70bacbdbfa
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
1800 lines
46 KiB
C
1800 lines
46 KiB
C
/* -*- mode: c; c-basic-offset: 8; -*-
|
|
* vim: noexpandtab sw=8 ts=8 sts=0:
|
|
*
|
|
* Copyright (C) 2004, 2005 Oracle. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 021110-1307, USA.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/module.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/file.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/configfs.h>
|
|
#include <linux/random.h>
|
|
#include <linux/crc32.h>
|
|
#include <linux/time.h>
|
|
|
|
#include "heartbeat.h"
|
|
#include "tcp.h"
|
|
#include "nodemanager.h"
|
|
#include "quorum.h"
|
|
|
|
#include "masklog.h"
|
|
|
|
|
|
/*
|
|
* The first heartbeat pass had one global thread that would serialize all hb
|
|
* callback calls. This global serializing sem should only be removed once
|
|
* we've made sure that all callees can deal with being called concurrently
|
|
* from multiple hb region threads.
|
|
*/
|
|
static DECLARE_RWSEM(o2hb_callback_sem);
|
|
|
|
/*
|
|
* multiple hb threads are watching multiple regions. A node is live
|
|
* whenever any of the threads sees activity from the node in its region.
|
|
*/
|
|
static spinlock_t o2hb_live_lock = SPIN_LOCK_UNLOCKED;
|
|
static struct list_head o2hb_live_slots[O2NM_MAX_NODES];
|
|
static unsigned long o2hb_live_node_bitmap[BITS_TO_LONGS(O2NM_MAX_NODES)];
|
|
static LIST_HEAD(o2hb_node_events);
|
|
static DECLARE_WAIT_QUEUE_HEAD(o2hb_steady_queue);
|
|
|
|
static LIST_HEAD(o2hb_all_regions);
|
|
|
|
static struct o2hb_callback {
|
|
struct list_head list;
|
|
} o2hb_callbacks[O2HB_NUM_CB];
|
|
|
|
static struct o2hb_callback *hbcall_from_type(enum o2hb_callback_type type);
|
|
|
|
#define O2HB_DEFAULT_BLOCK_BITS 9
|
|
|
|
unsigned int o2hb_dead_threshold = O2HB_DEFAULT_DEAD_THRESHOLD;
|
|
|
|
/* Only sets a new threshold if there are no active regions.
|
|
*
|
|
* No locking or otherwise interesting code is required for reading
|
|
* o2hb_dead_threshold as it can't change once regions are active and
|
|
* it's not interesting to anyone until then anyway. */
|
|
static void o2hb_dead_threshold_set(unsigned int threshold)
|
|
{
|
|
if (threshold > O2HB_MIN_DEAD_THRESHOLD) {
|
|
spin_lock(&o2hb_live_lock);
|
|
if (list_empty(&o2hb_all_regions))
|
|
o2hb_dead_threshold = threshold;
|
|
spin_unlock(&o2hb_live_lock);
|
|
}
|
|
}
|
|
|
|
struct o2hb_node_event {
|
|
struct list_head hn_item;
|
|
enum o2hb_callback_type hn_event_type;
|
|
struct o2nm_node *hn_node;
|
|
int hn_node_num;
|
|
};
|
|
|
|
struct o2hb_disk_slot {
|
|
struct o2hb_disk_heartbeat_block *ds_raw_block;
|
|
u8 ds_node_num;
|
|
u64 ds_last_time;
|
|
u64 ds_last_generation;
|
|
u16 ds_equal_samples;
|
|
u16 ds_changed_samples;
|
|
struct list_head ds_live_item;
|
|
};
|
|
|
|
