb(p, FREE_SCBH);
if ( (free_scbh != SCB_LIST_NULL) &&
(free_scbh >= p->scb_data->maxhscbs) )
{
printk("Bogus FREE_SCBH %d\n", free_scbh);
bogus = TRUE;
}
else
{
temp = free_scbh;
while( (temp != SCB_LIST_NULL) && (temp < p->scb_data->maxhscbs) )
{
if(scb_status[temp] & 0x07)
{
printk("HSCB %d on multiple lists, status 0x%02x", temp,
scb_status[temp] | SCB_FREE_LIST);
bogus = TRUE;
}
scb_status[temp] |= SCB_FREE_LIST;
aic_outb(p, temp, SCBPTR);
temp = aic_inb(p, SCB_NEXT);
}
}
dis_scbh = aic_inb(p, DISCONNECTED_SCBH);
if ( (dis_scbh != SCB_LIST_NULL) &&
(dis_scbh >= p->scb_data->maxhscbs) )
{
printk("Bogus DISCONNECTED_SCBH %d\n", dis_scbh);
bogus = TRUE;
}
else
{
temp = dis_scbh;
while( (temp != SCB_LIST_NULL) && (temp < p->scb_data->maxhscbs) )
{
if(scb_status[temp] & 0x07)
{
printk("HSCB %d on multiple lists, status 0x%02x", temp,
scb_status[temp] | SCB_DISCONNECTED_LIST);
bogus = TRUE;
}
scb_status[temp] |= SCB_DISCONNECTED_LIST;
aic_outb(p, temp, SCBPTR);
temp = aic_inb(p, SCB_NEXT);
}
}
wait_scbh = aic_inb(p, WAITING_SCBH);
if ( (wait_scbh != SCB_LIST_NULL) &&
(wait_scbh >= p->scb_data->maxhscbs) )
{
printk("Bogus WAITING_SCBH %d\n", wait_scbh);
bogus = TRUE;
}
else
{
temp = wait_scbh;
while( (temp != SCB_LIST_NULL) && (temp < p->scb_data->maxhscbs) )
{
if(scb_status[temp] & 0x07)
{
printk("HSCB %d on multiple lists, status 0x%02x", temp,
scb_status[temp] | SCB_WAITING_LIST);
bogus = TRUE;
}
scb_status[temp] |= SCB_WAITING_LIST;
aic_outb(p, temp, SCBPTR);
temp = aic_inb(p, SCB_NEXT);
}
}
lost=0;
for(i=0; i < p->scb_data->maxhscbs; i++)
{
aic_outb(p, i, SCBPTR);
temp = aic_inb(p, SCB_NEXT);
if ( ((temp != SCB_LIST_NULL) &&
(temp >= p->scb_data->maxhscbs)) )
{
printk("HSCB %d bad, SCB_NEXT invalid(%d).\n", i, temp);
bogus = TRUE;
}
if ( temp == i )
{
printk("HSCB %d bad, SCB_NEXT points to self.\n", i);
bogus = TRUE;
}
if (scb_status[i] == 0)
lost++;
if (lost > 1)
{
printk("Too many lost scbs.\n");
bogus=TRUE;
}
}
aic_outb(p, saved_scbptr, SCBPTR);
unpause_sequencer(p, FALSE);
if (bogus)
{
printk("Bogus parameters found in card SCB array structures.\n");
printk("%s\n", buffer);
aic7xxx_panic_abort(p, NULL);
}
return;
}
#endif
/*+F*************************************************************************
* Function:
* aic7xxx_handle_command_completion_intr
*
* Description:
* SCSI command completion interrupt handler.
*-F*************************************************************************/
static void
aic7xxx_handle_command_completion_intr(struct aic7xxx_host *p)
{
struct aic7xxx_scb *scb = NULL;
struct aic_dev_data *aic_dev;
Scsi_Cmnd *cmd;
unsigned char scb_index, tindex;
#ifdef AIC7XXX_VERBOSE_DEBUGGING
if( (p->isr_count < 16) && (aic7xxx_verbose > 0xffff) )
printk(INFO_LEAD "Command Complete Int.\n", p->host_no, -1, -1, -1);
#endif
/*
* Read the INTSTAT location after clearing the CMDINT bit. This forces
* any posted PCI writes to flush to memory. Gerard Roudier suggested
* this fix to the possible race of clearing the CMDINT bit but not
* having all command bytes flushed onto the qoutfifo.
*/
aic_outb(p, CLRCMDINT, CLRINT);
aic_inb(p, INTSTAT);
/*
* The sequencer will continue running when it
* issues this interrupt. There may be >1 commands
* finished, so loop until we've processed them all.
*/
while (p->qoutfifo[p->qoutfifonext] != SCB_LIST_NULL)
{
scb_index = p->qoutfifo[p->qoutfifonext];
p->qoutfifo[p->qoutfifonext++] = SCB_LIST_NULL;
if ( scb_index >= p->scb_data->numscbs )
{
printk(WARN_LEAD "CMDCMPLT with invalid SCB index %d\n", p->host_no,
-1, -1, -1, scb_index);
continue;
}
scb = p->scb_data->scb_array[scb_index];
if (!(scb->flags & SCB_ACTIVE) || (scb->cmd == NULL))
{
printk(WARN_LEAD "CMDCMPLT without command for SCB %d, SCB flags "
"0x%x, cmd 0x%lx\n", p->host_no, -1, -1, -1, scb_index, scb->flags,
(unsigned long) scb->cmd);
continue;
}
tindex = TARGET_INDEX(scb->cmd);
aic_dev = AIC_DEV(scb->cmd);
if (scb->flags & SCB_QUEUED_ABORT)
{
pause_sequencer(p);
if ( ((aic_inb(p, LASTPHASE) & PHASE_MASK) != P_BUSFREE) &&
(aic_inb(p, SCB_TAG) == scb->hscb->tag) )
{
unpause_sequencer(p, FALSE);
continue;
}
aic7xxx_reset_device(p, scb->cmd->device->id, scb->cmd->device->channel,
scb->cmd->device->lun, scb->hscb->tag);
scb->flags &= ~(SCB_QUEUED_FOR_DONE | SCB_RESET | SCB_ABORT |
SCB_QUEUED_ABORT);
unpause_sequencer(p, FALSE);
}
else if (scb->flags & SCB_ABORT)
{
/*
* We started to abort this, but it completed on us, let it
* through as successful
*/
scb->flags &= ~(SCB_ABORT|SCB_RESET);
}
else if (scb->flags & SCB_SENSE)
{
char *buffer = &scb->cmd->sense_buffer[0];
if (buffer[12] == 0x47 || buffer[12] == 0x54)
{
/*
* Signal that we need to re-negotiate things.
*/
aic_dev->needppr = aic_dev->needppr_copy;
aic_dev->needsdtr = aic_dev->needsdtr_copy;
aic_dev->needwdtr = aic_dev->needwdtr_copy;
}
}
cmd = scb->cmd;
if (scb->hscb->residual_SG_segment_count != 0)
{
aic7xxx_calculate_residual(p, scb);
}
cmd->result |= (aic7xxx_error(cmd) << 16);
aic7xxx_done(p, scb);
}
}
/*+F*************************************************************************
* Function:
* aic7xxx_isr
*
* Description:
* SCSI controller interrupt handler.
*-F*************************************************************************/
static void
aic7xxx_isr(int irq, void *dev_id, struct pt_regs *regs)
{
struct aic7xxx_host *p;
unsigned char intstat;
p = (struct aic7xxx_host *)dev_id;
/*
* Just a few sanity checks. Make sure that we have an int pending.
* Also, if PCI, then we are going to check for a PCI bus error status
* should we get too many spurious interrupts.
*/
if (!((intstat = aic_inb(p, INTSTAT)) & INT_PEND))
{
#ifdef CONFIG_PCI
if ( (p->chip & AHC_PCI) && (p->spurious_int > 500) &&
!(p->flags & AHC_HANDLING_REQINITS) )
{
if ( aic_inb(p, ERROR) & PCIERRSTAT )
{
aic7xxx_pci_intr(p);
}
p->spurious_int = 0;
}
else if ( !(p->flags & AHC_HANDLING_REQINITS) )
{
p->spurious_int++;
}
#endif
return;
}
p->spurious_int = 0;
/*
* Keep track of interrupts for /proc/scsi
*/
p->isr_count++;
#ifdef AIC7XXX_VERBOSE_DEBUGGING
if ( (p->isr_count < 16) && (aic7xxx_verbose > 0xffff) &&
(aic7xxx_panic_on_abort) && (p->flags & AHC_PAGESCBS) )
aic7xxx_check_scbs(p, "Bogus settings at start of interrupt.");
#endif
/*
* Handle all the interrupt sources - especially for SCSI
* interrupts, we won't get a second chance at them.
*/
if (intstat & CMDCMPLT)
{
aic7xxx_handle_command_completion_intr(p);
}
if (intstat & BRKADRINT)
{
int i;
unsigned char errno = aic_inb(p, ERROR);
printk(KERN_ERR "(scsi%d) BRKADRINT error(0x%x):\n", p->host_no, errno);
for (i = 0; i < ARRAY_SIZE(hard_error); i++)
{
if (errno & hard_error[i].errno)
{
printk(KERN_ERR " %s\n", hard_error[i].errmesg);
}
}
printk(KERN_ERR "(scsi%d) SEQADDR=0x%x\n", p->host_no,
(((aic_inb(p, SEQADDR1) << 8) & 0x100) | aic_inb(p, SEQADDR0)));
if (aic7xxx_panic_on_abort)
aic7xxx_panic_abort(p, NULL);
#ifdef CONFIG_PCI
if (errno & PCIERRSTAT)
aic7xxx_pci_intr(p);
#endif
if (errno & (SQPARERR | ILLOPCODE | ILLSADDR))
{
panic("aic7xxx: unrecoverable BRKADRINT.\n");
}
if (errno & ILLHADDR)
{
printk(KERN_ERR "(scsi%d) BUG! Driver accessed chip without first "
"pausing controller!\n", p->host_no);
}
#ifdef AIC7XXX_VERBOSE_DEBUGGING
if (errno & DPARERR)
{
if (aic_inb(p, DMAPARAMS) & DIRECTION)
printk("(scsi%d) while DMAing SCB from host to card.\n", p->host_no);
else
printk("(scsi%d) while DMAing SCB from card to host.\n", p->host_no);
}
#endif
aic_outb(p, CLRPARERR | CLRBRKADRINT, CLRINT);
unpause_sequencer(p, FALSE);
}
if (intstat & SEQINT)
{
/*
* Read the CCSCBCTL register to work around a bug in the Ultra2 cards
*/
if(p->features & AHC_ULTRA2)
{
aic_inb(p, CCSCBCTL);
}
aic7xxx_handle_seqint(p, intstat);
}
if (intstat & SCSIINT)
{
aic7xxx_handle_scsiint(p, intstat);
}
#ifdef AIC7XXX_VERBOSE_DEBUGGING
if ( (p->isr_count < 16) && (aic7xxx_verbose > 0xffff) &&
(aic7xxx_panic_on_abort) && (p->flags & AHC_PAGESCBS) )
aic7xxx_check_scbs(p, "Bogus settings at end of interrupt.");
#endif
}
/*+F*************************************************************************
* Function:
* do_aic7xxx_isr
*
* Description:
* This is a gross hack to solve a problem in linux kernels 2.1.85 and
* above. Please, children, do not try this at home, and if you ever see
* anything like it, please inform the Gross Hack Police immediately
*-F*************************************************************************/
static irqreturn_t
do_aic7xxx_isr(int irq, void *dev_id, struct pt_regs *regs)
{
unsigned long cpu_flags;
struct aic7xxx_host *p;
p = (struct aic7xxx_host *)dev_id;
if(!p)
return IRQ_NONE;
spin_lock_irqsave(p->host->host_lock, cpu_flags);
p->flags |= AHC_IN_ISR;
do
{
aic7xxx_isr(irq, dev_id, regs);
} while ( (aic_inb(p, INTSTAT) & INT_PEND) );
aic7xxx_done_cmds_complete(p);
aic7xxx_run_waiting_queues(p);
p->flags &= ~AHC_IN_ISR;
spin_unlock_irqrestore(p->host->host_lock, cpu_flags);
return IRQ_HANDLED;
}
/*+F*************************************************************************
* Function:
* aic7xxx_init_transinfo
*
* Description:
* Set up the initial aic_dev values from the BIOS settings and from
* INQUIRY results
*-F*************************************************************************/
static void
aic7xxx_init_transinfo(struct aic7xxx_host *p, struct aic_dev_data *aic_dev)
{
struct scsi_device *sdpnt = aic_dev->SDptr;
unsigned char tindex;
tindex = sdpnt->id | (sdpnt->channel << 3);
if (!(aic_dev->flags & DEVICE_DTR_SCANNED))
{
aic_dev->flags |= DEVICE_DTR_SCANNED;
if ( sdpnt->wdtr && (p->features & AHC_WIDE) )
{
aic_dev->needwdtr = aic_dev->needwdtr_copy = 1;
aic_dev->goal.width = p->user[tindex].width;
}
else
{
aic_dev->needwdtr = aic_dev->needwdtr_copy = 0;
pause_sequencer(p);
aic7xxx_set_width(p, sdpnt->id, sdpnt->channel, sdpnt->lun,
MSG_EXT_WDTR_BUS_8_BIT, (AHC_TRANS_ACTIVE |
AHC_TRANS_GOAL |
AHC_TRANS_CUR), aic_dev );
unpause_sequencer(p, FALSE);
}
if ( sdpnt->sdtr && p->user[tindex].offset )
{
aic_dev->goal.period = p->user[tindex].period;
aic_dev->goal.options = p->user[tindex].options;
if (p->features & AHC_ULTRA2)
aic_dev->goal.offset = MAX_OFFSET_ULTRA2;
else if (aic_dev->goal.width == MSG_EXT_WDTR_BUS_16_BIT)
aic_dev->goal.offset = MAX_OFFSET_16BIT;
else
aic_dev->goal.offset = MAX_OFFSET_8BIT;
if ( sdpnt->ppr && p->user[tindex].period <= 9 &&
p->user[tindex].options )
{
aic_dev->needppr = aic_dev->needppr_copy = 1;
aic_dev->needsdtr = aic_dev->needsdtr_copy = 0;
aic_dev->needwdtr = aic_dev->needwdtr_copy = 0;
aic_dev->flags |= DEVICE_SCSI_3;
}
else
{
aic_dev->needsdtr = aic_dev->needsdtr_copy = 1;
aic_dev->goal.period = max_t(unsigned char, 10, aic_dev->goal.period);
aic_dev->goal.options = 0;
}
}
else
{
aic_dev->needsdtr = aic_dev->needsdtr_copy = 0;
aic_dev->goal.period = 255;
aic_dev->goal.offset = 0;
aic_dev->goal.options = 0;
}
aic_dev->flags |= DEVICE_PRINT_DTR;
}
}
/*+F*************************************************************************
* Function:
* aic7xxx_slave_alloc
*
* Description:
* Set up the initial aic_dev struct pointers
*-F*************************************************************************/
static int
aic7xxx_slave_alloc(struct scsi_device *SDptr)
{
struct aic7xxx_host *p = (struct aic7xxx_host *)SDptr->host->hostdata;
struct aic_dev_data *aic_dev;
aic_dev = kmalloc(sizeof(struct aic_dev_data), GFP_ATOMIC | GFP_KERNEL);
if(!aic_dev)
return 1;
/*
* Check to see if channel was scanned.
*/
if (!(p->flags & AHC_A_SCANNED) && (SDptr->channel == 0))
{
if (aic7xxx_verbose & VERBOSE_PROBE2)
printk(INFO_LEAD "Scanning channel for devices.\n",
p->host_no, 0, -1, -1);
p->flags |= AHC_A_SCANNED;
}
else
{
if (!(p->flags & AHC_B_SCANNED) && (SDptr->channel == 1))
{
if (aic7xxx_verbose & VERBOSE_PROBE2)
printk(INFO_LEAD "Scanning channel for devices.\n",
p->host_no, 1, -1, -1);
p->flags |= AHC_B_SCANNED;
}
}
memset(aic_dev, 0, sizeof(struct aic_dev_data));
SDptr->hostdata = aic_dev;
aic_dev->SDptr = SDptr;
aic_dev->max_q_depth = 1;
aic_dev->temp_q_depth = 1;
scbq_init(&aic_dev->delayed_scbs);
INIT_LIST_HEAD(&aic_dev->list);
list_add_tail(&aic_dev->list, &p->aic_devs);
return 0;
}
/*+F*************************************************************************
* Function:
* aic7xxx_device_queue_depth
*
* Description:
* Determines the queue depth for a given device. There are two ways
* a queue depth can be obtained for a tagged queueing device. One
* way is the default queue depth which is determined by whether
* aic7xxx_default_queue_depth. The other is by the aic7xxx_tag_info
* array.
*
* If tagged queueing isn't supported on the device, then we set the
* depth to p->host->hostt->cmd_per_lun for internal driver queueing.
* as the default queue depth. Otherwise, we use either 4 or 8 as the
* default queue depth (dependent on the number of hardware SCBs).
* The other way we determine queue depth is through the use of the
* aic7xxx_tag_info array which is enabled by defining
* AIC7XXX_TAGGED_QUEUEING_BY_DEVICE. This array can be initialized
* with queue depths for individual devices. It also allows tagged
* queueing to be [en|dis]abled for a specific adapter.
*-F*************************************************************************/
static void
aic7xxx_device_queue_depth(struct aic7xxx_host *p, struct scsi_device *device)
{
int tag_enabled = FALSE;
struct aic_dev_data *aic_dev = device->hostdata;
unsigned char tindex;
tindex = device->id | (device->channel << 3);
if (device->simple_tags)
return; // We've already enabled this device
if (device->tagged_supported)
{
tag_enabled = TRUE;
if (!(p->discenable & (1 << tindex)))
{
if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
printk(INFO_LEAD "Disconnection disabled, unable to "
"enable tagged queueing.\n",
p->host_no, device->channel, device->id, device->lun);
tag_enabled = FALSE;
}
else
{
if (p->instance >= ARRAY_SIZE(aic7xxx_tag_info))
{
static int print_warning = TRUE;
if(print_warning)
{
printk(KERN_INFO "aic7xxx: WARNING, insufficient tag_info instances for"
" installed controllers.\n");
printk(KERN_INFO "aic7xxx: Please update the aic7xxx_tag_info array in"
" the aic7xxx.c source file.\n");
print_warning = FALSE;
}
aic_dev->max_q_depth = aic_dev->temp_q_depth =
aic7xxx_default_queue_depth;
}
else
{
if (aic7xxx_tag_info[p->instance].tag_commands[tindex] == 255)
{
tag_enabled = FALSE;
}
else if (aic7xxx_tag_info[p->instance].tag_commands[tindex] == 0)
{
aic_dev->max_q_depth = aic_dev->temp_q_depth =
aic7xxx_default_queue_depth;
}
else
{
aic_dev->max_q_depth = aic_dev->temp_q_depth =
aic7xxx_tag_info[p->instance].tag_commands[tindex];
}
}
}
}
if (tag_enabled)
{
if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
{
printk(INFO_LEAD "Tagged queuing enabled, queue depth %d.\n",
p->host_no, device->channel, device->id,
device->lun, aic_dev->max_q_depth);
}
scsi_adjust_queue_depth(device, MSG_ORDERED_TAG, aic_dev->max_q_depth);
}
else
{
if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
{
printk(INFO_LEAD "Tagged queuing disabled, queue depth %d.\n",
p->host_no, device->channel, device->id,
device->lun, device->host->cmd_per_lun);
}
scsi_adjust_queue_depth(device, 0, device->host->cmd_per_lun);
}
return;
}
/*+F*************************************************************************
* Function:
* aic7xxx_slave_destroy
*
* Description:
* prepare for this device to go away
*-F*************************************************************************/
static void
aic7xxx_slave_destroy(struct scsi_device *SDptr)
{
struct aic_dev_data *aic_dev = SDptr->hostdata;
list_del(&aic_dev->list);
SDptr->hostdata = NULL;
kfree(aic_dev);
return;
}
/*+F*************************************************************************
* Function:
* aic7xxx_slave_configure
*
* Description:
* Configure the device we are attaching to the controller. This is
* where we get to do things like scan the INQUIRY data, set queue
* depths, allocate command structs, etc.