/* each thread owns a region.. when we're asked to tear down the region
|
|
* we ask the thread to stop, who cleans up the region */
|
|
struct o2hb_region {
|
|
struct config_item hr_item;
|
|
|
|
struct list_head hr_all_item;
|
|
unsigned hr_unclean_stop:1;
|
|
|
|
/* protected by the hr_callback_sem */
|
|
struct task_struct *hr_task;
|
|
|
|
unsigned int hr_blocks;
|
|
unsigned long long hr_start_block;
|
|
|
|
unsigned int hr_block_bits;
|
|
unsigned int hr_block_bytes;
|
|
|
|
unsigned int hr_slots_per_page;
|
|
unsigned int hr_num_pages;
|
|
|
|
struct page **hr_slot_data;
|
|
struct block_device *hr_bdev;
|
|
struct o2hb_disk_slot *hr_slots;
|
|
|
|
/* let the person setting up hb wait for it to return until it
|
|
* has reached a 'steady' state. This will be fixed when we have
|
|
* a more complete api that doesn't lead to this sort of fragility. */
|
|
atomic_t hr_steady_iterations;
|
|
|
|
char hr_dev_name[BDEVNAME_SIZE];
|
|
|
|
unsigned int hr_timeout_ms;
|
|
|
|
/* randomized as the region goes up and down so that a node
|
|
* recognizes a node going up and down in one iteration */
|
|
u64 hr_generation;
|
|
|
|
struct work_struct hr_write_timeout_work;
|
|
unsigned long hr_last_timeout_start;
|
|
|
|
/* Used during o2hb_check_slot to hold a copy of the block
|
|
* being checked because we temporarily have to zero out the
|
|
* crc field. */
|
|
struct o2hb_disk_heartbeat_block *hr_tmp_block;
|
|
};
|
|
|
|
struct o2hb_bio_wait_ctxt {
|
|
atomic_t wc_num_reqs;
|
|
struct completion wc_io_complete;
|
|
};
|
|
|
|
static void o2hb_write_timeout(void *arg)
|
|
{
|
|
struct o2hb_region *reg = arg;
|
|
|
|
mlog(ML_ERROR, "Heartbeat write timeout to device %s after %u "
|
|
"milliseconds\n", reg->hr_dev_name,
|
|
jiffies_to_msecs(jiffies - reg->hr_last_timeout_start));
|
|
o2quo_disk_timeout();
|
|
}
|
|
|
|
static void o2hb_arm_write_timeout(struct o2hb_region *reg)
|
|
{
|
|
mlog(0, "Queue write timeout for %u ms\n", O2HB_MAX_WRITE_TIMEOUT_MS);
|
|
|
|
cancel_delayed_work(®->hr_write_timeout_work);
|
|
reg->hr_last_timeout_start = jiffies;
|
|
schedule_delayed_work(®->hr_write_timeout_work,
|
|
msecs_to_jiffies(O2HB_MAX_WRITE_TIMEOUT_MS));
|
|
}
|
|
|
|
static void o2hb_disarm_write_timeout(struct o2hb_region *reg)
|
|
{
|
|
cancel_delayed_work(®->hr_write_timeout_work);
|
|
flush_scheduled_work();
|
|
}
|
|
|
|
static inline void o2hb_bio_wait_init(struct o2hb_bio_wait_ctxt *wc,
|
|
unsigned int num_ios)
|
|
{
|
|
atomic_set(&wc->wc_num_reqs, num_ios);
|
|
init_completion(&wc->wc_io_complete);
|
|
}
|
|
|
|
/* Used in error paths too */
|
|
static inline void o2hb_bio_wait_dec(struct o2hb_bio_wait_ctxt *wc,
|
|
unsigned int num)
|
|
{
|
|
/* sadly atomic_sub_and_test() isn't available on all platforms. The
|
|
* good news is that the fast path only completes one at a time */
|
|
while(num--) {
|
|
if (atomic_dec_and_test(&wc->wc_num_reqs)) {
|
|
BUG_ON(num > 0);
|
|
complete(&wc->wc_io_complete);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void o2hb_wait_on_io(struct o2hb_region *reg,
|
|
struct o2hb_bio_wait_ctxt *wc)
|
|
{
|
|
struct address_space *mapping = reg->hr_bdev->bd_inode->i_mapping;
|
|
|
|
blk_run_address_space(mapping);
|
|
|
|
wait_for_completion(&wc->wc_io_complete);
|
|
}
|
|
|
|
static int o2hb_bio_end_io(struct bio *bio,
|
|
unsigned int bytes_done,
|
|
int error)
|
|
{
|
|
struct o2hb_bio_wait_ctxt *wc = bio->bi_private;
|
|
|
|
if (error)
|
|
mlog(ML_ERROR, "IO Error %d\n", error);
|
|
|
|
if (bio->bi_size)
|
|
return 1;
|
|
|
|
o2hb_bio_wait_dec(wc, 1);
|
|
return 0;
|
|
}
|
|
|
|
/* Setup a Bio to cover I/O against num_slots slots starting at
|
|
* start_slot. */
|
|
static struct bio *o2hb_setup_one_bio(struct o2hb_region *reg,
|
|
struct o2hb_bio_wait_ctxt *wc,
|
|
unsigned int start_slot,
|
|
unsigned int num_slots)
|
|
{
|
|
int i, nr_vecs, len, first_page, last_page;
|
|
unsigned int vec_len, vec_start;
|
|
unsigned int bits = reg->hr_block_bits;
|
|
unsigned int spp = reg->hr_slots_per_page;
|
|
struct bio *bio;
|
|
struct page *page;
|
|
|
|
nr_vecs = (num_slots + spp - 1) / spp;
|
|
|
|
/* Testing has shown this allocation to take long enough under
|
|
* GFP_KERNEL that the local node can get fenced. It would be
|
|
* nicest if we could pre-allocate these bios and avoid this
|
|
* all together. */
|
|
bio = bio_alloc(GFP_ATOMIC, nr_vecs);
|
|
if (!bio) {
|
|
mlog(ML_ERROR, "Could not alloc slots BIO!\n");
|
|
bio = ERR_PTR(-ENOMEM);
|
|
goto bail;
|
|
}
|
|
|
|
/* Must put everything in 512 byte sectors for the bio... */
|
|
bio->bi_sector = (reg->hr_start_block + start_slot) << (bits - 9);
|
|
bio->bi_bdev = reg->hr_bdev;
|
|
bio->bi_private = wc;
|
|
bio->bi_end_io = o2hb_bio_end_io;
|
|
|
|
first_page = start_slot / spp;
|
|
last_page = first_page + nr_vecs;
|
|
vec_start = (start_slot << bits) % PAGE_CACHE_SIZE;
|
|
for(i = first_page; i < last_page; i++) {
|
|
page = reg->hr_slot_data[i];
|
|
|
|
vec_len = PAGE_CACHE_SIZE;
|
|
/* last page might be short */
|
|
if (((i + 1) * spp) > (start_slot + num_slots))
|
|
vec_len = ((num_slots + start_slot) % spp) << bits;
|
|
vec_len -= vec_start;
|
|
|
|
mlog(ML_HB_BIO, "page %d, vec_len = %u, vec_start = %u\n",
|
|
i, vec_len, vec_start);
|
|
|
|
len = bio_add_page(bio, page, vec_len, vec_start);
|
|
if (len != vec_len) {
|
|
bio_put(bio);
|
|
bio = ERR_PTR(-EIO);
|
|
|
|
mlog(ML_ERROR, "Error adding page to bio i = %d, "
|
|
"vec_len = %u, len = %d\n, start = %u\n",
|
|
i, vec_len, len, vec_start);
|
|
goto bail;
|
|
}
|
|
|
|
vec_start = 0;
|
|
}
|
|
|
|
bail:
|
|
return bio;
|
|
}
|
|
|
|
/*
|
|
* Compute the maximum number of sectors the bdev can handle in one bio,
|
|
* as a power of two.
|
|
*
|
|
* Stolen from oracleasm, thanks Joel!