*-F*************************************************************************/
static int
aic7xxx_slave_configure(struct scsi_device *SDptr)
{
struct aic7xxx_host *p = (struct aic7xxx_host *) SDptr->host->hostdata;
struct aic_dev_data *aic_dev;
int scbnum;
aic_dev = (struct aic_dev_data *)SDptr->hostdata;
aic7xxx_init_transinfo(p, aic_dev);
aic7xxx_device_queue_depth(p, SDptr);
if(list_empty(&aic_dev->list))
list_add_tail(&aic_dev->list, &p->aic_devs);
scbnum = 0;
list_for_each_entry(aic_dev, &p->aic_devs, list) {
scbnum += aic_dev->max_q_depth;
}
while (scbnum > p->scb_data->numscbs)
{
/*
* Pre-allocate the needed SCBs to get around the possibility of having
* to allocate some when memory is more or less exhausted and we need
* the SCB in order to perform a swap operation (possible deadlock)
*/
if ( aic7xxx_allocate_scb(p) == 0 )
break;
}
return(0);
}
/*+F*************************************************************************
* Function:
* aic7xxx_probe
*
* Description:
* Probing for EISA boards: it looks like the first two bytes
* are a manufacturer code - three characters, five bits each:
*
* BYTE 0 BYTE 1 BYTE 2 BYTE 3
* ?1111122 22233333 PPPPPPPP RRRRRRRR
*
* The characters are baselined off ASCII '@', so add that value
* to each to get the real ASCII code for it. The next two bytes
* appear to be a product and revision number, probably vendor-
* specific. This is what is being searched for at each port,
* and what should probably correspond to the ID= field in the
* ECU's .cfg file for the card - if your card is not detected,
* make sure your signature is listed in the array.
*
* The fourth byte's lowest bit seems to be an enabled/disabled
* flag (rest of the bits are reserved?).
*
* NOTE: This function is only needed on Intel and Alpha platforms,
* the other platforms we support don't have EISA/VLB busses. So,
* we #ifdef this entire function to avoid compiler warnings about
* an unused function.
*-F*************************************************************************/
#if defined(__i386__) || defined(__alpha__)
static int
aic7xxx_probe(int slot, int base, ahc_flag_type *flags)
{
int i;
unsigned char buf[4];
static struct {
int n;
unsigned char signature[sizeof(buf)];
ahc_chip type;
int bios_disabled;
} AIC7xxx[] = {
{ 4, { 0x04, 0x90, 0x77, 0x70 },
AHC_AIC7770|AHC_EISA, FALSE }, /* mb 7770 */
{ 4, { 0x04, 0x90, 0x77, 0x71 },
AHC_AIC7770|AHC_EISA, FALSE }, /* host adapter 274x */
{ 4, { 0x04, 0x90, 0x77, 0x56 },
AHC_AIC7770|AHC_VL, FALSE }, /* 284x BIOS enabled */
{ 4, { 0x04, 0x90, 0x77, 0x57 },
AHC_AIC7770|AHC_VL, TRUE } /* 284x BIOS disabled */
};
/*
* The VL-bus cards need to be primed by
* writing before a signature check.
*/
for (i = 0; i < sizeof(buf); i++)
{
outb(0x80 + i, base);
buf[i] = inb(base + i);
}
for (i = 0; i < ARRAY_SIZE(AIC7xxx); i++)
{
/*
* Signature match on enabled card?
*/
if (!memcmp(buf, AIC7xxx[i].signature, AIC7xxx[i].n))
{
if (inb(base + 4) & 1)
{
if (AIC7xxx[i].bios_disabled)
{
*flags |= AHC_USEDEFAULTS;
}
else
{
*flags |= AHC_BIOS_ENABLED;
}
return (i);
}
printk("aic7xxx: <Adaptec 7770 SCSI Host Adapter> "
"disabled at slot %d, ignored.\n", slot);
}
}
return (-1);
}
#endif /* (__i386__) || (__alpha__) */
/*+F*************************************************************************
* Function:
* read_2840_seeprom
*
* Description:
* Reads the 2840 serial EEPROM and returns 1 if successful and 0 if
* not successful.
*
* See read_seeprom (for the 2940) for the instruction set of the 93C46
* chip.
*
* The 2840 interface to the 93C46 serial EEPROM is through the
* STATUS_2840 and SEECTL_2840 registers. The CS_2840, CK_2840, and
* DO_2840 bits of the SEECTL_2840 register are connected to the chip
* select, clock, and data out lines respectively of the serial EEPROM.
* The DI_2840 bit of the STATUS_2840 is connected to the data in line
* of the serial EEPROM. The EEPROM_TF bit of STATUS_2840 register is
* useful in that it gives us an 800 nsec timer. After a read from the
* SEECTL_2840 register the timing flag is cleared and goes high 800 nsec
* later.
*-F*************************************************************************/
static int
read_284x_seeprom(struct aic7xxx_host *p, struct seeprom_config *sc)
{
int i = 0, k = 0;
unsigned char temp;
unsigned short checksum = 0;
unsigned short *seeprom = (unsigned short *) sc;
struct seeprom_cmd {
unsigned char len;
unsigned char bits[3];
};
struct seeprom_cmd seeprom_read = {3, {1, 1, 0}};
#define CLOCK_PULSE(p) \
while ((aic_inb(p, STATUS_2840) & EEPROM_TF) == 0) \
{ \
; /* Do nothing */ \
} \
(void) aic_inb(p, SEECTL_2840);
/*
* Read the first 32 registers of the seeprom. For the 2840,
* the 93C46 SEEPROM is a 1024-bit device with 64 16-bit registers
* but only the first 32 are used by Adaptec BIOS. The loop
* will range from 0 to 31.
*/
for (k = 0; k < (sizeof(*sc) / 2); k++)
{
/*
* Send chip select for one clock cycle.
*/
aic_outb(p, CK_2840 | CS_2840, SEECTL_2840);
CLOCK_PULSE(p);
/*
* Now we're ready to send the read command followed by the
* address of the 16-bit register we want to read.
*/
for (i = 0; i < seeprom_read.len; i++)
{
temp = CS_2840 | seeprom_read.bits[i];
aic_outb(p, temp, SEECTL_2840);
CLOCK_PULSE(p);
temp = temp ^ CK_2840;
aic_outb(p, temp, SEECTL_2840);
CLOCK_PULSE(p);
}
/*
* Send the 6 bit address (MSB first, LSB last).
*/
for (i = 5; i >= 0; i--)
{
temp = k;
temp = (temp >> i) & 1; /* Mask out all but lower bit. */
temp = CS_2840 | temp;
aic_outb(p, temp, SEECTL_2840);
CLOCK_PULSE(p);
temp = temp ^ CK_2840;
aic_outb(p, temp, SEECTL_2840);
CLOCK_PULSE(p);
}
/*
* Now read the 16 bit register. An initial 0 precedes the
* register contents which begins with bit 15 (MSB) and ends
* with bit 0 (LSB). The initial 0 will be shifted off the
* top of our word as we let the loop run from 0 to 16.
*/
for (i = 0; i <= 16; i++)
{
temp = CS_2840;
aic_outb(p, temp, SEECTL_2840);
CLOCK_PULSE(p);
temp = temp ^ CK_2840;
seeprom[k] = (seeprom[k] << 1) | (aic_inb(p, STATUS_2840) & DI_2840);
aic_outb(p, temp, SEECTL_2840);
CLOCK_PULSE(p);
}
/*
* The serial EEPROM has a checksum in the last word. Keep a
* running checksum for all words read except for the last
* word. We'll verify the checksum after all words have been
* read.
*/
if (k < (sizeof(*sc) / 2) - 1)
{
checksum = checksum + seeprom[k];
}
/*
* Reset the chip select for the next command cycle.
*/
aic_outb(p, 0, SEECTL_2840);
CLOCK_PULSE(p);
aic_outb(p, CK_2840, SEECTL_2840);
CLOCK_PULSE(p);
aic_outb(p, 0, SEECTL_2840);
CLOCK_PULSE(p);
}
#if 0
printk("Computed checksum 0x%x, checksum read 0x%x\n", checksum, sc->checksum);
printk("Serial EEPROM:");
for (k = 0; k < (sizeof(*sc) / 2); k++)
{
if (((k % 8) == 0) && (k != 0))
{
printk("\n ");
}
printk(" 0x%x", seeprom[k]);
}
printk("\n");
#endif
if (checksum != sc->checksum)
{
printk("aic7xxx: SEEPROM checksum error, ignoring SEEPROM settings.\n");
return (0);
}
return (1);
#undef CLOCK_PULSE
}
#define CLOCK_PULSE(p) \
do { \
int limit = 0; \
do { \
mb(); \
pause_sequencer(p); /* This is just to generate some PCI */ \
/* traffic so the PCI read is flushed */ \
/* it shouldn't be needed, but some */ \
/* chipsets do indeed appear to need */ \
/* something to force PCI reads to get */ \
/* flushed */ \
udelay(1); /* Do nothing */ \
} while (((aic_inb(p, SEECTL) & SEERDY) == 0) && (++limit < 1000)); \
} while(0)
/*+F*************************************************************************
* Function:
* acquire_seeprom
*
* Description:
* Acquires access to the memory port on PCI controllers.
*-F*************************************************************************/
static int
acquire_seeprom(struct aic7xxx_host *p)
{
/*
* Request access of the memory port. When access is
* granted, SEERDY will go high. We use a 1 second
* timeout which should be near 1 second more than
* is needed. Reason: after the 7870 chip reset, there
* should be no contention.
*/
aic_outb(p, SEEMS, SEECTL);
CLOCK_PULSE(p);
if ((aic_inb(p, SEECTL) & SEERDY) == 0)
{
aic_outb(p, 0, SEECTL);
return (0);
}
return (1);
}
/*+F*************************************************************************
* Function:
* release_seeprom
*
* Description:
* Releases access to the memory port on PCI controllers.
*-F*************************************************************************/
static void
release_seeprom(struct aic7xxx_host *p)
{
/*
* Make sure the SEEPROM is ready before we release it.
*/
CLOCK_PULSE(p);
aic_outb(p, 0, SEECTL);
}
/*+F*************************************************************************
* Function:
* read_seeprom
*
* Description:
* Reads the serial EEPROM and returns 1 if successful and 0 if
* not successful.
*
* The instruction set of the 93C46/56/66 chips is as follows:
*
* Start OP
* Function Bit Code Address Data Description
* -------------------------------------------------------------------
* READ 1 10 A5 - A0 Reads data stored in memory,
* starting at specified address
* EWEN 1 00 11XXXX Write enable must precede
* all programming modes
* ERASE 1 11 A5 - A0 Erase register A5A4A3A2A1A0
* WRITE 1 01 A5 - A0 D15 - D0 Writes register
* ERAL 1 00 10XXXX Erase all registers
* WRAL 1 00 01XXXX D15 - D0 Writes to all registers
* EWDS 1 00 00XXXX Disables all programming
* instructions
* *Note: A value of X for address is a don't care condition.
* *Note: The 93C56 and 93C66 have 8 address bits.
*
*
* The 93C46 has a four wire interface: clock, chip select, data in, and
* data out. In order to perform one of the above functions, you need
* to enable the chip select for a clock period (typically a minimum of
* 1 usec, with the clock high and low a minimum of 750 and 250 nsec
* respectively. While the chip select remains high, you can clock in
* the instructions (above) starting with the start bit, followed by the
* OP code, Address, and Data (if needed). For the READ instruction, the
* requested 16-bit register contents is read from the data out line but
* is preceded by an initial zero (leading 0, followed by 16-bits, MSB
* first). The clock cycling from low to high initiates the next data
* bit to be sent from the chip.
*
* The 78xx interface to the 93C46 serial EEPROM is through the SEECTL
* register. After successful arbitration for the memory port, the
* SEECS bit of the SEECTL register is connected to the chip select.
* The SEECK, SEEDO, and SEEDI are connected to the clock, data out,
* and data in lines respectively. The SEERDY bit of SEECTL is useful
* in that it gives us an 800 nsec timer. After a write to the SEECTL
* register, the SEERDY goes high 800 nsec later. The one exception
* to this is when we first request access to the memory port. The
* SEERDY goes high to signify that access has been granted and, for
* this case, has no implied timing.
*-F*************************************************************************/
static int
read_seeprom(struct aic7xxx_host *p, int offset,
unsigned short *scarray, unsigned int len, seeprom_chip_type chip)
{
int i = 0, k;
unsigned char temp;
unsigned short checksum = 0;
struct seeprom_cmd {
unsigned char len;
unsigned char bits[3];
};
struct seeprom_cmd seeprom_read = {3, {1, 1, 0}};
/*
* Request access of the memory port.
*/
if (acquire_seeprom(p) == 0)
{
return (0);
}
/*
* Read 'len' registers of the seeprom. For the 7870, the 93C46
* SEEPROM is a 1024-bit device with 64 16-bit registers but only
* the first 32 are used by Adaptec BIOS. Some adapters use the
* 93C56 SEEPROM which is a 2048-bit device. The loop will range
* from 0 to 'len' - 1.
*/
for (k = 0; k < len; k++)
{
/*
* Send chip select for one clock cycle.
*/
aic_outb(p, SEEMS | SEECK | SEECS, SEECTL);
CLOCK_PULSE(p);
/*
* Now we're ready to send the read command followed by the
* address of the 16-bit register we want to read.
*/
for (i = 0; i < seeprom_read.len; i++)
{
temp = SEEMS | SEECS | (seeprom_read.bits[i] << 1);
aic_outb(p, temp, SEECTL);
CLOCK_PULSE(p);
temp = temp ^ SEECK;
aic_outb(p, temp, SEECTL);
CLOCK_PULSE(p);
}
/*
* Send the 6 or 8 bit address (MSB first, LSB last).
*/
for (i = ((int) chip - 1); i >= 0; i--)
{
temp = k + offset;
temp = (temp >> i) & 1; /* Mask out all but lower bit. */
temp = SEEMS | SEECS | (temp << 1);
aic_outb(p, temp, SEECTL);
CLOCK_PULSE(p);
temp = temp ^ SEECK;
aic_outb(p, temp, SEECTL);
CLOCK_PULSE(p);
}
/*
* Now read the 16 bit register. An initial 0 precedes the
* register contents which begins with bit 15 (MSB) and ends
* with bit 0 (LSB). The initial 0 will be shifted off the
* top of our word as we let the loop run from 0 to 16.
*/
for (i = 0; i <= 16; i++)
{
temp = SEEMS | SEECS;
aic_outb(p, temp, SEECTL);
CLOCK_PULSE(p);
temp = temp ^ SEECK;
scarray[k] = (scarray[k] << 1) | (aic_inb(p, SEECTL) & SEEDI);
aic_outb(p, temp, SEECTL);
CLOCK_PULSE(p);
}
/*
* The serial EEPROM should have a checksum in the last word.
* Keep a running checksum for all words read except for the
* last word. We'll verify the checksum after all words have
* been read.
*/
if (k < (len - 1))
{
checksum = checksum + scarray[k];
}
/*
* Reset the chip select for the next command cycle.
*/
aic_outb(p, SEEMS, SEECTL);
CLOCK_PULSE(p);
aic_outb(p, SEEMS | SEECK, SEECTL);
CLOCK_PULSE(p);
aic_outb(p, SEEMS, SEECTL);
CLOCK_PULSE(p);
}
/*
* Release access to the memory port and the serial EEPROM.
*/
release_seeprom(p);
#if 0
printk("Computed checksum 0x%x, checksum read 0x%x\n",
checksum, scarray[len - 1]);
printk("Serial EEPROM:");
for (k = 0; k < len; k++)
{
if (((k % 8) == 0) && (k != 0))
{
printk("\n ");
}
printk(" 0x%x", scarray[k]);
}
printk("\n");
#endif
if ( (checksum != scarray[len - 1]) || (checksum == 0) )
{
return (0);
}
return (1);
}
/*+F*************************************************************************
* Function:
* read_brdctl
*
* Description:
* Reads the BRDCTL register.
*-F*************************************************************************/
static unsigned char
read_brdctl(struct aic7xxx_host *p)
{
unsigned char brdctl, value;
/*
* Make sure the SEEPROM is ready before we access it
*/
CLOCK_PULSE(p);
if (p->features & AHC_ULTRA2)
{
brdctl = BRDRW_ULTRA2;
aic_outb(p, brdctl, BRDCTL);
CLOCK_PULSE(p);
value = aic_inb(p, BRDCTL);
CLOCK_PULSE(p);
return(value);
}
brdctl = BRDRW;
if ( !((p->chip & AHC_CHIPID_MASK) == AHC_AIC7895) ||
(p->flags & AHC_CHNLB) )
{
brdctl |= BRDCS;
}
aic_outb(p, brdctl, BRDCTL);
CLOCK_PULSE(p);
value = aic_inb(p, BRDCTL);
CLOCK_PULSE(p);
aic_outb(p, 0, BRDCTL);
CLOCK_PULSE(p);
return (value);
}
/*+F*************************************************************************
* Function:
* write_brdctl
*
* Description:
* Writes a value to the BRDCTL register.
*-F*************************************************************************/
static void
write_brdctl(struct aic7xxx_host *p, unsigned char value)
{
unsigned char brdctl;
/*
* Make sure the SEEPROM is ready before we access it
*/
CLOCK_PULSE(p);
if (p->features & AHC_ULTRA2)
{
brdctl = value;
aic_outb(p, brdctl, BRDCTL);
CLOCK_PULSE(p);
brdctl |= BRDSTB_ULTRA2;
aic_outb(p, brdctl, BRDCTL);
CLOCK_PULSE(p);
brdctl &= ~BRDSTB_ULTRA2;
aic_outb(p, brdctl, BRDCTL);
CLOCK_PULSE(p);
read_brdctl(p);
CLOCK_PULSE(p);
}
else
{
brdctl = BRDSTB;
if ( !((p->chip & AHC_CHIPID_MASK) == AHC_AIC7895) ||
(p->flags & AHC_CHNLB) )
{
brdctl |= BRDCS;
}
brdctl = BRDSTB | BRDCS;
aic_outb(p, brdctl, BRDCTL);
CLOCK_PULSE(p);
brdctl |= value;
aic_outb(p, brdctl, BRDCTL);
CLOCK_PULSE(p);
brdctl &= ~BRDSTB;
aic_outb(p, brdctl, BRDCTL);
CLOCK_PULSE(p);
brdctl &= ~BRDCS;
aic_outb(p, brdctl, BRDCTL);
CLOCK_PULSE(p);
}
}
/*+F*************************************************************************
* Function:
* aic785x_cable_detect
*
* Description:
* Detect the cables that are present on aic785x class controller chips
*-F*************************************************************************/
static void
aic785x_cable_detect(struct aic7xxx_host *p, int *int_50,
int *ext_present, int *eeprom)
{
unsigned char brdctl;
aic_outb(p, BRDRW | BRDCS, BRDCTL);
CLOCK_PULSE(p);
aic_outb(p, 0, BRDCTL);
CLOCK_PULSE(p);
brdctl = aic_inb(p, BRDCTL);
CLOCK_PULSE(p);
*int_50 = !(brdctl & BRDDAT5);
*ext_present = !(brdctl & BRDDAT6);
*eeprom = (aic_inb(p, SPIOCAP) & EEPROM);
}
#undef CLOCK_PULSE
/*+F*************************************************************************
* Function:
* aic2940_uwpro_cable_detect
*
* Description:
* Detect the cables that are present on the 2940-UWPro cards
*
* NOTE: This function assumes the SEEPROM will have already been acquired
* prior to invocation of this function.
*-F*************************************************************************/
static void
aic2940_uwpro_wide_cable_detect(struct aic7xxx_host *p, int *int_68,
int *ext_68, int *eeprom)
{
unsigned char brdctl;
/*
* First read the status of our cables. Set the rom bank to
* 0 since the bank setting serves as a multiplexor for the
* cable detection logic. BRDDAT5 controls the bank switch.
*/
write_brdctl(p, 0);
/*
* Now we read the state of the internal 68 connector. BRDDAT6
* is don't care, BRDDAT7 is internal 68. The cable is
* present if the bit is 0
*/
brdctl = read_brdctl(p);
*int_68 = !(brdctl & BRDDAT7);
/*
* Set the bank bit in brdctl and then read the external cable state
* and the EEPROM status
*/
write_brdctl(p, BRDDAT5);
brdctl = read_brdctl(p);
*ext_68 = !(brdctl & BRDDAT6);
*eeprom = !(brdctl & BRDDAT7);
/*
* We're done, the calling function will release the SEEPROM for us
*/
}
/*+F*************************************************************************
* Function:
* aic787x_cable_detect
*
* Description:
* Detect the cables that are present on aic787x class controller chips
*
* NOTE: This function assumes the SEEPROM will have already been acquired
* prior to invocation of this function.
*-F*************************************************************************/
static void
aic787x_cable_detect(struct aic7xxx_host *p, int *int_50, int *int_68,
int *ext_present, int *eeprom)
{
unsigned char brdctl;
/*
* First read the status of our cables. Set the rom bank to
* 0 since the bank setting serves as a multiplexor for the
* cable detection logic. BRDDAT5 controls the bank switch.