|
|
*/
|
|
static int compute_max_sectors(struct block_device *bdev)
|
|
{
|
|
int max_pages, max_sectors, pow_two_sectors;
|
|
|
|
struct request_queue *q;
|
|
|
|
q = bdev_get_queue(bdev);
|
|
max_pages = q->max_sectors >> (PAGE_SHIFT - 9);
|
|
if (max_pages > BIO_MAX_PAGES)
|
|
max_pages = BIO_MAX_PAGES;
|
|
if (max_pages > q->max_phys_segments)
|
|
max_pages = q->max_phys_segments;
|
|
if (max_pages > q->max_hw_segments)
|
|
max_pages = q->max_hw_segments;
|
|
max_pages--; /* Handle I/Os that straddle a page */
|
|
|
|
max_sectors = max_pages << (PAGE_SHIFT - 9);
|
|
|
|
/* Why is fls() 1-based???? */
|
|
pow_two_sectors = 1 << (fls(max_sectors) - 1);
|
|
|
|
return pow_two_sectors;
|
|
}
|
|
|
|
static inline void o2hb_compute_request_limits(struct o2hb_region *reg,
|
|
unsigned int num_slots,
|
|
unsigned int *num_bios,
|
|
unsigned int *slots_per_bio)
|
|
{
|
|
unsigned int max_sectors, io_sectors;
|
|
|
|
max_sectors = compute_max_sectors(reg->hr_bdev);
|
|
|
|
io_sectors = num_slots << (reg->hr_block_bits - 9);
|
|
|
|
*num_bios = (io_sectors + max_sectors - 1) / max_sectors;
|
|
*slots_per_bio = max_sectors >> (reg->hr_block_bits - 9);
|
|
|
|
mlog(ML_HB_BIO, "My io size is %u sectors for %u slots. This "
|
|
"device can handle %u sectors of I/O\n", io_sectors, num_slots,
|
|
max_sectors);
|
|
mlog(ML_HB_BIO, "Will need %u bios holding %u slots each\n",
|
|
*num_bios, *slots_per_bio);
|
|
}
|
|
|
|
static int o2hb_read_slots(struct o2hb_region *reg,
|
|
unsigned int max_slots)
|
|
{
|
|
unsigned int num_bios, slots_per_bio, start_slot, num_slots;
|
|
int i, status;
|
|
struct o2hb_bio_wait_ctxt wc;
|
|
struct bio **bios;
|
|
struct bio *bio;
|
|
|
|
o2hb_compute_request_limits(reg, max_slots, &num_bios, &slots_per_bio);
|
|
|
|
bios = kcalloc(num_bios, sizeof(struct bio *), GFP_KERNEL);
|
|
if (!bios) {
|
|
status = -ENOMEM;
|
|
mlog_errno(status);
|
|
return status;
|
|
}
|
|
|
|
o2hb_bio_wait_init(&wc, num_bios);
|
|
|
|
num_slots = slots_per_bio;
|
|
for(i = 0; i < num_bios; i++) {
|
|
start_slot = i * slots_per_bio;
|
|
|
|
/* adjust num_slots at last bio */
|
|
if (max_slots < (start_slot + num_slots))
|
|
num_slots = max_slots - start_slot;
|
|
|
|
bio = o2hb_setup_one_bio(reg, &wc, start_slot, num_slots);
|
|
if (IS_ERR(bio)) {
|
|
o2hb_bio_wait_dec(&wc, num_bios - i);
|
|
|
|
status = PTR_ERR(bio);
|
|
mlog_errno(status);
|
|
goto bail_and_wait;
|
|
}
|
|
bios[i] = bio;
|
|
|
|
submit_bio(READ, bio);
|
|
}
|
|
|
|
status = 0;
|
|
|
|
bail_and_wait:
|
|
o2hb_wait_on_io(reg, &wc);
|
|
|
|
if (bios) {
|
|
for(i = 0; i < num_bios; i++)
|
|
if (bios[i])
|
|
bio_put(bios[i]);
|
|
kfree(bios);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static int o2hb_issue_node_write(struct o2hb_region *reg,
|
|
struct bio **write_bio,
|
|
struct o2hb_bio_wait_ctxt *write_wc)
|
|
{
|
|
int status;
|
|
unsigned int slot;
|
|
struct bio *bio;
|
|
|
|
o2hb_bio_wait_init(write_wc, 1);
|
|
|
|
slot = o2nm_this_node();
|
|
|
|
bio = o2hb_setup_one_bio(reg, write_wc, slot, 1);
|
|
if (IS_ERR(bio)) {
|
|
status = PTR_ERR(bio);
|
|
mlog_errno(status);
|
|
goto bail;
|
|
}
|
|
|
|
submit_bio(WRITE, bio);
|
|
|
|
*write_bio = bio;
|
|
status = 0;
|
|
bail:
|
|
return status;
|
|
}
|
|
|
|
static u32 o2hb_compute_block_crc_le(struct o2hb_region *reg,
|
|
struct o2hb_disk_heartbeat_block *hb_block)
|
|
{
|
|
__le32 old_cksum;
|
|
u32 ret;
|
|
|
|
/* We want to compute the block crc with a 0 value in the
|
|
* hb_cksum field. Save it off here and replace after the
|
|
* crc. */
|
|
old_cksum = hb_block->hb_cksum;
|
|
hb_block->hb_cksum = 0;
|
|
|
|
ret = crc32_le(0, (unsigned char *) hb_block, reg->hr_block_bytes);
|
|
|
|
hb_block->hb_cksum = old_cksum;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void o2hb_dump_slot(struct o2hb_disk_heartbeat_block *hb_block)
|
|
{
|
|
mlog(ML_ERROR, "Dump slot information: seq = 0x%llx, node = %u, "
|
|
"cksum = 0x%x, generation 0x%llx\n",
|
|
(long long)le64_to_cpu(hb_block->hb_seq),
|
|
hb_block->hb_node, le32_to_cpu(hb_block->hb_cksum),
|
|
(long long)le64_to_cpu(hb_block->hb_generation));
|
|
}
|
|
|
|
static int o2hb_verify_crc(struct o2hb_region *reg,
|
|
struct o2hb_disk_heartbeat_block *hb_block)
|
|
{
|
|
u32 read, computed;
|
|
|
|
read = le32_to_cpu(hb_block->hb_cksum);
|
|
computed = o2hb_compute_block_crc_le(reg, hb_block);
|
|
|
|
return read == computed;
|
|
}
|
|
|
|
/* We want to make sure that nobody is heartbeating on top of us --
|
|
* this will help detect an invalid configuration. */
|
|
static int o2hb_check_last_timestamp(struct o2hb_region *reg)
|
|
{
|
|
int node_num, ret;
|
|
struct o2hb_disk_slot *slot;
|
|
struct o2hb_disk_heartbeat_block *hb_block;
|
|
|
|
node_num = o2nm_this_node();
|
|
|
|
ret = 1;
|
|
slot = ®->hr_slots[node_num];
|
|
/* Don't check on our 1st timestamp */
|
|
if (slot->ds_last_time) {
|
|
hb_block = slot->ds_raw_block;
|
|
|
|
if (le64_to_cpu(hb_block->hb_seq) != slot->ds_last_time)
|
|
ret = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline void o2hb_prepare_block(struct o2hb_region *reg,
|
|
u64 generation)
|
|
{
|
|
int node_num;
|
|
u64 cputime;
|
|
struct o2hb_disk_slot *slot;
|
|
struct o2hb_disk_heartbeat_block *hb_block;
|
|
|
|
node_num = o2nm_this_node();
|
|
slot = ®->hr_slots[node_num];
|
|
|
|
hb_block = (struct o2hb_disk_heartbeat_block *)slot->ds_raw_block;
|
|
memset(hb_block, 0, reg->hr_block_bytes);
|
|
/* TODO: time stuff */
|
|
cputime = CURRENT_TIME.tv_sec;
|
|
if (!cputime)
|
|
cputime = 1;
|
|
|
|
hb_block->hb_seq = cpu_to_le64(cputime);
|
|
hb_block->hb_node = node_num;