*/
write_brdctl(p, 0);
/*
* Now we read the state of the two internal connectors. BRDDAT6
* is internal 50, BRDDAT7 is internal 68. For each, the cable is
* present if the bit is 0
*/
brdctl = read_brdctl(p);
*int_50 = !(brdctl & BRDDAT6);
*int_68 = !(brdctl & BRDDAT7);
/*
* Set the bank bit in brdctl and then read the external cable state
* and the EEPROM status
*/
write_brdctl(p, BRDDAT5);
brdctl = read_brdctl(p);
*ext_present = !(brdctl & BRDDAT6);
*eeprom = !(brdctl & BRDDAT7);
/*
* We're done, the calling function will release the SEEPROM for us
*/
}
/*+F*************************************************************************
* Function:
* aic787x_ultra2_term_detect
*
* Description:
* Detect the termination settings present on ultra2 class controllers
*
* NOTE: This function assumes the SEEPROM will have already been acquired
* prior to invocation of this function.
*-F*************************************************************************/
static void
aic7xxx_ultra2_term_detect(struct aic7xxx_host *p, int *enableSE_low,
int *enableSE_high, int *enableLVD_low,
int *enableLVD_high, int *eprom_present)
{
unsigned char brdctl;
brdctl = read_brdctl(p);
*eprom_present = (brdctl & BRDDAT7);
*enableSE_high = (brdctl & BRDDAT6);
*enableSE_low = (brdctl & BRDDAT5);
*enableLVD_high = (brdctl & BRDDAT4);
*enableLVD_low = (brdctl & BRDDAT3);
}
/*+F*************************************************************************
* Function:
* configure_termination
*
* Description:
* Configures the termination settings on PCI adapters that have
* SEEPROMs available.
*-F*************************************************************************/
static void
configure_termination(struct aic7xxx_host *p)
{
int internal50_present = 0;
int internal68_present = 0;
int external_present = 0;
int eprom_present = 0;
int enableSE_low = 0;
int enableSE_high = 0;
int enableLVD_low = 0;
int enableLVD_high = 0;
unsigned char brddat = 0;
unsigned char max_target = 0;
unsigned char sxfrctl1 = aic_inb(p, SXFRCTL1);
if (acquire_seeprom(p))
{
if (p->features & (AHC_WIDE|AHC_TWIN))
max_target = 16;
else
max_target = 8;
aic_outb(p, SEEMS | SEECS, SEECTL);
sxfrctl1 &= ~STPWEN;
/*
* The termination/cable detection logic is split into three distinct
* groups. Ultra2 and later controllers, 2940UW-Pro controllers, and
* older 7850, 7860, 7870, 7880, and 7895 controllers. Each has its
* own unique way of detecting their cables and writing the results
* back to the card.
*/
if (p->features & AHC_ULTRA2)
{
/*
* As long as user hasn't overridden term settings, always check the
* cable detection logic
*/
if (aic7xxx_override_term == -1)
{
aic7xxx_ultra2_term_detect(p, &enableSE_low, &enableSE_high,
&enableLVD_low, &enableLVD_high,
&eprom_present);
}
/*
* If the user is overriding settings, then they have been preserved
* to here as fake adapter_control entries. Parse them and allow
* them to override the detected settings (if we even did detection).
*/
if (!(p->adapter_control & CFSEAUTOTERM))
{
enableSE_low = (p->adapter_control & CFSTERM);
enableSE_high = (p->adapter_control & CFWSTERM);
}
if (!(p->adapter_control & CFAUTOTERM))
{
enableLVD_low = enableLVD_high = (p->adapter_control & CFLVDSTERM);
}
/*
* Now take those settings that we have and translate them into the
* values that must be written into the registers.
*
* Flash Enable = BRDDAT7
* Secondary High Term Enable = BRDDAT6
* Secondary Low Term Enable = BRDDAT5
* LVD/Primary High Term Enable = BRDDAT4
* LVD/Primary Low Term Enable = STPWEN bit in SXFRCTL1
*/
if (enableLVD_low != 0)
{
sxfrctl1 |= STPWEN;
p->flags |= AHC_TERM_ENB_LVD;
if (aic7xxx_verbose & VERBOSE_PROBE2)
printk(KERN_INFO "(scsi%d) LVD/Primary Low byte termination "
"Enabled\n", p->host_no);
}
if (enableLVD_high != 0)
{
brddat |= BRDDAT4;
if (aic7xxx_verbose & VERBOSE_PROBE2)
printk(KERN_INFO "(scsi%d) LVD/Primary High byte termination "
"Enabled\n", p->host_no);
}
if (enableSE_low != 0)
{
brddat |= BRDDAT5;
if (aic7xxx_verbose & VERBOSE_PROBE2)
printk(KERN_INFO "(scsi%d) Secondary Low byte termination "
"Enabled\n", p->host_no);
}
if (enableSE_high != 0)
{
brddat |= BRDDAT6;
if (aic7xxx_verbose & VERBOSE_PROBE2)
printk(KERN_INFO "(scsi%d) Secondary High byte termination "
"Enabled\n", p->host_no);
}
}
else if (p->features & AHC_NEW_AUTOTERM)
{
/*
* The 50 pin connector termination is controlled by STPWEN in the
* SXFRCTL1 register. Since the Adaptec docs typically say the
* controller is not allowed to be in the middle of a cable and
* this is the only connection on that stub of the bus, there is
* no need to even check for narrow termination, it's simply
* always on.
*/
sxfrctl1 |= STPWEN;
if (aic7xxx_verbose & VERBOSE_PROBE2)
printk(KERN_INFO "(scsi%d) Narrow channel termination Enabled\n",
p->host_no);
if (p->adapter_control & CFAUTOTERM)
{
aic2940_uwpro_wide_cable_detect(p, &internal68_present,
&external_present,
&eprom_present);
printk(KERN_INFO "(scsi%d) Cables present (Int-50 %s, Int-68 %s, "
"Ext-68 %s)\n", p->host_no,
"Don't Care",
internal68_present ? "YES" : "NO",
external_present ? "YES" : "NO");
if (aic7xxx_verbose & VERBOSE_PROBE2)
printk(KERN_INFO "(scsi%d) EEPROM %s present.\n", p->host_no,
eprom_present ? "is" : "is not");
if (internal68_present && external_present)
{
brddat = 0;
p->flags &= ~AHC_TERM_ENB_SE_HIGH;
if (aic7xxx_verbose & VERBOSE_PROBE2)
printk(KERN_INFO "(scsi%d) Wide channel termination Disabled\n",
p->host_no);
}
else
{
brddat = BRDDAT6;
p->flags |= AHC_TERM_ENB_SE_HIGH;
if (aic7xxx_verbose & VERBOSE_PROBE2)
printk(KERN_INFO "(scsi%d) Wide channel termination Enabled\n",
p->host_no);
}
}
else
{
/*
* The termination of the Wide channel is done more like normal
* though, and the setting of this termination is done by writing
* either a 0 or 1 to BRDDAT6 of the BRDDAT register
*/
if (p->adapter_control & CFWSTERM)
{
brddat = BRDDAT6;
p->flags |= AHC_TERM_ENB_SE_HIGH;
if (aic7xxx_verbose & VERBOSE_PROBE2)
printk(KERN_INFO "(scsi%d) Wide channel termination Enabled\n",
p->host_no);
}
else
{
brddat = 0;
}
}
}
else
{
if (p->adapter_control & CFAUTOTERM)
{
if (p->flags & AHC_MOTHERBOARD)
{
printk(KERN_INFO "(scsi%d) Warning - detected auto-termination\n",
p->host_no);
printk(KERN_INFO "(scsi%d) Please verify driver detected settings "
"are correct.\n", p->host_no);
printk(KERN_INFO "(scsi%d) If not, then please properly set the "
"device termination\n", p->host_no);
printk(KERN_INFO "(scsi%d) in the Adaptec SCSI BIOS by hitting "
"CTRL-A when prompted\n", p->host_no);
printk(KERN_INFO "(scsi%d) during machine bootup.\n", p->host_no);
}
/* Configure auto termination. */
if ( (p->chip & AHC_CHIPID_MASK) >= AHC_AIC7870 )
{
aic787x_cable_detect(p, &internal50_present, &internal68_present,
&external_present, &eprom_present);
}
else
{
aic785x_cable_detect(p, &internal50_present, &external_present,
&eprom_present);
}
if (max_target <= 8)
internal68_present = 0;
if (max_target > 8)
{
printk(KERN_INFO "(scsi%d) Cables present (Int-50 %s, Int-68 %s, "
"Ext-68 %s)\n", p->host_no,
internal50_present ? "YES" : "NO",
internal68_present ? "YES" : "NO",
external_present ? "YES" : "NO");
}
else
{
printk(KERN_INFO "(scsi%d) Cables present (Int-50 %s, Ext-50 %s)\n",
p->host_no,
internal50_present ? "YES" : "NO",
external_present ? "YES" : "NO");
}
if (aic7xxx_verbose & VERBOSE_PROBE2)
printk(KERN_INFO "(scsi%d) EEPROM %s present.\n", p->host_no,
eprom_present ? "is" : "is not");
/*
* Now set the termination based on what we found. BRDDAT6
* controls wide termination enable.
* Flash Enable = BRDDAT7
* SE High Term Enable = BRDDAT6
*/
if (internal50_present && internal68_present && external_present)
{
printk(KERN_INFO "(scsi%d) Illegal cable configuration!! Only two\n",
p->host_no);
printk(KERN_INFO "(scsi%d) connectors on the SCSI controller may be "
"in use at a time!\n", p->host_no);
/*
* Force termination (low and high byte) on. This is safer than
* leaving it completely off, especially since this message comes
* most often from motherboard controllers that don't even have 3
* connectors, but instead are failing the cable detection.
*/
internal50_present = external_present = 0;
enableSE_high = enableSE_low = 1;
}
if ((max_target > 8) &&
((external_present == 0) || (internal68_present == 0)) )
{
brddat |= BRDDAT6;
p->flags |= AHC_TERM_ENB_SE_HIGH;
if (aic7xxx_verbose & VERBOSE_PROBE2)
printk(KERN_INFO "(scsi%d) SE High byte termination Enabled\n",
p->host_no);
}
if ( ((internal50_present ? 1 : 0) +
(internal68_present ? 1 : 0) +
(external_present ? 1 : 0)) <= 1 )
{
sxfrctl1 |= STPWEN;
p->flags |= AHC_TERM_ENB_SE_LOW;
if (aic7xxx_verbose & VERBOSE_PROBE2)
printk(KERN_INFO "(scsi%d) SE Low byte termination Enabled\n",
p->host_no);
}
}
else /* p->adapter_control & CFAUTOTERM */
{
if (p->adapter_control & CFSTERM)
{
sxfrctl1 |= STPWEN;
if (aic7xxx_verbose & VERBOSE_PROBE2)
printk(KERN_INFO "(scsi%d) SE Low byte termination Enabled\n",
p->host_no);
}
if (p->adapter_control & CFWSTERM)
{
brddat |= BRDDAT6;
if (aic7xxx_verbose & VERBOSE_PROBE2)
printk(KERN_INFO "(scsi%d) SE High byte termination Enabled\n",
p->host_no);
}
}
}
aic_outb(p, sxfrctl1, SXFRCTL1);
write_brdctl(p, brddat);
release_seeprom(p);
}
}
/*+F*************************************************************************
* Function:
* detect_maxscb
*
* Description:
* Detects the maximum number of SCBs for the controller and returns
* the count and a mask in p (p->maxscbs, p->qcntmask).
*-F*************************************************************************/
static void
detect_maxscb(struct aic7xxx_host *p)
{
int i;
/*
* It's possible that we've already done this for multichannel
* adapters.
*/
if (p->scb_data->maxhscbs == 0)
{
/*
* We haven't initialized the SCB settings yet. Walk the SCBs to
* determince how many there are.
*/
aic_outb(p, 0, FREE_SCBH);
for (i = 0; i < AIC7XXX_MAXSCB; i++)
{
aic_outb(p, i, SCBPTR);
aic_outb(p, i, SCB_CONTROL);
if (aic_inb(p, SCB_CONTROL) != i)
break;
aic_outb(p, 0, SCBPTR);
if (aic_inb(p, SCB_CONTROL) != 0)
break;
aic_outb(p, i, SCBPTR);
aic_outb(p, 0, SCB_CONTROL); /* Clear the control byte. */
aic_outb(p, i + 1, SCB_NEXT); /* Set the next pointer. */
aic_outb(p, SCB_LIST_NULL, SCB_TAG); /* Make the tag invalid. */
aic_outb(p, SCB_LIST_NULL, SCB_BUSYTARGETS); /* no busy untagged */
aic_outb(p, SCB_LIST_NULL, SCB_BUSYTARGETS+1);/* targets active yet */
aic_outb(p, SCB_LIST_NULL, SCB_BUSYTARGETS+2);
aic_outb(p, SCB_LIST_NULL, SCB_BUSYTARGETS+3);
}
/* Make sure the last SCB terminates the free list. */
aic_outb(p, i - 1, SCBPTR);
aic_outb(p, SCB_LIST_NULL, SCB_NEXT);
/* Ensure we clear the first (0) SCBs control byte. */
aic_outb(p, 0, SCBPTR);
aic_outb(p, 0, SCB_CONTROL);
p->scb_data->maxhscbs = i;
/*
* Use direct indexing instead for speed
*/
if ( i == AIC7XXX_MAXSCB )
p->flags &= ~AHC_PAGESCBS;
}
}
/*+F*************************************************************************
* Function:
* aic7xxx_register
*
* Description:
* Register a Adaptec aic7xxx chip SCSI controller with the kernel.
*-F*************************************************************************/
static int
aic7xxx_register(struct scsi_host_template *template, struct aic7xxx_host *p,
int reset_delay)
{
int i, result;
int max_targets;
int found = 1;
unsigned char term, scsi_conf;
struct Scsi_Host *host;
host = p->host;
p->scb_data->maxscbs = AIC7XXX_MAXSCB;
host->can_queue = AIC7XXX_MAXSCB;
host->cmd_per_lun = 3;
host->sg_tablesize = AIC7XXX_MAX_SG;
host->this_id = p->scsi_id;
host->io_port = p->base;
host->n_io_port = 0xFF;
host->base = p->mbase;
host->irq = p->irq;
if (p->features & AHC_WIDE)
{
host->max_id = 16;
}
if (p->features & AHC_TWIN)
{
host->max_channel = 1;
}
p->host = host;
p->host_no = host->host_no;
host->unique_id = p->instance;
p->isr_count = 0;
p->next = NULL;
p->completeq.head = NULL;
p->completeq.tail = NULL;
scbq_init(&p->scb_data->free_scbs);
scbq_init(&p->waiting_scbs);
INIT_LIST_HEAD(&p->aic_devs);
/*
* We currently have no commands of any type
*/
p->qinfifonext = 0;
p->qoutfifonext = 0;
printk(KERN_INFO "(scsi%d) <%s> found at ", p->host_no,
board_names[p->board_name_index]);
switch(p->chip)
{
case (AHC_AIC7770|AHC_EISA):
printk("EISA slot %d\n", p->pci_device_fn);
break;
case (AHC_AIC7770|AHC_VL):
printk("VLB slot %d\n", p->pci_device_fn);
break;
default:
printk("PCI %d/%d/%d\n", p->pci_bus, PCI_SLOT(p->pci_device_fn),
PCI_FUNC(p->pci_device_fn));
break;
}
if (p->features & AHC_TWIN)
{
printk(KERN_INFO "(scsi%d) Twin Channel, A SCSI ID %d, B SCSI ID %d, ",
p->host_no, p->scsi_id, p->scsi_id_b);
}
else
{
char *channel;
channel = "";
if ((p->flags & AHC_MULTI_CHANNEL) != 0)
{
channel = " A";
if ( (p->flags & (AHC_CHNLB|AHC_CHNLC)) != 0 )
{
channel = (p->flags & AHC_CHNLB) ? " B" : " C";
}
}
if (p->features & AHC_WIDE)
{
printk(KERN_INFO "(scsi%d) Wide ", p->host_no);
}
else
{
printk(KERN_INFO "(scsi%d) Narrow ", p->host_no);
}
printk("Channel%s, SCSI ID=%d, ", channel, p->scsi_id);
}
aic_outb(p, 0, SEQ_FLAGS);
detect_maxscb(p);
printk("%d/%d SCBs\n", p->scb_data->maxhscbs, p->scb_data->maxscbs);
if (aic7xxx_verbose & VERBOSE_PROBE2)
{
printk(KERN_INFO "(scsi%d) BIOS %sabled, IO Port 0x%lx, IRQ %d\n",
p->host_no, (p->flags & AHC_BIOS_ENABLED) ? "en" : "dis",
p->base, p->irq);
printk(KERN_INFO "(scsi%d) IO Memory at 0x%lx, MMAP Memory at %p\n",
p->host_no, p->mbase, p->maddr);
}
#ifdef CONFIG_PCI
/*
* Now that we know our instance number, we can set the flags we need to
* force termination if need be.
*/
if (aic7xxx_stpwlev != -1)
{
/*
* This option only applies to PCI controllers.
*/
if ( (p->chip & ~AHC_CHIPID_MASK) == AHC_PCI)
{
unsigned char devconfig;
pci_read_config_byte(p->pdev, DEVCONFIG, &devconfig);
if ( (aic7xxx_stpwlev >> p->instance) & 0x01 )
{
devconfig |= STPWLEVEL;
if (aic7xxx_verbose & VERBOSE_PROBE2)
printk("(scsi%d) Force setting STPWLEVEL bit\n", p->host_no);
}
else
{
devconfig &= ~STPWLEVEL;
if (aic7xxx_verbose & VERBOSE_PROBE2)
printk("(scsi%d) Force clearing STPWLEVEL bit\n", p->host_no);
}
pci_write_config_byte(p->pdev, DEVCONFIG, devconfig);
}
}
#endif
/*
* That took care of devconfig and stpwlev, now for the actual termination
* settings.
*/
if (aic7xxx_override_term != -1)
{
/*
* Again, this only applies to PCI controllers. We don't have problems
* with the termination on 274x controllers to the best of my knowledge.
*/
if ( (p->chip & ~AHC_CHIPID_MASK) == AHC_PCI)
{
unsigned char term_override;
term_override = ( (aic7xxx_override_term >> (p->instance * 4)) & 0x0f);
p->adapter_control &=
~(CFSTERM|CFWSTERM|CFLVDSTERM|CFAUTOTERM|CFSEAUTOTERM);
if ( (p->features & AHC_ULTRA2) && (term_override & 0x0c) )
{
p->adapter_control |= CFLVDSTERM;
}
if (term_override & 0x02)
{
p->adapter_control |= CFWSTERM;
}
if (term_override & 0x01)
{
p->adapter_control |= CFSTERM;
}
}
}
if ( (p->flags & AHC_SEEPROM_FOUND) || (aic7xxx_override_term != -1) )
{
if (p->features & AHC_SPIOCAP)
{
if ( aic_inb(p, SPIOCAP) & SSPIOCPS )
/*
* Update the settings in sxfrctl1 to match the termination
* settings.
*/
configure_termination(p);
}
else if ((p->chip & AHC_CHIPID_MASK) >= AHC_AIC7870)
{
configure_termination(p);
}
}
/*
* Set the SCSI Id, SXFRCTL0, SXFRCTL1, and SIMODE1, for both channels
*/
if (p->features & AHC_TWIN)
{
/* Select channel B */
aic_outb(p, aic_inb(p, SBLKCTL) | SELBUSB, SBLKCTL);
if ((p->flags & AHC_SEEPROM_FOUND) || (aic7xxx_override_term != -1))
term = (aic_inb(p, SXFRCTL1) & STPWEN);
else
term = ((p->flags & AHC_TERM_ENB_B) ? STPWEN : 0);
aic_outb(p, p->scsi_id_b, SCSIID);
scsi_conf = aic_inb(p, SCSICONF + 1);
aic_outb(p, DFON | SPIOEN, SXFRCTL0);
aic_outb(p, (scsi_conf & ENSPCHK) | aic7xxx_seltime | term |
ENSTIMER | ACTNEGEN, SXFRCTL1);
aic_outb(p, 0, SIMODE0);
aic_outb(p, ENSELTIMO | ENSCSIRST | ENSCSIPERR, SIMODE1);
aic_outb(p, 0, SCSIRATE);
/* Select channel A */
aic_outb(p, aic_inb(p, SBLKCTL) & ~SELBUSB, SBLKCTL);
}
if (p->features & AHC_ULTRA2)
{
aic_outb(p, p->scsi_id, SCSIID_ULTRA2);
}
else
{
aic_outb(p, p->scsi_id, SCSIID);
}
if ((p->flags & AHC_SEEPROM_FOUND) || (aic7xxx_override_term != -1))
term = (aic_inb(p, SXFRCTL1) & STPWEN);
else
term = ((p->flags & (AHC_TERM_ENB_A|AHC_TERM_ENB_LVD)) ? STPWEN : 0);
scsi_conf = aic_inb(p, SCSICONF);
aic_outb(p, DFON | SPIOEN, SXFRCTL0);
aic_outb(p, (scsi_conf & ENSPCHK) | aic7xxx_seltime | term |
ENSTIMER | ACTNEGEN, SXFRCTL1);
aic_outb(p, 0, SIMODE0);
/*
* If we are a cardbus adapter then don't enable SCSI reset detection.
* We shouldn't likely be sharing SCSI busses with someone else, and
* if we don't have a cable currently plugged into the controller then
* we won't have a power source for the SCSI termination, which means
* we'll see infinite incoming bus resets.
*/
if(p->flags & AHC_NO_STPWEN)
aic_outb(p, ENSELTIMO | ENSCSIPERR, SIMODE1);
else
aic_outb(p, ENSELTIMO | ENSCSIRST | ENSCSIPERR, SIMODE1);
aic_outb(p, 0, SCSIRATE);
if ( p->features & AHC_ULTRA2)
aic_outb(p, 0, SCSIOFFSET);
/*
* Look at the information that board initialization or the board
* BIOS has left us. In the lower four bits of each target's
* scratch space any value other than 0 indicates that we should
* initiate synchronous transfers. If it's zero, the user or the
* BIOS has decided to disable synchronous negotiation to that
* target so we don't activate the needsdtr flag.
*/
if ((p->features & (AHC_TWIN|AHC_WIDE)) == 0)
{
max_targets = 8;
}
else
{
max_targets = 16;
}
if (!(aic7xxx_no_reset))
{
/*
* If we reset the bus, then clear the transfer settings, else leave
* them be.
*/
aic_outb(p, 0, ULTRA_ENB);
aic_outb(p, 0, ULTRA_ENB + 1);
p->ultraenb = 0;
}
/*
* Allocate enough hardware scbs to handle the maximum number of
* concurrent transactions we can have. We have to make sure that
* the allocated memory is contiguous memory. The Linux kmalloc
* routine should only allocate contiguous memory, but note that
* this could be a problem if kmalloc() is changed.
*/
{
size_t array_size;
unsigned int hscb_physaddr;
array_size = p->scb_data->maxscbs * sizeof(struct aic7xxx_hwscb);
if (p->scb_data->hscbs == NULL)
{
/* pci_alloc_consistent enforces the alignment already and
* clears the area as well.
*/
p->scb_data->hscbs = pci_alloc_consistent(p->pdev, array_size,
&p->scb_data->hscbs_dma);
/* We have to use pci_free_consistent, not kfree */
p->scb_data->hscb_kmalloc_ptr = NULL;
p->scb_data->hscbs_dma_len = array_size;
}
if (p->scb_data->hscbs == NULL)
{
printk("(scsi%d) Unable to allocate hardware SCB array; "
"failing detection.\n", p->host_no);
aic_outb(p, 0, SIMODE1);
p->irq = 0;
return(0);
}
hscb_physaddr = p->scb_data->hscbs_dma;
aic_outb(p, hscb_physaddr & 0xFF, HSCB_ADDR);
aic_outb(p, (hscb_physaddr >> 8) & 0xFF, HSCB_ADDR + 1);
aic_outb(p, (hscb_physaddr >> 16) & 0xFF, HSCB_ADDR + 2);
aic_outb(p, (hscb_physaddr >> 24) & 0xFF, HSCB_ADDR + 3);
/* Set up the fifo areas at the same time */
p->untagged_scbs = pci_alloc_consistent(p->pdev, 3*256, &p->fifo_dma);
if (p->untagged_scbs == NULL)
{
printk("(scsi%d) Unable to allocate hardware FIFO arrays; "
"failing detection.\n", p->host_no);
p->irq = 0;
return(0);
}
p->qoutfifo = p->untagged_scbs + 256;
p->qinfifo = p->qoutfifo + 256;
for (i = 0; i < 256; i++)
{
p->untagged_scbs[i] = SCB_LIST_NULL;
p->qinfifo[i] = SCB_LIST_NULL;
p->qoutfifo[i] = SCB_LIST_NULL;
}
hscb_physaddr = p->fifo_dma;
aic_outb(p, hscb_physaddr & 0xFF, SCBID_ADDR);
aic_outb(p, (hscb_physaddr >> 8) & 0xFF, SCBID_ADDR + 1);
aic_outb(p, (hscb_physaddr >> 16) & 0xFF, SCBID_ADDR + 2);
aic_outb(p, (hscb_physaddr >> 24) & 0xFF, SCBID_ADDR + 3);
}
/* The Q-FIFOs we just set up are all empty */
aic_outb(p, 0, QINPOS);
aic_outb(p, 0, KERNEL_QINPOS);
aic_outb(p, 0, QOUTPOS);
if(p->features & AHC_QUEUE_REGS)
{
aic_outb(p, SCB_QSIZE_256, QOFF_CTLSTA);
aic_outb(p, 0, SDSCB_QOFF);
aic_outb(p, 0, SNSCB_QOFF);
aic_outb(p, 0, HNSCB_QOFF);
}
/*
* We don't have any waiting selections or disconnected SCBs.
*/
aic_outb(p, SCB_LIST_NULL, WAITING_SCBH);
aic_outb(p, SCB_LIST_NULL, DISCONNECTED_SCBH);
/*
* Message out buffer starts empty
*/
aic_outb(p, MSG_NOOP, MSG_OUT);
aic_outb(p, MSG_NOOP, LAST_MSG);
/*
* Set all the other asundry items that haven't been set yet.
* This includes just dumping init values to a lot of registers simply
* to make sure they've been touched and are ready for use parity wise
* speaking.
*/
aic_outb(p, 0, TMODE_CMDADDR);
aic_outb(p, 0, TMODE_CMDADDR + 1);
aic_outb(p, 0, TMODE_CMDADDR + 2);
aic_outb(p, 0, TMODE_CMDADDR + 3);
aic_outb(p, 0, TMODE_CMDADDR_NEXT);
/*
* Link us into the list of valid hosts
*/
p->next = first_aic7xxx;
first_aic7xxx = p;
/*
* Allocate the first set of scbs for this controller. This is to stream-
* line code elsewhere in the driver. If we have to check for the existence
* of scbs in certain code sections, it slows things down. However, as
* soon as we register the IRQ for this card, we could get an interrupt that
* includes possibly the SCSI_RSTI interrupt. If we catch that interrupt
* then we are likely to segfault if we don't have at least one chunk of
* SCBs allocated or add checks all through the reset code to make sure
* that the SCBs have been allocated which is an invalid running condition
* and therefore I think it's preferable to simply pre-allocate the first
* chunk of SCBs.
*/
aic7xxx_allocate_scb(p);
/*
* Load the sequencer program, then re-enable the board -
* resetting the AIC-7770 disables it, leaving the lights
* on with nobody home.
*/
aic7xxx_loadseq(p);
/*
* Make sure the AUTOFLUSHDIS bit is *not* set in the SBLKCTL register
*/
aic_outb(p, aic_inb(p, SBLKCTL) & ~AUTOFLUSHDIS, SBLKCTL);
if ( (p->chip & AHC_CHIPID_MASK) == AHC_AIC7770 )
{
aic_outb(p, ENABLE, BCTL); /* Enable the boards BUS drivers. */
}
if ( !(aic7xxx_no_reset) )
{
if (p->features & AHC_TWIN)
{
if (aic7xxx_verbose & VERBOSE_PROBE2)
printk(KERN_INFO "(scsi%d) Resetting channel B\n", p->host_no);
aic_outb(p, aic_inb(p, SBLKCTL) | SELBUSB, SBLKCTL);
aic7xxx_reset_current_bus(p);
aic_outb(p, aic_inb(p, SBLKCTL) & ~SELBUSB, SBLKCTL);
}
/* Reset SCSI bus A. */
if (aic7xxx_verbose & VERBOSE_PROBE2)
{ /* In case we are a 3940, 3985, or 7895, print the right channel */
char *channel = "";
if (p->flags & AHC_MULTI_CHANNEL)
{
channel = " A";
if (p->flags & (AHC_CHNLB|AHC_CHNLC))
channel = (p->flags & AHC_CHNLB) ? " B" : " C";
}
printk(KERN_INFO "(scsi%d) Resetting channel%s\n", p->host_no, channel);
}
aic7xxx_reset_current_bus(p);
}
else
{
if (!reset_delay)
{
printk(KERN_INFO "(scsi%d) Not resetting SCSI bus. Note: Don't use "
"the no_reset\n", p->host_no);
printk(KERN_INFO "(scsi%d) option unless you have a verifiable need "
"for it.\n", p->host_no);
}
}
/*
* Register IRQ with the kernel. Only allow sharing IRQs with
* PCI devices.
*/
if (!(p->chip & AHC_PCI))
{
result = (request_irq(p->irq, do_aic7xxx_isr, 0, "aic7xxx", p));
}
else
{
result = (request_irq(p->irq, do_aic7xxx_isr, SA_SHIRQ,
"aic7xxx", p));
if (result < 0)
{
result = (request_irq(p->irq, do_aic7xxx_isr, SA_INTERRUPT | SA_SHIRQ,
"aic7xxx", p));
}
}
if (result < 0)
{
printk(KERN_WARNING "(scsi%d) Couldn't register IRQ %d, ignoring "
"controller.\n", p->host_no, p->irq);
aic_outb(p, 0, SIMODE1);
p->irq = 0;
return (0);
}
if(aic_inb(p, INTSTAT) & INT_PEND)
printk(INFO_LEAD "spurious interrupt during configuration, cleared.\n",
p->host_no, -1, -1 , -1);
aic7xxx_clear_intstat(p);
unpause_sequencer(p, /* unpause_always */ TRUE);
return (found);
}
/*+F*************************************************************************
* Function:
* aic7xxx_chip_reset
*
* Description:
* Perform a chip reset on the aic7xxx SCSI controller. The controller
* is paused upon return.
*-F*************************************************************************/
static int
aic7xxx_chip_reset(struct aic7xxx_host *p)
{
unsigned char sblkctl;
int wait;
/*
* For some 274x boards, we must clear the CHIPRST bit and pause
* the sequencer. For some reason, this makes the driver work.
*/
aic_outb(p, PAUSE | CHIPRST, HCNTRL);
/*
* In the future, we may call this function as a last resort for
* error handling. Let's be nice and not do any unnecessary delays.
*/
wait = 1000; /* 1 msec (1000 * 1 msec) */
while (--wait && !(aic_inb(p, HCNTRL) & CHIPRSTACK))
{
udelay(1); /* 1 usec */
}
pause_sequencer(p);
sblkctl = aic_inb(p, SBLKCTL) & (SELBUSB|SELWIDE);
if (p->chip & AHC_PCI)
sblkctl &= ~SELBUSB;
switch( sblkctl )
{
case 0: /* normal narrow card */
break;
case 2: /* Wide card */
p->features |= AHC_WIDE;
break;
case 8: /* Twin card */
p->features |= AHC_TWIN;
p->flags |= AHC_MULTI_CHANNEL;
break;
default: /* hmmm...we don't know what this is */
printk(KERN_WARNING "aic7xxx: Unsupported adapter type %d, ignoring.\n",
aic_inb(p, SBLKCTL) & 0x0a);
return(-1);
}
return(0);
}
/*+F*************************************************************************
* Function:
* aic7xxx_alloc
*
* Description:
* Allocate and initialize a host structure. Returns NULL upon error
* and a pointer to a aic7xxx_host struct upon success.
*-F*************************************************************************/
static struct aic7xxx_host *
aic7xxx_alloc(struct scsi_host_template *sht, struct aic7xxx_host *temp)
{
struct aic7xxx_host *p = NULL;
struct Scsi_Host *host;
/*
* Allocate a storage area by registering us with the mid-level
* SCSI layer.
*/
host = scsi_register(sht, sizeof(struct aic7xxx_host));
if (host != NULL)
{
p = (struct aic7xxx_host *) host->hostdata;
memset(p, 0, sizeof(struct aic7xxx_host));
*p = *temp;
p->host = host;
p->scb_data = kmalloc(sizeof(scb_data_type), GFP_ATOMIC);
if (p->scb_data != NULL)
{
memset(p->scb_data, 0, sizeof(scb_data_type));
scbq_init (&p->scb_data->free_scbs);
}
else
{
/*
* For some reason we don't have enough memory. Free the
* allocated memory for the aic7xxx_host struct, and return NULL.
*/
release_region(p->base, MAXREG - MINREG);
scsi_unregister(host);
return(NULL);
}
p->host_no = host->host_no;
}
return (p);
}
/*+F*************************************************************************
* Function:
* aic7xxx_free
*
* Description:
* Frees and releases all resources associated with an instance of
* the driver (struct aic7xxx_host *).
*-F*************************************************************************/
static void
aic7xxx_free(struct aic7xxx_host *p)
{
int i;
/*
* Free the allocated hardware SCB space.
*/
if (p->scb_data != NULL)
{
struct aic7xxx_scb_dma *scb_dma = NULL;
if (p->scb_data->hscbs != NULL)
{
pci_free_consistent(p->pdev, p->scb_data->hscbs_dma_len,
p->scb_data->hscbs, p->scb_data->hscbs_dma);
p->scb_data->hscbs = p->scb_data->hscb_kmalloc_ptr = NULL;
}
/*
* Free the driver SCBs. These were allocated on an as-need
* basis. We allocated these in groups depending on how many
* we could fit into a given amount of RAM. The tail SCB for
* these allocations has a pointer to the alloced area.
*/
for (i = 0; i < p->scb_data->numscbs; i++)
{
if (p->scb_data->scb_array[i]->scb_dma != scb_dma)
{
scb_dma = p->scb_data->scb_array[i]->scb_dma;
pci_free_consistent(p->pdev, scb_dma->dma_len,
(void *)((unsigned long)scb_dma->dma_address
- scb_dma->dma_offset),
scb_dma->dma_address);
}
kfree(p->scb_data->scb_array[i]->kmalloc_ptr);
p->scb_data->scb_array[i] = NULL;
}
/*
* Free the SCB data area.
*/
kfree(p->scb_data);
}
pci_free_consistent(p->pdev, 3*256, (void *)p->untagged_scbs, p->fifo_dma);
}
/*+F*************************************************************************
* Function:
* aic7xxx_load_seeprom
*
* Description:
* Load the seeprom and configure adapter and target settings.
* Returns 1 if the load was successful and 0 otherwise.
*-F*************************************************************************/
static void
aic7xxx_load_seeprom(struct aic7xxx_host *p, unsigned char *sxfrctl1)
{
int have_seeprom = 0;
int i, max_targets, mask;
unsigned char scsirate, scsi_conf;
unsigned short scarray[128];
struct seeprom_config *sc = (struct seeprom_config *) scarray;
if (aic7xxx_verbose & VERBOSE_PROBE2)
{
printk(KERN_INFO "aic7xxx: Loading serial EEPROM...");
}
switch (p->chip)
{
case (AHC_AIC7770|AHC_EISA): /* None of these adapters have seeproms. */
if (aic_inb(p, SCSICONF) & TERM_ENB)
p->flags |= AHC_TERM_ENB_A;
if ( (p->features & AHC_TWIN) && (aic_inb(p, SCSICONF + 1) & TERM_ENB) )
p->flags |= AHC_TERM_ENB_B;
break;
case (AHC_AIC7770|AHC_VL):
have_seeprom = read_284x_seeprom(p, (struct seeprom_config *) scarray);
break;
default:
have_seeprom = read_seeprom(p, (p->flags & (AHC_CHNLB|AHC_CHNLC)),
scarray, p->sc_size, p->sc_type);
if (!have_seeprom)
{
if(p->sc_type == C46)
have_seeprom = read_seeprom(p, (p->flags & (AHC_CHNLB|AHC_CHNLC)),
scarray, p->sc_size, C56_66);
else
have_seeprom = read_seeprom(p, (p->flags & (AHC_CHNLB|AHC_CHNLC)),
scarray, p->sc_size, C46);
}
if (!have_seeprom)
{
p->sc_size = 128;
have_seeprom = read_seeprom(p, 4*(p->flags & (AHC_CHNLB|AHC_CHNLC)),
scarray, p->sc_size, p->sc_type);
if (!have_seeprom)
{
if(p->sc_type == C46)
have_seeprom = read_seeprom(p, 4*(p->flags & (AHC_CHNLB|AHC_CHNLC)),
scarray, p->sc_size, C56_66);
else
have_seeprom = read_seeprom(p, 4*(p->flags & (AHC_CHNLB|AHC_CHNLC)),
scarray, p->sc_size, C46);
}
}
break;
}
if (!have_seeprom)
{
if (aic7xxx_verbose & VERBOSE_PROBE2)
{
printk("\naic7xxx: No SEEPROM available.\n");
}
p->flags |= AHC_NEWEEPROM_FMT;
if (aic_inb(p, SCSISEQ) == 0)
{
p->flags |= AHC_USEDEFAULTS;
p->flags &= ~AHC_BIOS_ENABLED;
p->scsi_id = p->scsi_id_b = 7;
*sxfrctl1 |= STPWEN;
if (aic7xxx_verbose & VERBOSE_PROBE2)
{
printk("aic7xxx: Using default values.\n");
}
}
else if (aic7xxx_verbose & VERBOSE_PROBE2)
{
printk("aic7xxx: Using leftover BIOS values.\n");
}
if ( ((p->chip & ~AHC_CHIPID_MASK) == AHC_PCI) && (*sxfrctl1 & STPWEN) )
{
p->flags |= AHC_TERM_ENB_SE_LOW | AHC_TERM_ENB_SE_HIGH;
sc->adapter_control &= ~CFAUTOTERM;
sc->adapter_control |= CFSTERM | CFWSTERM | CFLVDSTERM;
}
if (aic7xxx_extended)
p->flags |= (AHC_EXTEND_TRANS_A | AHC_EXTEND_TRANS_B);
else
p->flags &= ~(AHC_EXTEND_TRANS_A | AHC_EXTEND_TRANS_B);
}
else
{
if (aic7xxx_verbose & VERBOSE_PROBE2)
{
printk("done\n");
}
/*
* Note things in our flags
*/
p->flags |= AHC_SEEPROM_FOUND;
/*
* Update the settings in sxfrctl1 to match the termination settings.
*/
*sxfrctl1 = 0;
/*
* Get our SCSI ID from the SEEPROM setting...
*/
p->scsi_id = (sc->brtime_id & CFSCSIID);
/*
* First process the settings that are different between the VLB
* and PCI adapter seeproms.
*/
if ((p->chip & AHC_CHIPID_MASK) == AHC_AIC7770)
{
/* VLB adapter seeproms */
if (sc->bios_control & CF284XEXTEND)
p->flags |= AHC_EXTEND_TRANS_A;
if (sc->adapter_control & CF284XSTERM)
{
*sxfrctl1 |= STPWEN;
p->flags |= AHC_TERM_ENB_SE_LOW | AHC_TERM_ENB_SE_HIGH;
}
}
else
{
/* PCI adapter seeproms */
if (sc->bios_control & CFEXTEND)
p->flags |= AHC_EXTEND_TRANS_A;
if (sc->bios_control & CFBIOSEN)
p->flags |= AHC_BIOS_ENABLED;
else
p->flags &= ~AHC_BIOS_ENABLED;
if (sc->adapter_control & CFSTERM)
{
*sxfrctl1 |= STPWEN;
p->flags |= AHC_TERM_ENB_SE_LOW | AHC_TERM_ENB_SE_HIGH;
}
}
memcpy(&p->sc, sc, sizeof(struct seeprom_config));
}
p->discenable = 0;
/*
* Limit to 16 targets just in case. The 2842 for one is known to
* blow the max_targets setting, future cards might also.
*/
max_targets = ((p->features & (AHC_TWIN | AHC_WIDE)) ? 16 : 8);
if (have_seeprom)
{
for (i = 0; i < max_targets; i++)
{
if( ((p->features & AHC_ULTRA) &&
!(sc->adapter_control & CFULTRAEN) &&
(sc->device_flags[i] & CFSYNCHISULTRA)) ||
(sc->device_flags[i] & CFNEWULTRAFORMAT) )
{
p->flags |= AHC_NEWEEPROM_FMT;
break;
}
}
}
for (i = 0; i < max_targets; i++)
{
mask = (0x01 << i);
if (!have_seeprom)
{
if (aic_inb(p, SCSISEQ) != 0)
{
/*
* OK...the BIOS set things up and left behind the settings we need.
* Just make our sc->device_flags[i] entry match what the card has
* set for this device.