|
|
hb_block->hb_generation = cpu_to_le64(generation);
|
|
|
|
/* This step must always happen last! */
|
|
hb_block->hb_cksum = cpu_to_le32(o2hb_compute_block_crc_le(reg,
|
|
hb_block));
|
|
|
|
mlog(ML_HB_BIO, "our node generation = 0x%llx, cksum = 0x%x\n",
|
|
(long long)cpu_to_le64(generation),
|
|
le32_to_cpu(hb_block->hb_cksum));
|
|
}
|
|
|
|
static void o2hb_fire_callbacks(struct o2hb_callback *hbcall,
|
|
struct o2nm_node *node,
|
|
int idx)
|
|
{
|
|
struct list_head *iter;
|
|
struct o2hb_callback_func *f;
|
|
|
|
list_for_each(iter, &hbcall->list) {
|
|
f = list_entry(iter, struct o2hb_callback_func, hc_item);
|
|
mlog(ML_HEARTBEAT, "calling funcs %p\n", f);
|
|
(f->hc_func)(node, idx, f->hc_data);
|
|
}
|
|
}
|
|
|
|
/* Will run the list in order until we process the passed event */
|
|
static void o2hb_run_event_list(struct o2hb_node_event *queued_event)
|
|
{
|
|
int empty;
|
|
struct o2hb_callback *hbcall;
|
|
struct o2hb_node_event *event;
|
|
|
|
spin_lock(&o2hb_live_lock);
|
|
empty = list_empty(&queued_event->hn_item);
|
|
spin_unlock(&o2hb_live_lock);
|
|
if (empty)
|
|
return;
|
|
|
|
/* Holding callback sem assures we don't alter the callback
|
|
* lists when doing this, and serializes ourselves with other
|
|
* processes wanting callbacks. */
|
|
down_write(&o2hb_callback_sem);
|
|
|
|
spin_lock(&o2hb_live_lock);
|
|
while (!list_empty(&o2hb_node_events)
|
|
&& !list_empty(&queued_event->hn_item)) {
|
|
event = list_entry(o2hb_node_events.next,
|
|
struct o2hb_node_event,
|
|
hn_item);
|
|
list_del_init(&event->hn_item);
|
|
spin_unlock(&o2hb_live_lock);
|
|
|
|
mlog(ML_HEARTBEAT, "Node %s event for %d\n",
|
|
event->hn_event_type == O2HB_NODE_UP_CB ? "UP" : "DOWN",
|
|
event->hn_node_num);
|
|
|
|
hbcall = hbcall_from_type(event->hn_event_type);
|
|
|
|
/* We should *never* have gotten on to the list with a
|
|
* bad type... This isn't something that we should try
|
|
* to recover from. */
|
|
BUG_ON(IS_ERR(hbcall));
|
|
|
|
o2hb_fire_callbacks(hbcall, event->hn_node, event->hn_node_num);
|
|
|
|
spin_lock(&o2hb_live_lock);
|
|
}
|
|
spin_unlock(&o2hb_live_lock);
|
|
|
|
up_write(&o2hb_callback_sem);
|
|
}
|
|
|
|
static void o2hb_queue_node_event(struct o2hb_node_event *event,
|
|
enum o2hb_callback_type type,
|
|
struct o2nm_node *node,
|
|
int node_num)
|
|
{
|
|
assert_spin_locked(&o2hb_live_lock);
|
|
|
|
event->hn_event_type = type;
|
|
event->hn_node = node;
|
|
event->hn_node_num = node_num;
|
|
|
|
mlog(ML_HEARTBEAT, "Queue node %s event for node %d\n",
|
|
type == O2HB_NODE_UP_CB ? "UP" : "DOWN", node_num);
|
|
|
|
list_add_tail(&event->hn_item, &o2hb_node_events);
|
|
}
|
|
|
|
static void o2hb_shutdown_slot(struct o2hb_disk_slot *slot)
|
|
{
|
|
struct o2hb_node_event event =
|
|