*/
p->discenable =
~(aic_inb(p, DISC_DSB) | (aic_inb(p, DISC_DSB + 1) << 8) );
p->ultraenb =
(aic_inb(p, ULTRA_ENB) | (aic_inb(p, ULTRA_ENB + 1) << 8) );
sc->device_flags[i] = (p->discenable & mask) ? CFDISC : 0;
if (aic_inb(p, TARG_SCSIRATE + i) & WIDEXFER)
sc->device_flags[i] |= CFWIDEB;
if (p->features & AHC_ULTRA2)
{
if (aic_inb(p, TARG_OFFSET + i))
{
sc->device_flags[i] |= CFSYNCH;
sc->device_flags[i] |= (aic_inb(p, TARG_SCSIRATE + i) & 0x07);
if ( (aic_inb(p, TARG_SCSIRATE + i) & 0x18) == 0x18 )
sc->device_flags[i] |= CFSYNCHISULTRA;
}
}
else
{
if (aic_inb(p, TARG_SCSIRATE + i) & ~WIDEXFER)
{
sc->device_flags[i] |= CFSYNCH;
if (p->features & AHC_ULTRA)
sc->device_flags[i] |= ((p->ultraenb & mask) ?
CFSYNCHISULTRA : 0);
}
}
}
else
{
/*
* Assume the BIOS has NOT been run on this card and nothing between
* the card and the devices is configured yet.
*/
sc->device_flags[i] = CFDISC;
if (p->features & AHC_WIDE)
sc->device_flags[i] |= CFWIDEB;
if (p->features & AHC_ULTRA3)
sc->device_flags[i] |= 2;
else if (p->features & AHC_ULTRA2)
sc->device_flags[i] |= 3;
else if (p->features & AHC_ULTRA)
sc->device_flags[i] |= CFSYNCHISULTRA;
sc->device_flags[i] |= CFSYNCH;
aic_outb(p, 0, TARG_SCSIRATE + i);
if (p->features & AHC_ULTRA2)
aic_outb(p, 0, TARG_OFFSET + i);
}
}
if (sc->device_flags[i] & CFDISC)
{
p->discenable |= mask;
}
if (p->flags & AHC_NEWEEPROM_FMT)
{
if ( !(p->features & AHC_ULTRA2) )
{
/*
* I know of two different Ultra BIOSes that do this differently.
* One on the Gigabyte 6BXU mb that wants flags[i] & CFXFER to
* be == to 0x03 and SYNCHISULTRA to be true to mean 40MByte/s
* while on the IBM Netfinity 5000 they want the same thing
* to be something else, while flags[i] & CFXFER == 0x03 and
* SYNCHISULTRA false should be 40MByte/s. So, we set both to
* 40MByte/s and the lower speeds be damned. People will have
* to select around the conversely mapped lower speeds in order
* to select lower speeds on these boards.
*/
if ( (sc->device_flags[i] & CFNEWULTRAFORMAT) &&
((sc->device_flags[i] & CFXFER) == 0x03) )
{
sc->device_flags[i] &= ~CFXFER;
sc->device_flags[i] |= CFSYNCHISULTRA;
}
if (sc->device_flags[i] & CFSYNCHISULTRA)
{
p->ultraenb |= mask;
}
}
else if ( !(sc->device_flags[i] & CFNEWULTRAFORMAT) &&
(p->features & AHC_ULTRA2) &&
(sc->device_flags[i] & CFSYNCHISULTRA) )
{
p->ultraenb |= mask;
}
}
else if (sc->adapter_control & CFULTRAEN)
{
p->ultraenb |= mask;
}
if ( (sc->device_flags[i] & CFSYNCH) == 0)
{
sc->device_flags[i] &= ~CFXFER;
p->ultraenb &= ~mask;
p->user[i].offset = 0;
p->user[i].period = 0;
p->user[i].options = 0;
}
else
{
if (p->features & AHC_ULTRA3)
{
p->user[i].offset = MAX_OFFSET_ULTRA2;
if( (sc->device_flags[i] & CFXFER) < 0x03 )
{
scsirate = (sc->device_flags[i] & CFXFER);
p->user[i].options = MSG_EXT_PPR_OPTION_DT_CRC;
}
else
{
scsirate = (sc->device_flags[i] & CFXFER) |
((p->ultraenb & mask) ? 0x18 : 0x10);
p->user[i].options = 0;
}
p->user[i].period = aic7xxx_find_period(p, scsirate,
AHC_SYNCRATE_ULTRA3);
}
else if (p->features & AHC_ULTRA2)
{
p->user[i].offset = MAX_OFFSET_ULTRA2;
scsirate = (sc->device_flags[i] & CFXFER) |
((p->ultraenb & mask) ? 0x18 : 0x10);
p->user[i].options = 0;
p->user[i].period = aic7xxx_find_period(p, scsirate,
AHC_SYNCRATE_ULTRA2);
}
else
{
scsirate = (sc->device_flags[i] & CFXFER) << 4;
p->user[i].options = 0;
p->user[i].offset = MAX_OFFSET_8BIT;
if (p->features & AHC_ULTRA)
{
short ultraenb;
ultraenb = aic_inb(p, ULTRA_ENB) |
(aic_inb(p, ULTRA_ENB + 1) << 8);
p->user[i].period = aic7xxx_find_period(p, scsirate,
(p->ultraenb & mask) ?
AHC_SYNCRATE_ULTRA :
AHC_SYNCRATE_FAST);
}
else
p->user[i].period = aic7xxx_find_period(p, scsirate,
AHC_SYNCRATE_FAST);
}
}
if ( (sc->device_flags[i] & CFWIDEB) && (p->features & AHC_WIDE) )
{
p->user[i].width = MSG_EXT_WDTR_BUS_16_BIT;
}
else
{
p->user[i].width = MSG_EXT_WDTR_BUS_8_BIT;
}
}
aic_outb(p, ~(p->discenable & 0xFF), DISC_DSB);
aic_outb(p, ~((p->discenable >> 8) & 0xFF), DISC_DSB + 1);
/*
* We set the p->ultraenb from the SEEPROM to begin with, but now we make
* it match what is already down in the card. If we are doing a reset
* on the card then this will get put back to a default state anyway.
* This allows us to not have to pre-emptively negotiate when using the
* no_reset option.
*/
if (p->features & AHC_ULTRA)
p->ultraenb = aic_inb(p, ULTRA_ENB) | (aic_inb(p, ULTRA_ENB + 1) << 8);
scsi_conf = (p->scsi_id & HSCSIID);
if(have_seeprom)
{
p->adapter_control = sc->adapter_control;
p->bios_control = sc->bios_control;
switch (p->chip & AHC_CHIPID_MASK)
{
case AHC_AIC7895:
case AHC_AIC7896:
case AHC_AIC7899:
if (p->adapter_control & CFBPRIMARY)
p->flags |= AHC_CHANNEL_B_PRIMARY;
default:
break;
}
if (sc->adapter_control & CFSPARITY)
scsi_conf |= ENSPCHK;
}
else
{
scsi_conf |= ENSPCHK | RESET_SCSI;
}
/*
* Only set the SCSICONF and SCSICONF + 1 registers if we are a PCI card.
* The 2842 and 2742 cards already have these registers set and we don't
* want to muck with them since we don't set all the bits they do.
*/
if ( (p->chip & ~AHC_CHIPID_MASK) == AHC_PCI )
{
/* Set the host ID */
aic_outb(p, scsi_conf, SCSICONF);
/* In case we are a wide card */
aic_outb(p, p->scsi_id, SCSICONF + 1);
}
}
/*+F*************************************************************************
* Function:
* aic7xxx_configure_bugs
*
* Description:
* Take the card passed in and set the appropriate bug flags based upon
* the card model. Also make any changes needed to device registers or
* PCI registers while we are here.
*-F*************************************************************************/
static void
aic7xxx_configure_bugs(struct aic7xxx_host *p)
{
unsigned short tmp_word;
switch(p->chip & AHC_CHIPID_MASK)
{
case AHC_AIC7860:
p->bugs |= AHC_BUG_PCI_2_1_RETRY;
/* fall through */
case AHC_AIC7850:
case AHC_AIC7870:
p->bugs |= AHC_BUG_TMODE_WIDEODD | AHC_BUG_CACHETHEN | AHC_BUG_PCI_MWI;
break;
case AHC_AIC7880:
p->bugs |= AHC_BUG_TMODE_WIDEODD | AHC_BUG_PCI_2_1_RETRY |
AHC_BUG_CACHETHEN | AHC_BUG_PCI_MWI;
break;
case AHC_AIC7890:
p->bugs |= AHC_BUG_AUTOFLUSH | AHC_BUG_CACHETHEN;
break;
case AHC_AIC7892:
p->bugs |= AHC_BUG_SCBCHAN_UPLOAD;
break;
case AHC_AIC7895:
p->bugs |= AHC_BUG_TMODE_WIDEODD | AHC_BUG_PCI_2_1_RETRY |
AHC_BUG_CACHETHEN | AHC_BUG_PCI_MWI;
break;
case AHC_AIC7896:
p->bugs |= AHC_BUG_CACHETHEN_DIS;
break;
case AHC_AIC7899:
p->bugs |= AHC_BUG_SCBCHAN_UPLOAD;
break;
default:
/* Nothing to do */
break;
}
/*
* Now handle the bugs that require PCI register or card register tweaks
*/
pci_read_config_word(p->pdev, PCI_COMMAND, &tmp_word);
if(p->bugs & AHC_BUG_PCI_MWI)
{
tmp_word &= ~PCI_COMMAND_INVALIDATE;
}
else
{
tmp_word |= PCI_COMMAND_INVALIDATE;
}
pci_write_config_word(p->pdev, PCI_COMMAND, tmp_word);
if(p->bugs & AHC_BUG_CACHETHEN)
{
aic_outb(p, aic_inb(p, DSCOMMAND0) & ~CACHETHEN, DSCOMMAND0);
}
else if (p->bugs & AHC_BUG_CACHETHEN_DIS)
{
aic_outb(p, aic_inb(p, DSCOMMAND0) | CACHETHEN, DSCOMMAND0);
}
return;
}
/*+F*************************************************************************
* Function:
* aic7xxx_detect
*
* Description:
* Try to detect and register an Adaptec 7770 or 7870 SCSI controller.
*
* XXX - This should really be called aic7xxx_probe(). A sequence of
* probe(), attach()/detach(), and init() makes more sense than
* one do-it-all function. This may be useful when (and if) the
* mid-level SCSI code is overhauled.
*-F*************************************************************************/
static int
aic7xxx_detect(struct scsi_host_template *template)
{
struct aic7xxx_host *temp_p = NULL;
struct aic7xxx_host *current_p = NULL;
struct aic7xxx_host *list_p = NULL;
int found = 0;
#if defined(__i386__) || defined(__alpha__)
ahc_flag_type flags = 0;
int type;
#endif
unsigned char sxfrctl1;
#if defined(__i386__) || defined(__alpha__)
unsigned char hcntrl, hostconf;
unsigned int slot, base;
#endif
#ifdef MODULE
/*
* If we are called as a module, the aic7xxx pointer may not be null
* and it would point to our bootup string, just like on the lilo
* command line. IF not NULL, then process this config string with
* aic7xxx_setup
*/
if(aic7xxx)
aic7xxx_setup(aic7xxx);
#endif
template->proc_name = "aic7xxx";
template->sg_tablesize = AIC7XXX_MAX_SG;
#ifdef CONFIG_PCI
/*
* PCI-bus probe.
*/
{
static struct
{
unsigned short vendor_id;
unsigned short device_id;
ahc_chip chip;
ahc_flag_type flags;
ahc_feature features;
int board_name_index;
unsigned short seeprom_size;
unsigned short seeprom_type;
} const aic_pdevs[] = {
{PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7810, AHC_NONE,
AHC_FNONE, AHC_FENONE, 1,
32, C46 },
{PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7850, AHC_AIC7850,
AHC_PAGESCBS, AHC_AIC7850_FE, 5,
32, C46 },
{PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7855, AHC_AIC7850,
AHC_PAGESCBS, AHC_AIC7850_FE, 6,
32, C46 },
{PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7821, AHC_AIC7860,
AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
AHC_AIC7860_FE, 7,
32, C46 },
{PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_3860, AHC_AIC7860,
AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
AHC_AIC7860_FE, 7,
32, C46 },
{PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_38602, AHC_AIC7860,
AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
AHC_AIC7860_FE, 7,
32, C46 },
{PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_38602, AHC_AIC7860,
AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
AHC_AIC7860_FE, 7,
32, C46 },
{PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7860, AHC_AIC7860,
AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MOTHERBOARD,
AHC_AIC7860_FE, 7,
32, C46 },
{PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7861, AHC_AIC7860,
AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
AHC_AIC7860_FE, 8,
32, C46 },
{PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7870, AHC_AIC7870,
AHC_PAGESCBS | AHC_BIOS_ENABLED | AHC_MOTHERBOARD,
AHC_AIC7870_FE, 9,
32, C46 },
{PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7871, AHC_AIC7870,
AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7870_FE, 10,
32, C46 },
{PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7872, AHC_AIC7870,
AHC_PAGESCBS | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
AHC_AIC7870_FE, 11,
32, C56_66 },
{PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7873, AHC_AIC7870,
AHC_PAGESCBS | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
AHC_AIC7870_FE, 12,
32, C56_66 },
{PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7874, AHC_AIC7870,
AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7870_FE, 13,
32, C46 },
{PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7880, AHC_AIC7880,
AHC_PAGESCBS | AHC_BIOS_ENABLED | AHC_MOTHERBOARD,
AHC_AIC7880_FE, 14,
32, C46 },
{PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7881, AHC_AIC7880,
AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7880_FE, 15,
32, C46 },
{PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7882, AHC_AIC7880,
AHC_PAGESCBS | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
AHC_AIC7880_FE, 16,
32, C56_66 },
{PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7883, AHC_AIC7880,
AHC_PAGESCBS | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
AHC_AIC7880_FE, 17,
32, C56_66 },
{PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7884, AHC_AIC7880,
AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7880_FE, 18,
32, C46 },
{PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7885, AHC_AIC7880,
AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7880_FE, 18,
32, C46 },
{PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7886, AHC_AIC7880,
AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7880_FE, 18,
32, C46 },
{PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7887, AHC_AIC7880,
AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7880_FE | AHC_NEW_AUTOTERM, 19,
32, C46 },
{PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7888, AHC_AIC7880,
AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7880_FE, 18,
32, C46 },
{PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7895, AHC_AIC7895,
AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
AHC_AIC7895_FE, 20,
32, C56_66 },
{PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7890, AHC_AIC7890,
AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
AHC_AIC7890_FE, 21,
32, C46 },
{PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7890B, AHC_AIC7890,
AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
AHC_AIC7890_FE, 21,
32, C46 },
{PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_2930U2, AHC_AIC7890,
AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
AHC_AIC7890_FE, 22,
32, C46 },
{PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_2940U2, AHC_AIC7890,
AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
AHC_AIC7890_FE, 23,
32, C46 },
{PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7896, AHC_AIC7896,
AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
AHC_AIC7896_FE, 24,
32, C56_66 },
{PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_3940U2, AHC_AIC7896,
AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
AHC_AIC7896_FE, 25,
32, C56_66 },
{PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_3950U2D, AHC_AIC7896,
AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
AHC_AIC7896_FE, 26,
32, C56_66 },
{PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_1480A, AHC_AIC7860,
AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_NO_STPWEN,
AHC_AIC7860_FE, 27,
32, C46 },
{PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7892A, AHC_AIC7892,
AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
AHC_AIC7892_FE, 28,
32, C46 },
{PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7892B, AHC_AIC7892,
AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
AHC_AIC7892_FE, 28,
32, C46 },
{PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7892D, AHC_AIC7892,
AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
AHC_AIC7892_FE, 28,
32, C46 },
{PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7892P, AHC_AIC7892,
AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
AHC_AIC7892_FE, 28,
32, C46 },
{PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7899A, AHC_AIC7899,
AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
AHC_AIC7899_FE, 29,
32, C56_66 },
{PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7899B, AHC_AIC7899,
AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
AHC_AIC7899_FE, 29,
32, C56_66 },
{PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7899D, AHC_AIC7899,
AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
AHC_AIC7899_FE, 29,
32, C56_66 },
{PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7899P, AHC_AIC7899,
AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
AHC_AIC7899_FE, 29,
32, C56_66 },
};
unsigned short command;
unsigned int devconfig, i, oldverbose;
struct pci_dev *pdev = NULL;
for (i = 0; i < ARRAY_SIZE(aic_pdevs); i++)
{
pdev = NULL;
while ((pdev = pci_find_device(aic_pdevs[i].vendor_id,
aic_pdevs[i].device_id,
pdev))) {
if (pci_enable_device(pdev))
continue;
if ( i == 0 ) /* We found one, but it's the 7810 RAID cont. */
{
if (aic7xxx_verbose & (VERBOSE_PROBE|VERBOSE_PROBE2))
{
printk(KERN_INFO "aic7xxx: The 7810 RAID controller is not "
"supported by\n");
printk(KERN_INFO " this driver, we are ignoring it.\n");
}
}
else if ( (temp_p = kmalloc(sizeof(struct aic7xxx_host),
GFP_ATOMIC)) != NULL )
{
memset(temp_p, 0, sizeof(struct aic7xxx_host));
temp_p->chip = aic_pdevs[i].chip | AHC_PCI;
temp_p->flags = aic_pdevs[i].flags;
temp_p->features = aic_pdevs[i].features;
temp_p->board_name_index = aic_pdevs[i].board_name_index;
temp_p->sc_size = aic_pdevs[i].seeprom_size;
temp_p->sc_type = aic_pdevs[i].seeprom_type;
/*
* Read sundry information from PCI BIOS.
*/
temp_p->irq = pdev->irq;
temp_p->pdev = pdev;
temp_p->pci_bus = pdev->bus->number;
temp_p->pci_device_fn = pdev->devfn;
temp_p->base = pci_resource_start(pdev, 0);
temp_p->mbase = pci_resource_start(pdev, 1);
current_p = list_p;
while(current_p && temp_p)
{
if ( ((current_p->pci_bus == temp_p->pci_bus) &&
(current_p->pci_device_fn == temp_p->pci_device_fn)) ||
(temp_p->base && (current_p->base == temp_p->base)) ||
(temp_p->mbase && (current_p->mbase == temp_p->mbase)) )
{
/* duplicate PCI entry, skip it */
kfree(temp_p);
temp_p = NULL;
continue;
}
current_p = current_p->next;
}
if(pci_request_regions(temp_p->pdev, "aic7xxx"))
{
printk("aic7xxx: <%s> at PCI %d/%d/%d\n",
board_names[aic_pdevs[i].board_name_index],
temp_p->pci_bus,
PCI_SLOT(temp_p->pci_device_fn),
PCI_FUNC(temp_p->pci_device_fn));
printk("aic7xxx: I/O ports already in use, ignoring.\n");
kfree(temp_p);
continue;
}
if (aic7xxx_verbose & VERBOSE_PROBE2)
printk("aic7xxx: <%s> at PCI %d/%d\n",
board_names[aic_pdevs[i].board_name_index],
PCI_SLOT(pdev->devfn),
PCI_FUNC(pdev->devfn));
pci_read_config_word(pdev, PCI_COMMAND, &command);
if (aic7xxx_verbose & VERBOSE_PROBE2)
{
printk("aic7xxx: Initial PCI_COMMAND value was 0x%x\n",
(int)command);
}
#ifdef AIC7XXX_STRICT_PCI_SETUP
command |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY |
PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY | PCI_COMMAND_IO;
#else
command |= PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY | PCI_COMMAND_IO;
#endif
command &= ~PCI_COMMAND_INVALIDATE;
if (aic7xxx_pci_parity == 0)
command &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
pci_write_config_word(pdev, PCI_COMMAND, command);
#ifdef AIC7XXX_STRICT_PCI_SETUP
pci_read_config_dword(pdev, DEVCONFIG, &devconfig);
if (aic7xxx_verbose & VERBOSE_PROBE2)
{
printk("aic7xxx: Initial DEVCONFIG value was 0x%x\n", devconfig);
}
devconfig |= 0x80000040;
pci_write_config_dword(pdev, DEVCONFIG, devconfig);
#endif /* AIC7XXX_STRICT_PCI_SETUP */
temp_p->unpause = INTEN;
temp_p->pause = temp_p->unpause | PAUSE;
if ( ((temp_p->base == 0) &&
(temp_p->mbase == 0)) ||
(temp_p->irq == 0) )
{
printk("aic7xxx: <%s> at PCI %d/%d/%d\n",
board_names[aic_pdevs[i].board_name_index],
temp_p->pci_bus,
PCI_SLOT(temp_p->pci_device_fn),
PCI_FUNC(temp_p->pci_device_fn));
printk("aic7xxx: Controller disabled by BIOS, ignoring.\n");
goto skip_pci_controller;
}
#ifdef MMAPIO
if ( !(temp_p->base) || !(temp_p->flags & AHC_MULTI_CHANNEL) ||
((temp_p->chip != (AHC_AIC7870 | AHC_PCI)) &&
(temp_p->chip != (AHC_AIC7880 | AHC_PCI))) )
{
temp_p->maddr = ioremap_nocache(temp_p->mbase, 256);
if(temp_p->maddr)
{
/*
* We need to check the I/O with the MMAPed address. Some machines
* simply fail to work with MMAPed I/O and certain controllers.
*/
if(aic_inb(temp_p, HCNTRL) == 0xff)
{
/*
* OK.....we failed our test....go back to programmed I/O
*/
printk(KERN_INFO "aic7xxx: <%s> at PCI %d/%d/%d\n",
board_names[aic_pdevs[i].board_name_index],
temp_p->pci_bus,
PCI_SLOT(temp_p->pci_device_fn),
PCI_FUNC(temp_p->pci_device_fn));
printk(KERN_INFO "aic7xxx: MMAPed I/O failed, reverting to "
"Programmed I/O.\n");
iounmap(temp_p->maddr);
temp_p->maddr = NULL;
if(temp_p->base == 0)
{
printk("aic7xxx: <%s> at PCI %d/%d/%d\n",
board_names[aic_pdevs[i].board_name_index],
temp_p->pci_bus,
PCI_SLOT(temp_p->pci_device_fn),
PCI_FUNC(temp_p->pci_device_fn));
printk("aic7xxx: Controller disabled by BIOS, ignoring.\n");
goto skip_pci_controller;
}
}
}
}
#endif
/*
* We HAVE to make sure the first pause_sequencer() and all other
* subsequent I/O that isn't PCI config space I/O takes place
* after the MMAPed I/O region is configured and tested. The
* problem is the PowerPC architecture that doesn't support
* programmed I/O at all, so we have to have the MMAP I/O set up
* for this pause to even work on those machines.
*/
pause_sequencer(temp_p);
/*
* Clear out any pending PCI error status messages. Also set
* verbose to 0 so that we don't emit strange PCI error messages
* while cleaning out the current status bits.
*/
oldverbose = aic7xxx_verbose;
aic7xxx_verbose = 0;
aic7xxx_pci_intr(temp_p);
aic7xxx_verbose = oldverbose;
temp_p->bios_address = 0;
/*
* Remember how the card was setup in case there is no seeprom.
*/
if (temp_p->features & AHC_ULTRA2)
temp_p->scsi_id = aic_inb(temp_p, SCSIID_ULTRA2) & OID;
else
temp_p->scsi_id = aic_inb(temp_p, SCSIID) & OID;
/*
* Get current termination setting
*/
sxfrctl1 = aic_inb(temp_p, SXFRCTL1);
if (aic7xxx_chip_reset(temp_p) == -1)
{
goto skip_pci_controller;
}
/*
* Very quickly put the term setting back into the register since
* the chip reset may cause odd things to happen. This is to keep
* LVD busses with lots of drives from draining the power out of
* the diffsense line before we get around to running the
* configure_termination() function. Also restore the STPWLEVEL
* bit of DEVCONFIG
*/
aic_outb(temp_p, sxfrctl1, SXFRCTL1);
pci_write_config_dword(temp_p->pdev, DEVCONFIG, devconfig);
sxfrctl1 &= STPWEN;
/*
* We need to set the CHNL? assignments before loading the SEEPROM
* The 3940 and 3985 cards (original stuff, not any of the later
* stuff) are 7870 and 7880 class chips. The Ultra2 stuff falls
* under 7896 and 7897. The 7895 is in a class by itself :)
*/
switch (temp_p->chip & AHC_CHIPID_MASK)
{
case AHC_AIC7870: /* 3840 / 3985 */
case AHC_AIC7880: /* 3840 UW / 3985 UW */
if(temp_p->flags & AHC_MULTI_CHANNEL)
{
switch(PCI_SLOT(temp_p->pci_device_fn))
{
case 5:
temp_p->flags |= AHC_CHNLB;
break;
case 8:
temp_p->flags |= AHC_CHNLB;
break;
case 12:
temp_p->flags |= AHC_CHNLC;
break;
default:
break;
}
}
break;
case AHC_AIC7895: /* 7895 */
case AHC_AIC7896: /* 7896/7 */
case AHC_AIC7899: /* 7899 */
if (PCI_FUNC(pdev->devfn) != 0)
{
temp_p->flags |= AHC_CHNLB;
}
/*
* The 7895 is the only chipset that sets the SCBSIZE32 param
* in the DEVCONFIG register. The Ultra2 chipsets use
* the DSCOMMAND0 register instead.
*/
if ((temp_p->chip & AHC_CHIPID_MASK) == AHC_AIC7895)
{
pci_read_config_dword(pdev, DEVCONFIG, &devconfig);
devconfig |= SCBSIZE32;
pci_write_config_dword(pdev, DEVCONFIG, devconfig);
}
break;
default:
break;
}
/*
* Loading of the SEEPROM needs to come after we've set the flags
* to indicate possible CHNLB and CHNLC assigments. Otherwise,
* on 394x and 398x cards we'll end up reading the wrong settings
* for channels B and C
*/
switch (temp_p->chip & AHC_CHIPID_MASK)
{
case AHC_AIC7892:
case AHC_AIC7899:
aic_outb(temp_p, 0, SCAMCTL);
/*
* Switch to the alt mode of the chip...
*/
aic_outb(temp_p, aic_inb(temp_p, SFUNCT) | ALT_MODE, SFUNCT);
/*
* Set our options...the last two items set our CRC after x byte
* count in target mode...
*/
aic_outb(temp_p, AUTO_MSGOUT_DE | DIS_MSGIN_DUALEDGE, OPTIONMODE);
aic_outb(temp_p, 0x00, 0x0b);
aic_outb(temp_p, 0x10, 0x0a);
/*
* switch back to normal mode...
*/
aic_outb(temp_p, aic_inb(temp_p, SFUNCT) & ~ALT_MODE, SFUNCT);
aic_outb(temp_p, CRCVALCHKEN | CRCENDCHKEN | CRCREQCHKEN |
TARGCRCENDEN | TARGCRCCNTEN,
CRCCONTROL1);
aic_outb(temp_p, ((aic_inb(temp_p, DSCOMMAND0) | USCBSIZE32 |
MPARCKEN | CIOPARCKEN | CACHETHEN) &
~DPARCKEN), DSCOMMAND0);
aic7xxx_load_seeprom(temp_p, &sxfrctl1);
break;
case AHC_AIC7890:
case AHC_AIC7896:
aic_outb(temp_p, 0, SCAMCTL);
aic_outb(temp_p, (aic_inb(temp_p, DSCOMMAND0) |
CACHETHEN | MPARCKEN | USCBSIZE32 |
CIOPARCKEN) & ~DPARCKEN, DSCOMMAND0);
aic7xxx_load_seeprom(temp_p, &sxfrctl1);
break;
case AHC_AIC7850:
case AHC_AIC7860:
/*
* Set the DSCOMMAND0 register on these cards different from
* on the 789x cards. Also, read the SEEPROM as well.
*/
aic_outb(temp_p, (aic_inb(temp_p, DSCOMMAND0) |
CACHETHEN | MPARCKEN) & ~DPARCKEN,
DSCOMMAND0);
/* FALLTHROUGH */
default:
aic7xxx_load_seeprom(temp_p, &sxfrctl1);
break;
case AHC_AIC7880:
/*
* Check the rev of the chipset before we change DSCOMMAND0
*/
pci_read_config_dword(pdev, DEVCONFIG, &devconfig);
if ((devconfig & 0xff) >= 1)
{
aic_outb(temp_p, (aic_inb(temp_p, DSCOMMAND0) |
CACHETHEN | MPARCKEN) & ~DPARCKEN,
DSCOMMAND0);
}
aic7xxx_load_seeprom(temp_p, &sxfrctl1);
break;
}
/*
* and then we need another switch based on the type in order to
* make sure the channel B primary flag is set properly on 7895
* controllers....Arrrgggghhh!!! We also have to catch the fact
* that when you disable the BIOS on the 7895 on the Intel DK440LX
* motherboard, and possibly others, it only sets the BIOS disabled
* bit on the A channel...I think I'm starting to lean towards
* going postal....
*/
switch(temp_p->chip & AHC_CHIPID_MASK)
{
case AHC_AIC7895:
case AHC_AIC7896:
case AHC_AIC7899:
current_p = list_p;
while(current_p != NULL)
{
if ( (current_p->pci_bus == temp_p->pci_bus) &&
(PCI_SLOT(current_p->pci_device_fn) ==
PCI_SLOT(temp_p->pci_device_fn)) )
{
if ( PCI_FUNC(current_p->pci_device_fn) == 0 )
{
temp_p->flags |=
(current_p->flags & AHC_CHANNEL_B_PRIMARY);
temp_p->flags &= ~(AHC_BIOS_ENABLED|AHC_USEDEFAULTS);
temp_p->flags |=
(current_p->flags & (AHC_BIOS_ENABLED|AHC_USEDEFAULTS));
}
else
{
current_p->flags |=
(temp_p->flags & AHC_CHANNEL_B_PRIMARY);
current_p->flags &= ~(AHC_BIOS_ENABLED|AHC_USEDEFAULTS);
current_p->flags |=
(temp_p->flags & (AHC_BIOS_ENABLED|AHC_USEDEFAULTS));
}
}
current_p = current_p->next;
}
break;
default:
break;
}
/*
* We only support external SCB RAM on the 7895/6/7 chipsets.
* We could support it on the 7890/1 easy enough, but I don't
* know of any 7890/1 based cards that have it. I do know
* of 7895/6/7 cards that have it and they work properly.
*/
switch(temp_p->chip & AHC_CHIPID_MASK)
{
default:
break;
case AHC_AIC7895:
case AHC_AIC7896:
case AHC_AIC7899:
pci_read_config_dword(pdev, DEVCONFIG, &devconfig);
if (temp_p->features & AHC_ULTRA2)
{
if ( (aic_inb(temp_p, DSCOMMAND0) & RAMPSM_ULTRA2) &&
(aic7xxx_scbram) )
{
aic_outb(temp_p,
aic_inb(temp_p, DSCOMMAND0) & ~SCBRAMSEL_ULTRA2,
DSCOMMAND0);
temp_p->flags |= AHC_EXTERNAL_SRAM;
devconfig |= EXTSCBPEN;
}
else if (aic_inb(temp_p, DSCOMMAND0) & RAMPSM_ULTRA2)
{
printk(KERN_INFO "aic7xxx: <%s> at PCI %d/%d/%d\n",
board_names[aic_pdevs[i].board_name_index],
temp_p->pci_bus,
PCI_SLOT(temp_p->pci_device_fn),
PCI_FUNC(temp_p->pci_device_fn));
printk("aic7xxx: external SCB RAM detected, "
"but not enabled\n");
}
}
else
{
if ((devconfig & RAMPSM) && (aic7xxx_scbram))
{
devconfig &= ~SCBRAMSEL;
devconfig |= EXTSCBPEN;
temp_p->flags |= AHC_EXTERNAL_SRAM;
}
else if (devconfig & RAMPSM)
{
printk(KERN_INFO "aic7xxx: <%s> at PCI %d/%d/%d\n",
board_names[aic_pdevs[i].board_name_index],
temp_p->pci_bus,
PCI_SLOT(temp_p->pci_device_fn),
PCI_FUNC(temp_p->pci_device_fn));
printk("aic7xxx: external SCB RAM detected, "
"but not enabled\n");
}
}
pci_write_config_dword(pdev, DEVCONFIG, devconfig);
if ( (temp_p->flags & AHC_EXTERNAL_SRAM) &&
(temp_p->flags & AHC_CHNLB) )
aic_outb(temp_p, 1, CCSCBBADDR);
break;
}
/*
* Take the LED out of diagnostic mode
*/
aic_outb(temp_p,
(aic_inb(temp_p, SBLKCTL) & ~(DIAGLEDEN | DIAGLEDON)),
SBLKCTL);
/*
* We don't know where this is set in the SEEPROM or by the
* BIOS, so we default to 100%. On Ultra2 controllers, use 75%
* instead.
*/
if (temp_p->features & AHC_ULTRA2)
{
aic_outb(temp_p, RD_DFTHRSH_MAX | WR_DFTHRSH_MAX, DFF_THRSH);
}
else
{
aic_outb(temp_p, DFTHRSH_100, DSPCISTATUS);
}
/*
* Call our function to fixup any bugs that exist on this chipset.
* This may muck with PCI settings and other device settings, so
* make sure it's after all the other PCI and device register
* tweaks so it can back out bad settings on specific broken cards.
*/
aic7xxx_configure_bugs(temp_p);
if ( list_p == NULL )
{
list_p = current_p = temp_p;
}
else
{
current_p = list_p;
while(current_p->next != NULL)
current_p = current_p->next;
current_p->next = temp_p;
}
temp_p->next = NULL;
found++;
continue;
skip_pci_controller:
#ifdef CONFIG_PCI
pci_release_regions(temp_p->pdev);
#endif
kfree(temp_p);
} /* Found an Adaptec PCI device. */
else /* Well, we found one, but we couldn't get any memory */
{
printk("aic7xxx: Found <%s>\n",
board_names[aic_pdevs[i].board_name_index]);
printk(KERN_INFO "aic7xxx: Unable to allocate device memory, "
"skipping.\n");
}
} /* while(pdev=....) */
} /* for PCI_DEVICES */
}
#endif /* CONFIG_PCI */
#if defined(__i386__) || defined(__alpha__)
/*
* EISA/VL-bus card signature probe.
*/
slot = MINSLOT;
while ( (slot <= MAXSLOT) &&
!(aic7xxx_no_probe) )
{
base = SLOTBASE(slot) + MINREG;
if (!request_region(base, MAXREG - MINREG, "aic7xxx"))
{
/*
* Some other driver has staked a
* claim to this i/o region already.
*/
slot++;
continue; /* back to the beginning of the for loop */
}
flags = 0;
type = aic7xxx_probe(slot, base + AHC_HID0, &flags);
if (type == -1)
{
release_region(base, MAXREG - MINREG);
slot++;
continue;
}
temp_p = kmalloc(sizeof(struct aic7xxx_host), GFP_ATOMIC);
if (temp_p == NULL)
{
printk(KERN_WARNING "aic7xxx: Unable to allocate device space.\n");
release_region(base, MAXREG - MINREG);
slot++;
continue; /* back to the beginning of the while loop */
}
/*
* Pause the card preserving the IRQ type. Allow the operator
* to override the IRQ trigger.
*/
if (aic7xxx_irq_trigger == 1)
hcntrl = IRQMS; /* Level */
else if (aic7xxx_irq_trigger == 0)
hcntrl = 0; /* Edge */
else
hcntrl = inb(base + HCNTRL) & IRQMS; /* Default */
memset(temp_p, 0, sizeof(struct aic7xxx_host));
temp_p->unpause = hcntrl | INTEN;
temp_p->pause = hcntrl | PAUSE | INTEN;
temp_p->base = base;
temp_p->mbase = 0;
temp_p->maddr = NULL;
temp_p->pci_bus = 0;
temp_p->pci_device_fn = slot;
aic_outb(temp_p, hcntrl | PAUSE, HCNTRL);
while( (aic_inb(temp_p, HCNTRL) & PAUSE) == 0 ) ;
if (aic7xxx_chip_reset(temp_p) == -1)
temp_p->irq = 0;
else
temp_p->irq = aic_inb(temp_p, INTDEF) & 0x0F;
temp_p->flags |= AHC_PAGESCBS;
switch (temp_p->irq)
{
case 9:
case 10:
case 11:
case 12:
case 14:
case 15:
break;
default:
printk(KERN_WARNING "aic7xxx: Host adapter uses unsupported IRQ "
"level %d, ignoring.\n", temp_p->irq);
kfree(temp_p);
release_region(base, MAXREG - MINREG);
slot++;
continue; /* back to the beginning of the while loop */
}
/*
* We are commited now, everything has been checked and this card
* has been found, now we just set it up
*/
/*
* Insert our new struct into the list at the end
*/
if (list_p == NULL)
{
list_p = current_p = temp_p;
}
else
{
current_p = list_p;
while (current_p->next != NULL)
current_p = current_p->next;
current_p->next = temp_p;
}
switch (type)
{
case 0:
temp_p->board_name_index = 2;
if (aic7xxx_verbose & VERBOSE_PROBE2)
printk("aic7xxx: <%s> at EISA %d\n",
board_names[2], slot);
/* FALLTHROUGH */
case 1:
{
temp_p->chip = AHC_AIC7770 | AHC_EISA;
temp_p->features |= AHC_AIC7770_FE;
temp_p->bios_control = aic_inb(temp_p, HA_274_BIOSCTRL);
/*
* Get the primary channel information. Right now we don't
* do anything with this, but someday we will be able to inform
* the mid-level SCSI code which channel is primary.
*/
if (temp_p->board_name_index == 0)
{
temp_p->board_name_index = 3;
if (aic7xxx_verbose & VERBOSE_PROBE2)
printk("aic7xxx: <%s> at EISA %d\n",
board_names[3], slot);
}
if (temp_p->bios_control & CHANNEL_B_PRIMARY)
{
temp_p->flags |= AHC_CHANNEL_B_PRIMARY;
}
if ((temp_p->bios_control & BIOSMODE) == BIOSDISABLED)
{
temp_p->flags &= ~AHC_BIOS_ENABLED;
}
else
{
temp_p->flags &= ~AHC_USEDEFAULTS;
temp_p->flags |= AHC_BIOS_ENABLED;
if ( (temp_p->bios_control & 0x20) == 0 )
{
temp_p->bios_address = 0xcc000;
temp_p->bios_address += (0x4000 * (temp_p->bios_control & 0x07));
}
else
{
temp_p->bios_address = 0xd0000;
temp_p->bios_address += (0x8000 * (temp_p->bios_control & 0x06));
}
}
temp_p->adapter_control = aic_inb(temp_p, SCSICONF) << 8;
temp_p->adapter_control |= aic_inb(temp_p, SCSICONF + 1);
if (temp_p->features & AHC_WIDE)
{
temp_p->scsi_id = temp_p->adapter_control & HWSCSIID;
temp_p->scsi_id_b = temp_p->scsi_id;
}
else
{
temp_p->scsi_id = (temp_p->adapter_control >> 8) & HSCSIID;
temp_p->scsi_id_b = temp_p->adapter_control & HSCSIID;
}
aic7xxx_load_seeprom(temp_p, &sxfrctl1);
break;
}
case 2:
case 3:
temp_p->chip = AHC_AIC7770 | AHC_VL;
temp_p->features |= AHC_AIC7770_FE;
if (type == 2)
temp_p->flags |= AHC_BIOS_ENABLED;
else
temp_p->flags &= ~AHC_BIOS_ENABLED;
if (aic_inb(temp_p, SCSICONF) & TERM_ENB)
sxfrctl1 = STPWEN;
aic7xxx_load_seeprom(temp_p, &sxfrctl1);
temp_p->board_name_index = 4;
if (aic7xxx_verbose & VERBOSE_PROBE2)
printk("aic7xxx: <%s> at VLB %d\n",
board_names[2], slot);
switch( aic_inb(temp_p, STATUS_2840) & BIOS_SEL )
{
case 0x00:
temp_p->bios_address = 0xe0000;
break;
case 0x20:
temp_p->bios_address = 0xc8000;
break;
case 0x40:
temp_p->bios_address = 0xd0000;
break;
case 0x60:
temp_p->bios_address = 0xd8000;
break;
default:
break; /* can't get here */
}
break;
default: /* Won't get here. */
break;
}
if (aic7xxx_verbose & VERBOSE_PROBE2)
{
printk(KERN_INFO "aic7xxx: BIOS %sabled, IO Port 0x%lx, IRQ %d (%s)\n",
(temp_p->flags & AHC_USEDEFAULTS) ? "dis" : "en", temp_p->base,
temp_p->irq,
(temp_p->pause & IRQMS) ? "level sensitive" : "edge triggered");
printk(KERN_INFO "aic7xxx: Extended translation %sabled.\n",
(temp_p->flags & AHC_EXTEND_TRANS_A) ? "en" : "dis");
}
/*
* All the 7770 based chipsets have this bug
*/
temp_p->bugs |= AHC_BUG_TMODE_WIDEODD;
/*
* Set the FIFO threshold and the bus off time.
*/
hostconf = aic_inb(temp_p, HOSTCONF);
aic_outb(temp_p, hostconf & DFTHRSH, BUSSPD);
aic_outb(temp_p, (hostconf << 2) & BOFF, BUSTIME);
slot++;
found++;
}
#endif /* defined(__i386__) || defined(__alpha__) */
/*
* Now, we re-order the probed devices by BIOS address and BUS class.
* In general, we follow this algorithm to make the adapters show up
* in the same order under linux that the computer finds them.
* 1: All VLB/EISA cards with BIOS_ENABLED first, according to BIOS
* address, going from lowest to highest.
* 2: All PCI controllers with BIOS_ENABLED next, according to BIOS
* address, going from lowest to highest.
* 3: Remaining VLB/EISA controllers going in slot order.
* 4: Remaining PCI controllers, going in PCI device order (reversable)
*/
{
struct aic7xxx_host *sort_list[4] = { NULL, NULL, NULL, NULL };
struct aic7xxx_host *vlb, *pci;
struct aic7xxx_host *prev_p;
struct aic7xxx_host *p;
unsigned char left;
prev_p = vlb = pci = NULL;
temp_p = list_p;
while (temp_p != NULL)
{
switch(temp_p->chip & ~AHC_CHIPID_MASK)
{
case AHC_EISA:
case AHC_VL:
{
p = temp_p;
if (p->flags & AHC_BIOS_ENABLED)
vlb = sort_list[0];
else
vlb = sort_list[2];
if (vlb == NULL)
{
vlb = temp_p;
temp_p = temp_p->next;
vlb->next = NULL;
}
else
{
current_p = vlb;
prev_p = NULL;
while ( (current_p != NULL) &&
(current_p->bios_address < temp_p->bios_address))
{
prev_p = current_p;
current_p = current_p->next;
}
if (prev_p != NULL)
{
prev_p->next = temp_p;
temp_p = temp_p->next;
prev_p->next->next = current_p;
}
else
{
vlb = temp_p;
temp_p = temp_p->next;
vlb->next = current_p;
}
}
if (p->flags & AHC_BIOS_ENABLED)
sort_list[0] = vlb;
else
sort_list[2] = vlb;
break;
}
default: /* All PCI controllers fall through to default */
{
p = temp_p;
if (p->flags & AHC_BIOS_ENABLED)
pci = sort_list[1];
else
pci = sort_list[3];
if (pci == NULL)
{
pci = temp_p;
temp_p = temp_p->next;
pci->next = NULL;
}
else
{
current_p = pci;
prev_p = NULL;
if (!aic7xxx_reverse_scan)
{
while ( (current_p != NULL) &&
( (PCI_SLOT(current_p->pci_device_fn) |
(current_p->pci_bus << 8)) <
(PCI_SLOT(temp_p->pci_device_fn) |
(temp_p->pci_bus << 8)) ) )
{
prev_p = current_p;
current_p = current_p->next;
}
}
else
{
while ( (current_p != NULL) &&
( (PCI_SLOT(current_p->pci_device_fn) |
(current_p->pci_bus << 8)) >
(PCI_SLOT(temp_p->pci_device_fn) |
(temp_p->pci_bus << 8)) ) )
{
prev_p = current_p;
current_p = current_p->next;
}
}
/*
* Are we dealing with a 7895/6/7/9 where we need to sort the
* channels as well, if so, the bios_address values should
* be the same
*/
if ( (current_p) && (temp_p->flags & AHC_MULTI_CHANNEL) &&
(temp_p->pci_bus == current_p->pci_bus) &&
(PCI_SLOT(temp_p->pci_device_fn) ==
PCI_SLOT(current_p->pci_device_fn)) )
{
if (temp_p->flags & AHC_CHNLB)
{
if ( !(temp_p->flags & AHC_CHANNEL_B_PRIMARY) )
{
prev_p = current_p;
current_p = current_p->next;
}
}
else
{
if (temp_p->flags & AHC_CHANNEL_B_PRIMARY)
{
prev_p = current_p;
current_p = current_p->next;
}
}
}
if (prev_p != NULL)
{
prev_p->next = temp_p;
temp_p = temp_p->next;
prev_p->next->next = current_p;
}
else
{
pci = temp_p;
temp_p = temp_p->next;
pci->next = current_p;
}
}
if (p->flags & AHC_BIOS_ENABLED)
sort_list[1] = pci;
else
sort_list[3] = pci;
break;
}
} /* End of switch(temp_p->type) */
} /* End of while (temp_p != NULL) */
/*
* At this point, the cards have been broken into 4 sorted lists, now
* we run through the lists in order and register each controller
*/
{
int i;
left = found;
for (i=0; i<ARRAY_SIZE(sort_list); i++)
{
temp_p = sort_list[i];
while(temp_p != NULL)
{
template->name = board_names[temp_p->board_name_index];
p = aic7xxx_alloc(template, temp_p);
if (p != NULL)
{
p->instance = found - left;
if (aic7xxx_register(template, p, (--left)) == 0)
{
found--;
aic7xxx_release(p->host);
scsi_unregister(p->host);
}
else if (aic7xxx_dump_card)
{
pause_sequencer(p);
aic7xxx_print_card(p);
aic7xxx_print_scratch_ram(p);
unpause_sequencer(p, TRUE);
}
}
current_p = temp_p;
temp_p = (struct aic7xxx_host *)temp_p->next;
kfree(current_p);
}
}
}
}
return (found);
}
/*+F*************************************************************************
* Function:
* aic7xxx_buildscb
*
* Description:
* Build a SCB.
*-F*************************************************************************/
static void
aic7xxx_buildscb(struct aic7xxx_host *p, Scsi_Cmnd *cmd,
struct aic7xxx_scb *scb)
{
unsigned short mask;
struct aic7xxx_hwscb *hscb;
struct aic_dev_data *aic_dev = cmd->device->hostdata;
struct scsi_device *sdptr = cmd->device;
unsigned char tindex = TARGET_INDEX(cmd);
struct request *req = cmd->request;
mask = (0x01 << tindex);
hscb = scb->hscb;
/*
* Setup the control byte if we need negotiation and have not
* already requested it.
*/
hscb->control = 0;
scb->tag_action = 0;
if (p->discenable & mask)
{
hscb->control |= DISCENB;
/* We always force TEST_UNIT_READY to untagged */
if (cmd->cmnd[0] != TEST_UNIT_READY && sdptr->simple_tags)
{
if (req->flags & REQ_HARDBARRIER)
{
if(sdptr->ordered_tags)
{
hscb->control |= MSG_ORDERED_Q_TAG;
scb->tag_action = MSG_ORDERED_Q_TAG;
}
}
else
{
hscb->control |= MSG_SIMPLE_Q_TAG;
scb->tag_action = MSG_SIMPLE_Q_TAG;
}
}
}
if ( !(aic_dev->dtr_pending) &&
(aic_dev->needppr || aic_dev->needwdtr || aic_dev->needsdtr) &&
(aic_dev->flags & DEVICE_DTR_SCANNED) )
{
aic_dev->dtr_pending = 1;
scb->tag_action = 0;
hscb->control &= DISCENB;
hscb->control |= MK_MESSAGE;
if(aic_dev->needppr)
{
scb->flags |= SCB_MSGOUT_PPR;
}
else if(aic_dev->needwdtr)
{
scb->flags |= SCB_MSGOUT_WDTR;
}
else if(aic_dev->needsdtr)
{
scb->flags |= SCB_MSGOUT_SDTR;
}
scb->flags |= SCB_DTR_SCB;
}
hscb->target_channel_lun = ((cmd->device->id << 4) & 0xF0) |
((cmd->device->channel & 0x01) << 3) | (cmd->device->lun & 0x07);
/*
* The interpretation of request_buffer and request_bufflen
* changes depending on whether or not use_sg is zero; a
* non-zero use_sg indicates the number of elements in the
* scatter-gather array.
*/
/*
* XXX - this relies on the host data being stored in a
* little-endian format.
*/
hscb->SCSI_cmd_length = cmd->cmd_len;
memcpy(scb->cmnd, cmd->cmnd, cmd->cmd_len);
hscb->SCSI_cmd_pointer = cpu_to_le32(SCB_DMA_ADDR(scb, scb->cmnd));
if (cmd->use_sg)
{
struct scatterlist *sg; /* Must be mid-level SCSI code scatterlist */
/*
* We must build an SG list in adapter format, as the kernel's SG list
* cannot be used directly because of data field size (__alpha__)
* differences and the kernel SG list uses virtual addresses where
* we need physical addresses.
*/
int i, use_sg;
sg = (struct scatterlist *)cmd->request_buffer;
scb->sg_length = 0;
use_sg = pci_map_sg(p->pdev, sg, cmd->use_sg, cmd->sc_data_direction);
/*
* Copy the segments into the SG array. NOTE!!! - We used to
* have the first entry both in the data_pointer area and the first
* SG element. That has changed somewhat. We still have the first
* entry in both places, but now we download the address of
* scb->sg_list[1] instead of 0 to the sg pointer in the hscb.
*/
for (i = 0; i < use_sg; i++)
{
unsigned int len = sg_dma_len(sg+i);
scb->sg_list[i].address = cpu_to_le32(sg_dma_address(sg+i));
scb->sg_list[i].length = cpu_to_le32(len);
scb->sg_length += len;
}
/* Copy the first SG into the data pointer area. */
hscb->data_pointer = scb->sg_list[0].address;
hscb->data_count = scb->sg_list[0].length;
scb->sg_count = i;
hscb->SG_segment_count = i;
hscb->SG_list_pointer = cpu_to_le32(SCB_DMA_ADDR(scb, &scb->sg_list[1]));
}
else
{
if (cmd->request_bufflen)
{
unsigned int address = pci_map_single(p->pdev, cmd->request_buffer,
cmd->request_bufflen,
cmd->sc_data_direction);
aic7xxx_mapping(cmd) = address;
scb->sg_list[0].address = cpu_to_le32(address);
scb->sg_list[0].length = cpu_to_le32(cmd->request_bufflen);
scb->sg_count = 1;
scb->sg_length = cmd->request_bufflen;
hscb->SG_segment_count = 1;
hscb->SG_list_pointer = cpu_to_le32(SCB_DMA_ADDR(scb, &scb->sg_list[0]));
hscb->data_count = scb->sg_list[0].length;
hscb->data_pointer = scb->sg_list[0].address;
}
else
{
scb->sg_count = 0;
scb->sg_length = 0;
hscb->SG_segment_count = 0;
hscb->SG_list_pointer = 0;
hscb->data_count = 0;
hscb->data_pointer = 0;
}
}
}
/*+F*************************************************************************
* Function:
* aic7xxx_queue
*
* Description:
* Queue a SCB to the controller.
*-F*************************************************************************/
static int
aic7xxx_queue(Scsi_Cmnd *cmd, void (*fn)(Scsi_Cmnd *))
{
struct aic7xxx_host *p;
struct aic7xxx_scb *scb;
struct aic_dev_data *aic_dev;
p = (struct aic7xxx_host *) cmd->device->host->hostdata;
aic_dev = cmd->device->hostdata;
#ifdef AIC7XXX_VERBOSE_DEBUGGING
if (aic_dev->active_cmds > aic_dev->max_q_depth)
{
printk(WARN_LEAD "Commands queued exceeds queue "
"depth, active=%d\n",
p->host_no, CTL_OF_CMD(cmd),
aic_dev->active_cmds);
}
#endif
scb = scbq_remove_head(&p->scb_data->free_scbs);
if (scb == NULL)
{
aic7xxx_allocate_scb(p);
scb = scbq_remove_head(&p->scb_data->free_scbs);
if(scb == NULL)
{
printk(WARN_LEAD "Couldn't get a free SCB.\n", p->host_no,
CTL_OF_CMD(cmd));
return 1;
}
}
scb->cmd = cmd;
/*
* Make sure the Scsi_Cmnd pointer is saved, the struct it points to
* is set up properly, and the parity error flag is reset, then send
* the SCB to the sequencer and watch the fun begin.
*/
aic7xxx_position(cmd) = scb->hscb->tag;
cmd->scsi_done = fn;
cmd->result = DID_OK;
memset(cmd->sense_buffer, 0, sizeof(cmd->sense_buffer));
aic7xxx_error(cmd) = DID_OK;
aic7xxx_status(cmd) = 0;
cmd->host_scribble = NULL;
/*
* Construct the SCB beforehand, so the sequencer is
* paused a minimal amount of time.
*/
aic7xxx_buildscb(p, cmd, scb);
scb->flags |= SCB_ACTIVE | SCB_WAITINGQ;
scbq_insert_tail(&p->waiting_scbs, scb);
aic7xxx_run_waiting_queues(p);
return (0);
}
/*+F*************************************************************************
* Function:
* aic7xxx_bus_device_reset
*
* Description:
* Abort or reset the current SCSI command(s). If the scb has not
* previously been aborted, then we attempt to send a BUS_DEVICE_RESET
* message to the target. If the scb has previously been unsuccessfully
* aborted, then we will reset the channel and have all devices renegotiate.
* Returns an enumerated type that indicates the status of the operation.
*-F*************************************************************************/
static int
__aic7xxx_bus_device_reset(Scsi_Cmnd *cmd)
{
struct aic7xxx_host *p;
struct aic7xxx_scb *scb;
struct aic7xxx_hwscb *hscb;
int channel;
unsigned char saved_scbptr, lastphase;
unsigned char hscb_index;
int disconnected;
struct aic_dev_data *aic_dev;
if(cmd == NULL)
{
printk(KERN_ERR "aic7xxx_bus_device_reset: called with NULL cmd!\n");
return FAILED;
}
p = (struct aic7xxx_host *)cmd->device->host->hostdata;
aic_dev = AIC_DEV(cmd);
if(aic7xxx_position(cmd) < p->scb_data->numscbs)
scb = (p->scb_data->scb_array[aic7xxx_position(cmd)]);
else
return FAILED;
hscb = scb->hscb;
aic7xxx_isr(p->irq, (void *)p, NULL);
aic7xxx_done_cmds_complete(p);
/* If the command was already complete or just completed, then we didn't
* do a reset, return FAILED */
if(!(scb->flags & SCB_ACTIVE))
return FAILED;
pause_sequencer(p);
lastphase = aic_inb(p, LASTPHASE);
if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
{
printk(INFO_LEAD "Bus Device reset, scb flags 0x%x, ",
p->host_no, CTL_OF_SCB(scb), scb->flags);
switch (lastphase)
{
case P_DATAOUT:
printk("Data-Out phase\n");
break;
case P_DATAIN:
printk("Data-In phase\n");
break;
case P_COMMAND:
printk("Command phase\n");
break;
case P_MESGOUT:
printk("Message-Out phase\n");
break;
case P_STATUS:
printk("Status phase\n");
break;
case P_MESGIN:
printk("Message-In phase\n");
break;
default:
/*
* We're not in a valid phase, so assume we're idle.
*/
printk("while idle, LASTPHASE = 0x%x\n", lastphase);
break;
}
printk(INFO_LEAD "SCSISIGI 0x%x, SEQADDR 0x%x, SSTAT0 0x%x, SSTAT1 "
"0x%x\n", p->host_no, CTL_OF_SCB(scb),
aic_inb(p, SCSISIGI),
aic_inb(p, SEQADDR0) | (aic_inb(p, SEQADDR1) << 8),
aic_inb(p, SSTAT0), aic_inb(p, SSTAT1));
printk(INFO_LEAD "SG_CACHEPTR 0x%x, SSTAT2 0x%x, STCNT 0x%x\n", p->host_no,
CTL_OF_SCB(scb),
(p->features & AHC_ULTRA2) ? aic_inb(p, SG_CACHEPTR) : 0,
aic_inb(p, SSTAT2),
aic_inb(p, STCNT + 2) << 16 | aic_inb(p, STCNT + 1) << 8 |
aic_inb(p, STCNT));
}
channel = cmd->device->channel;
/*
* Send a Device Reset Message:
* The target that is holding up the bus may not be the same as
* the one that triggered this timeout (different commands have
* different timeout lengths). Our strategy here is to queue an
* abort message to the timed out target if it is disconnected.
* Otherwise, if we have an active target we stuff the message buffer
* with an abort message and assert ATN in the hopes that the target
* will let go of the bus and go to the mesgout phase. If this
* fails, we'll get another timeout a few seconds later which will
* attempt a bus reset.
*/
saved_scbptr = aic_inb(p, SCBPTR);
disconnected = FALSE;
if (lastphase != P_BUSFREE)
{
if (aic_inb(p, SCB_TAG) >= p->scb_data->numscbs)
{
printk(WARN_LEAD "Invalid SCB ID %d is active, "
"SCB flags = 0x%x.\n", p->host_no,
CTL_OF_CMD(cmd), scb->hscb->tag, scb->flags);
unpause_sequencer(p, FALSE);
return FAILED;
}
if (scb->hscb->tag == aic_inb(p, SCB_TAG))
{
if ( (lastphase == P_MESGOUT) || (lastphase == P_MESGIN) )
{
printk(WARN_LEAD "Device reset, Message buffer "
"in use\n", p->host_no, CTL_OF_SCB(scb));
unpause_sequencer(p, FALSE);
return FAILED;
}
if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
printk(INFO_LEAD "Device reset message in "
"message buffer\n", p->host_no, CTL_OF_SCB(scb));
scb->flags |= SCB_RESET | SCB_DEVICE_RESET;
aic7xxx_error(cmd) = DID_RESET;
aic_dev->flags |= BUS_DEVICE_RESET_PENDING;
/* Send the abort message to the active SCB. */
aic_outb(p, HOST_MSG, MSG_OUT);
aic_outb(p, lastphase | ATNO, SCSISIGO);
unpause_sequencer(p, FALSE);
spin_unlock_irq(p->host->host_lock);
ssleep(1);
spin_lock_irq(p->host->host_lock);
if(aic_dev->flags & BUS_DEVICE_RESET_PENDING)
return FAILED;
else
return SUCCESS;
}
} /* if (last_phase != P_BUSFREE).....indicates we are idle and can work */
/*
* Simply set the MK_MESSAGE flag and the SEQINT handler will do
* the rest on a reconnect/connect.
*/
scb->hscb->control |= MK_MESSAGE;
scb->flags |= SCB_RESET | SCB_DEVICE_RESET;
aic_dev->flags |= BUS_DEVICE_RESET_PENDING;
/*
* Check to see if the command is on the qinfifo. If it is, then we will
* not need to queue the command again since the card should start it soon
*/
if (aic7xxx_search_qinfifo(p, cmd->device->channel, cmd->device->id, cmd->device->lun, hscb->tag,
0, TRUE, NULL) == 0)
{
disconnected = TRUE;
if ((hscb_index = aic7xxx_find_scb(p, scb)) != SCB_LIST_NULL)
{
unsigned char scb_control;
aic_outb(p, hscb_index, SCBPTR);
scb_control = aic_inb(p, SCB_CONTROL);
/*
* If the DISCONNECTED bit is not set in SCB_CONTROL, then we are
* actually on the waiting list, not disconnected, and we don't
* need to requeue the command.
*/
disconnected = (scb_control & DISCONNECTED);
aic_outb(p, scb_control | MK_MESSAGE, SCB_CONTROL);
}
if (disconnected)
{
/*
* Actually requeue this SCB in case we can select the
* device before it reconnects. This can result in the command
* being on the qinfifo twice, but we don't care because it will
* all get cleaned up if/when the reset takes place.
*/
if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
printk(INFO_LEAD "Queueing device reset command.\n", p->host_no,
CTL_OF_SCB(scb));
p->qinfifo[p->qinfifonext++] = scb->hscb->tag;
if (p->features & AHC_QUEUE_REGS)
aic_outb(p, p->qinfifonext, HNSCB_QOFF);
else
aic_outb(p, p->qinfifonext, KERNEL_QINPOS);
scb->flags |= SCB_QUEUED_ABORT;
}
}
aic_outb(p, saved_scbptr, SCBPTR);
unpause_sequencer(p, FALSE);
spin_unlock_irq(p->host->host_lock);
msleep(1000/4);
spin_lock_irq(p->host->host_lock);
if(aic_dev->flags & BUS_DEVICE_RESET_PENDING)
return FAILED;
else
return SUCCESS;
}
static int
aic7xxx_bus_device_reset(Scsi_Cmnd *cmd)
{
int rc;
spin_lock_irq(cmd->device->host->host_lock);
rc = __aic7xxx_bus_device_reset(cmd);
spin_unlock_irq(cmd->device->host->host_lock);
return rc;
}
/*+F*************************************************************************
* Function:
* aic7xxx_panic_abort
*
* Description:
* Abort the current SCSI command(s).
*-F*************************************************************************/
static void
aic7xxx_panic_abort(struct aic7xxx_host *p, Scsi_Cmnd *cmd)
{
printk("aic7xxx driver version %s\n", AIC7XXX_C_VERSION);
printk("Controller type:\n %s\n", board_names[p->board_name_index]);
printk("p->flags=0x%lx, p->chip=0x%x, p->features=0x%x, "
"sequencer %s paused\n",
p->flags, p->chip, p->features,
(aic_inb(p, HCNTRL) & PAUSE) ? "is" : "isn't" );
pause_sequencer(p);
disable_irq(p->irq);
aic7xxx_print_card(p);
aic7xxx_print_scratch_ram(p);
spin_unlock_irq(p->host->host_lock);
for(;;) barrier();
}
/*+F*************************************************************************
* Function:
* aic7xxx_abort
*
* Description:
* Abort the current SCSI command(s).
*-F*************************************************************************/
static int
__aic7xxx_abort(Scsi_Cmnd *cmd)
{
struct aic7xxx_scb *scb = NULL;
struct aic7xxx_host *p;
int found=0, disconnected;
unsigned char saved_hscbptr, hscbptr, scb_control;
struct aic_dev_data *aic_dev;
if(cmd == NULL)
{
printk(KERN_ERR "aic7xxx_abort: called with NULL cmd!\n");
return FAILED;
}
p = (struct aic7xxx_host *)cmd->device->host->hostdata;
aic_dev = AIC_DEV(cmd);
if(aic7xxx_position(cmd) < p->scb_data->numscbs)
scb = (p->scb_data->scb_array[aic7xxx_position(cmd)]);
else
return FAILED;
aic7xxx_isr(p->irq, (void *)p, NULL);
aic7xxx_done_cmds_complete(p);
/* If the command was already complete or just completed, then we didn't
* do a reset, return FAILED */
if(!(scb->flags & SCB_ACTIVE))
return FAILED;
pause_sequencer(p);
/*
* I added a new config option to the driver: "panic_on_abort" that will
* cause the driver to panic and the machine to stop on the first abort
* or reset call into the driver. At that point, it prints out a lot of
* useful information for me which I can then use to try and debug the
* problem. Simply enable the boot time prompt in order to activate this
* code.
*/
if (aic7xxx_panic_on_abort)
aic7xxx_panic_abort(p, cmd);
if (aic7xxx_verbose & VERBOSE_ABORT)
{
printk(INFO_LEAD "Aborting scb %d, flags 0x%x, SEQADDR 0x%x, LASTPHASE "
"0x%x\n",
p->host_no, CTL_OF_SCB(scb), scb->hscb->tag, scb->flags,
aic_inb(p, SEQADDR0) | (aic_inb(p, SEQADDR1) << 8),
aic_inb(p, LASTPHASE));
printk(INFO_LEAD "SG_CACHEPTR 0x%x, SG_COUNT %d, SCSISIGI 0x%x\n",
p->host_no, CTL_OF_SCB(scb), (p->features & AHC_ULTRA2) ?
aic_inb(p, SG_CACHEPTR) : 0, aic_inb(p, SG_COUNT),
aic_inb(p, SCSISIGI));
printk(INFO_LEAD "SSTAT0 0x%x, SSTAT1 0x%x, SSTAT2 0x%x\n",
p->host_no, CTL_OF_SCB(scb), aic_inb(p, SSTAT0),
aic_inb(p, SSTAT1), aic_inb(p, SSTAT2));
}
if (scb->flags & SCB_WAITINGQ)
{
if (aic7xxx_verbose & VERBOSE_ABORT_PROCESS)
printk(INFO_LEAD "SCB found on waiting list and "
"aborted.\n", p->host_no, CTL_OF_SCB(scb));
scbq_remove(&p->waiting_scbs, scb);
scbq_remove(&aic_dev->delayed_scbs, scb);
aic_dev->active_cmds++;
p->activescbs++;
scb->flags &= ~(SCB_WAITINGQ | SCB_ACTIVE);
scb->flags |= SCB_ABORT | SCB_QUEUED_FOR_DONE;
goto success;
}
/*
* We just checked the waiting_q, now for the QINFIFO
*/
if ( ((found = aic7xxx_search_qinfifo(p, cmd->device->id, cmd->device->channel,
cmd->device->lun, scb->hscb->tag, SCB_ABORT | SCB_QUEUED_FOR_DONE,
FALSE, NULL)) != 0) &&
(aic7xxx_verbose & VERBOSE_ABORT_PROCESS))
{
printk(INFO_LEAD "SCB found in QINFIFO and aborted.\n", p->host_no,
CTL_OF_SCB(scb));
goto success;
}
/*
* QINFIFO, waitingq, completeq done. Next, check WAITING_SCB list in card
*/
saved_hscbptr = aic_inb(p, SCBPTR);
if ((hscbptr = aic7xxx_find_scb(p, scb)) != SCB_LIST_NULL)
{
aic_outb(p, hscbptr, SCBPTR);
scb_control = aic_inb(p, SCB_CONTROL);
disconnected = scb_control & DISCONNECTED;
/*
* If the DISCONNECTED bit is not set in SCB_CONTROL, then we are
* either currently active or on the waiting list.
*/
if(!disconnected && aic_inb(p, LASTPHASE) == P_BUSFREE) {
if (aic7xxx_verbose & VERBOSE_ABORT_PROCESS)
printk(INFO_LEAD "SCB found on hardware waiting"
" list and aborted.\n", p->host_no, CTL_OF_SCB(scb));
/* If we are the only waiting command, stop the selection engine */
if (aic_inb(p, WAITING_SCBH) == hscbptr && aic_inb(p, SCB_NEXT) ==
SCB_LIST_NULL)
{
aic_outb(p, aic_inb(p, SCSISEQ) & ~ENSELO, SCSISEQ);
aic_outb(p, CLRSELTIMEO, CLRSINT1);
aic_outb(p, SCB_LIST_NULL, WAITING_SCBH);
}
else
{
unsigned char prev, next;
prev = SCB_LIST_NULL;
next = aic_inb(p, WAITING_SCBH);
while(next != SCB_LIST_NULL)
{
aic_outb(p, next, SCBPTR);
if (next == hscbptr)
{
next = aic_inb(p, SCB_NEXT);
if (prev != SCB_LIST_NULL)
{
aic_outb(p, prev, SCBPTR);
aic_outb(p, next, SCB_NEXT);
}
else
aic_outb(p, next, WAITING_SCBH);
aic_outb(p, hscbptr, SCBPTR);
next = SCB_LIST_NULL;
}
else
{
prev = next;
next = aic_inb(p, SCB_NEXT);
}
}
}
aic_outb(p, SCB_LIST_NULL, SCB_TAG);
aic_outb(p, 0, SCB_CONTROL);
aic7xxx_add_curscb_to_free_list(p);
scb->flags = SCB_ABORT | SCB_QUEUED_FOR_DONE;
goto success;
}
else if (!disconnected)
{
/*
* We are the currently active command
*/
if((aic_inb(p, LASTPHASE) == P_MESGIN) ||
(aic_inb(p, LASTPHASE) == P_MESGOUT))
{
/*
* Message buffer busy, unable to abort
*/
printk(INFO_LEAD "message buffer busy, unable to abort.\n",
p->host_no, CTL_OF_SCB(scb));
unpause_sequencer(p, FALSE);
return FAILED;
}
/* Fallthrough to below, set ATNO after we set SCB_CONTROL */
}
aic_outb(p, scb_control | MK_MESSAGE, SCB_CONTROL);
if(!disconnected)
{
aic_outb(p, HOST_MSG, MSG_OUT);
aic_outb(p, aic_inb(p, SCSISIGI) | ATNO, SCSISIGO);
}
aic_outb(p, saved_hscbptr, SCBPTR);
}
else
{
/*
* The scb isn't in the card at all and it is active and it isn't in
* any of the queues, so it must be disconnected and paged out. Fall
* through to the code below.
*/
disconnected = 1;
}
p->flags |= AHC_ABORT_PENDING;
scb->flags |= SCB_QUEUED_ABORT | SCB_ABORT | SCB_RECOVERY_SCB;
scb->hscb->control |= MK_MESSAGE;
if(disconnected)
{
if (aic7xxx_verbose & VERBOSE_ABORT_PROCESS)
printk(INFO_LEAD "SCB disconnected. Queueing Abort"
" SCB.\n", p->host_no, CTL_OF_SCB(scb));
p->qinfifo[p->qinfifonext++] = scb->hscb->tag;
if (p->features & AHC_QUEUE_REGS)
aic_outb(p, p->qinfifonext, HNSCB_QOFF);
else
aic_outb(p, p->qinfifonext, KERNEL_QINPOS);
}
unpause_sequencer(p, FALSE);
spin_unlock_irq(p->host->host_lock);
msleep(1000/4);
spin_lock_irq(p->host->host_lock);
if (p->flags & AHC_ABORT_PENDING)
{
if (aic7xxx_verbose & VERBOSE_ABORT_RETURN)
printk(INFO_LEAD "Abort never delivered, returning FAILED\n", p->host_no,
CTL_OF_CMD(cmd));
p->flags &= ~AHC_ABORT_PENDING;
return FAILED;
}
if (aic7xxx_verbose & VERBOSE_ABORT_RETURN)
printk(INFO_LEAD "Abort successful.\n", p->host_no, CTL_OF_CMD(cmd));
return SUCCESS;
success:
if (aic7xxx_verbose & VERBOSE_ABORT_RETURN)
printk(INFO_LEAD "Abort successful.\n", p->host_no, CTL_OF_CMD(cmd));
aic7xxx_run_done_queue(p, TRUE);
unpause_sequencer(p, FALSE);
return SUCCESS;
}
static int
aic7xxx_abort(Scsi_Cmnd *cmd)
{
int rc;
spin_lock_irq(cmd->device->host->host_lock);
rc = __aic7xxx_abort(cmd);
spin_unlock_irq(cmd->device->host->host_lock);
return rc;
}
/*+F*************************************************************************
* Function:
* aic7xxx_reset
*
* Description:
* Resetting the bus always succeeds - is has to, otherwise the
* kernel will panic! Try a surgical technique - sending a BUS
* DEVICE RESET message - on the offending target before pulling
* the SCSI bus reset line.
*-F*************************************************************************/
static int
aic7xxx_reset(Scsi_Cmnd *cmd)
{
struct aic7xxx_scb *scb;
struct aic7xxx_host *p;
struct aic_dev_data *aic_dev;
p = (struct aic7xxx_host *) cmd->device->host->hostdata;
spin_lock_irq(p->host->host_lock);
aic_dev = AIC_DEV(cmd);
if(aic7xxx_position(cmd) < p->scb_data->numscbs)
{
scb = (p->scb_data->scb_array[aic7xxx_position(cmd)]);
if (scb->cmd != cmd)
scb = NULL;
}
else
{
scb = NULL;
}
/*
* I added a new config option to the driver: "panic_on_abort" that will
* cause the driver to panic and the machine to stop on the first abort
* or reset call into the driver. At that point, it prints out a lot of
* useful information for me which I can then use to try and debug the
* problem. Simply enable the boot time prompt in order to activate this
* code.
*/
if (aic7xxx_panic_on_abort)
aic7xxx_panic_abort(p, cmd);
pause_sequencer(p);
while((aic_inb(p, INTSTAT) & INT_PEND) && !(p->flags & AHC_IN_ISR))
{
aic7xxx_isr(p->irq, p, (void *)NULL );
pause_sequencer(p);
}
aic7xxx_done_cmds_complete(p);
if(scb && (scb->cmd == NULL))
{
/*
* We just completed the command when we ran the isr stuff, so we no
* longer have it.
*/
unpause_sequencer(p, FALSE);
spin_unlock_irq(p->host->host_lock);
return SUCCESS;
}
/*
* By this point, we want to already know what we are going to do and
* only have the following code implement our course of action.
*/
aic7xxx_reset_channel(p, cmd->device->channel, TRUE);
if (p->features & AHC_TWIN)
{
aic7xxx_reset_channel(p, cmd->device->channel ^ 0x01, TRUE);
restart_sequencer(p);
}
aic_outb(p, aic_inb(p, SIMODE1) & ~(ENREQINIT|ENBUSFREE), SIMODE1);
aic7xxx_clear_intstat(p);
p->flags &= ~AHC_HANDLING_REQINITS;
p->msg_type = MSG_TYPE_NONE;
p->msg_index = 0;
p->msg_len = 0;
aic7xxx_run_done_queue(p, TRUE);
unpause_sequencer(p, FALSE);
spin_unlock_irq(p->host->host_lock);
ssleep(2);
return SUCCESS;
}
/*+F*************************************************************************
* Function:
* aic7xxx_biosparam
*
* Description:
* Return the disk geometry for the given SCSI device.
*
* Note:
* This function is broken for today's really large drives and needs
* fixed.
*-F*************************************************************************/
static int
aic7xxx_biosparam(struct scsi_device *sdev, struct block_device *bdev,
sector_t capacity, int geom[])
{
sector_t heads, sectors, cylinders;
int ret;
struct aic7xxx_host *p;
unsigned char *buf;
p = (struct aic7xxx_host *) sdev->host->hostdata;
buf = scsi_bios_ptable(bdev);
if ( buf )
{
ret = scsi_partsize(buf, capacity, &geom[2], &geom[0], &geom[1]);
kfree(buf);
if ( ret != -1 )
return(ret);
}
heads = 64;
sectors = 32;
cylinders = capacity >> 11;
if ((p->flags & AHC_EXTEND_TRANS_A) && (cylinders > 1024))
{
heads = 255;
sectors = 63;
cylinders = capacity >> 14;
if(capacity > (65535 * heads * sectors))
cylinders = 65535;
else
cylinders = ((unsigned int)capacity) / (unsigned int)(heads * sectors);
}
geom[0] = (int)heads;
geom[1] = (int)sectors;
geom[2] = (int)cylinders;
return (0);
}
/*+F*************************************************************************
* Function:
* aic7xxx_release
*
* Description:
* Free the passed in Scsi_Host memory structures prior to unloading the
* module.
*-F*************************************************************************/
static int
aic7xxx_release(struct Scsi_Host *host)
{
struct aic7xxx_host *p = (struct aic7xxx_host *) host->hostdata;
struct aic7xxx_host *next, *prev;
if(p->irq)
free_irq(p->irq, p);
#ifdef MMAPIO
if(p->maddr)
{
iounmap(p->maddr);
}
#endif /* MMAPIO */
if(!p->pdev)
release_region(p->base, MAXREG - MINREG);
#ifdef CONFIG_PCI
else
pci_release_regions(p->pdev);
#endif
prev = NULL;
next = first_aic7xxx;
while(next != NULL)
{
if(next == p)
{
if(prev == NULL)
first_aic7xxx = next->next;
else
prev->next = next->next;
}
else
{
prev = next;
}
next = next->next;
}
aic7xxx_free(p);
return(0);
}
/*+F*************************************************************************
* Function:
* aic7xxx_print_card
*
* Description:
* Print out all of the control registers on the card
*
* NOTE: This function is not yet safe for use on the VLB and EISA
* controllers, so it isn't used on those controllers at all.
*-F*************************************************************************/
static void
aic7xxx_print_card(struct aic7xxx_host *p)
{
int i, j, k, chip;
static struct register_ranges {
int num_ranges;
int range_val[32];
} cards_ds[] = {
{ 0, {0,} }, /* none */
{10, {0x00, 0x05, 0x08, 0x11, 0x18, 0x19, 0x1f, 0x1f, 0x60, 0x60, /*7771*/
0x62, 0x66, 0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9b, 0x9f} },
{ 9, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1f, 0x60, 0x60, 0x62, 0x66, /*7850*/
0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9f} },
{ 9, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1f, 0x60, 0x60, 0x62, 0x66, /*7860*/
0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9f} },
{10, {0x00, 0x05, 0x08, 0x11, 0x18, 0x19, 0x1c, 0x1f, 0x60, 0x60, /*7870*/
0x62, 0x66, 0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9f} },
{10, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1a, 0x1c, 0x1f, 0x60, 0x60, /*7880*/
0x62, 0x66, 0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9f} },
{16, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1f, 0x60, 0x60, 0x62, 0x66, /*7890*/
0x84, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9a, 0x9f, 0x9f,
0xe0, 0xf1, 0xf4, 0xf4, 0xf6, 0xf6, 0xf8, 0xf8, 0xfa, 0xfc,
0xfe, 0xff} },
{12, {0x00, 0x05, 0x08, 0x11, 0x18, 0x19, 0x1b, 0x1f, 0x60, 0x60, /*7895*/
0x62, 0x66, 0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9a,
0x9f, 0x9f, 0xe0, 0xf1} },
{16, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1f, 0x60, 0x60, 0x62, 0x66, /*7896*/
0x84, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9a, 0x9f, 0x9f,
0xe0, 0xf1, 0xf4, 0xf4, 0xf6, 0xf6, 0xf8, 0xf8, 0xfa, 0xfc,
0xfe, 0xff} },
{12, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1f, 0x60, 0x60, 0x62, 0x66, /*7892*/
0x84, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9a, 0x9c, 0x9f,
0xe0, 0xf1, 0xf4, 0xfc} },
{12, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1f, 0x60, 0x60, 0x62, 0x66, /*7899*/
0x84, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9a, 0x9c, 0x9f,
0xe0, 0xf1, 0xf4, 0xfc} },
};
chip = p->chip & AHC_CHIPID_MASK;
printk("%s at ",
board_names[p->board_name_index]);
switch(p->chip & ~AHC_CHIPID_MASK)
{
case AHC_VL:
printk("VLB Slot %d.\n", p->pci_device_fn);
break;
case AHC_EISA:
printk("EISA Slot %d.\n", p->pci_device_fn);
break;
case AHC_PCI:
default:
printk("PCI %d/%d/%d.\n", p->pci_bus, PCI_SLOT(p->pci_device_fn),
PCI_FUNC(p->pci_device_fn));
break;
}
/*
* the registers on the card....
*/
printk("Card Dump:\n");
k = 0;
for(i=0; i<cards_ds[chip].num_ranges; i++)
{
for(j = cards_ds[chip].range_val[ i * 2 ];
j <= cards_ds[chip].range_val[ i * 2 + 1 ] ;
j++)
{
printk("%02x:%02x ", j, aic_inb(p, j));
if(++k == 13)
{
printk("\n");
k=0;
}
}
}
if(k != 0)
printk("\n");
/*
* If this was an Ultra2 controller, then we just hosed the card in terms
* of the QUEUE REGS. This function is only called at init time or by
* the panic_abort function, so it's safe to assume a generic init time
* setting here
*/
if(p->features & AHC_QUEUE_REGS)
{
aic_outb(p, 0, SDSCB_QOFF);
aic_outb(p, 0, SNSCB_QOFF);
aic_outb(p, 0, HNSCB_QOFF);
}
}
/*+F*************************************************************************
* Function:
* aic7xxx_print_scratch_ram
*
* Description:
* Print out the scratch RAM values on the card.
*-F*************************************************************************/
static void
aic7xxx_print_scratch_ram(struct aic7xxx_host *p)
{
int i, k;
k = 0;
printk("Scratch RAM:\n");
for(i = SRAM_BASE; i < SEQCTL; i++)
{
printk("%02x:%02x ", i, aic_inb(p, i));
if(++k == 13)
{
printk("\n");
k=0;
}
}
if (p->features & AHC_MORE_SRAM)
{
for(i = TARG_OFFSET; i < 0x80; i++)
{
printk("%02x:%02x ", i, aic_inb(p, i));
if(++k == 13)
{
printk("\n");
k=0;
}
}
}
printk("\n");
}
#include "aic7xxx_old/aic7xxx_proc.c"
MODULE_LICENSE("Dual BSD/GPL");
MODULE_VERSION(AIC7XXX_H_VERSION);
static struct scsi_host_template driver_template = {
.proc_info = aic7xxx_proc_info,
.detect = aic7xxx_detect,
.release = aic7xxx_release,
.info = aic7xxx_info,
.queuecommand = aic7xxx_queue,
.slave_alloc = aic7xxx_slave_alloc,
.slave_configure = aic7xxx_slave_configure,
.slave_destroy = aic7xxx_slave_destroy,
.bios_param = aic7xxx_biosparam,
.eh_abort_handler = aic7xxx_abort,
.eh_device_reset_handler = aic7xxx_bus_device_reset,
.eh_host_reset_handler = aic7xxx_reset,
.can_queue = 255,
.this_id = -1,
.max_sectors = 2048,
.cmd_per_lun = 3,
.use_clustering = ENABLE_CLUSTERING,
};
#include "scsi_module.c"
/*
* Overrides for Emacs so that we almost follow Linus's tabbing style.
* Emacs will notice this stuff at the end of the file and automatically
* adjust the settings for this buffer only. This must remain at the end
* of the file.
* ---------------------------------------------------------------------------
* Local variables:
* c-indent-level: 2
* c-brace-imaginary-offset: 0
* c-brace-offset: -2
* c-argdecl-indent: 2
* c-label-offset: -2
* c-continued-statement-offset: 2
* c-continued-brace-offset: 0
* indent-tabs-mode: nil
* tab-width: 8
* End:
*/