{ .hn_item = LIST_HEAD_INIT(event.hn_item), };
|
|
struct o2nm_node *node;
|
|
|
|
node = o2nm_get_node_by_num(slot->ds_node_num);
|
|
if (!node)
|
|
return;
|
|
|
|
spin_lock(&o2hb_live_lock);
|
|
if (!list_empty(&slot->ds_live_item)) {
|
|
mlog(ML_HEARTBEAT, "Shutdown, node %d leaves region\n",
|
|
slot->ds_node_num);
|
|
|
|
list_del_init(&slot->ds_live_item);
|
|
|
|
if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
|
|
clear_bit(slot->ds_node_num, o2hb_live_node_bitmap);
|
|
|
|
o2hb_queue_node_event(&event, O2HB_NODE_DOWN_CB, node,
|
|
slot->ds_node_num);
|
|
}
|
|
}
|
|
spin_unlock(&o2hb_live_lock);
|
|
|
|
o2hb_run_event_list(&event);
|
|
|
|
o2nm_node_put(node);
|
|
}
|
|
|
|
static int o2hb_check_slot(struct o2hb_region *reg,
|
|
struct o2hb_disk_slot *slot)
|
|
{
|
|
int changed = 0, gen_changed = 0;
|
|
struct o2hb_node_event event =
|
|
{ .hn_item = LIST_HEAD_INIT(event.hn_item), };
|
|
struct o2nm_node *node;
|
|
struct o2hb_disk_heartbeat_block *hb_block = reg->hr_tmp_block;
|
|
u64 cputime;
|
|
|
|
memcpy(hb_block, slot->ds_raw_block, reg->hr_block_bytes);
|
|
|
|
/* Is this correct? Do we assume that the node doesn't exist
|
|
* if we're not configured for him? */
|
|
node = o2nm_get_node_by_num(slot->ds_node_num);
|
|
if (!node)
|
|
return 0;
|
|
|
|
if (!o2hb_verify_crc(reg, hb_block)) {
|
|
/* all paths from here will drop o2hb_live_lock for
|
|
* us. */
|
|
spin_lock(&o2hb_live_lock);
|
|
|
|
/* Don't print an error on the console in this case -
|
|
* a freshly formatted heartbeat area will not have a
|
|
* crc set on it. */
|
|
if (list_empty(&slot->ds_live_item))
|
|
goto out;
|
|
|
|
/* The node is live but pushed out a bad crc. We
|
|
* consider it a transient miss but don't populate any
|
|
* other values as they may be junk. */
|
|
mlog(ML_ERROR, "Node %d has written a bad crc to %s\n",
|
|
slot->ds_node_num, reg->hr_dev_name);
|
|
o2hb_dump_slot(hb_block);
|
|
|
|
slot->ds_equal_samples++;
|
|
goto fire_callbacks;
|
|
}
|
|
|
|
/* we don't care if these wrap.. the state transitions below
|
|
* clear at the right places */
|
|
cputime = le64_to_cpu(hb_block->hb_seq);
|
|
if (slot->ds_last_time != cputime)
|
|
slot->ds_changed_samples++;
|
|
else
|
|
slot->ds_equal_samples++;
|
|
slot->ds_last_time = cputime;
|
|
|
|
/* The node changed heartbeat generations. We assume this to
|
|
* mean it dropped off but came back before we timed out. We
|
|
* want to consider it down for the time being but don't want
|
|
* to lose any changed_samples state we might build up to
|
|
* considering it live again. */
|
|
if (slot->ds_last_generation != le64_to_cpu(hb_block->hb_generation)) {
|
|
gen_changed = 1;
|
|
slot->ds_equal_samples = 0;
|
|
mlog(ML_HEARTBEAT, "Node %d changed generation (0x%llx "
|
|
"to 0x%llx)\n", slot->ds_node_num,
|
|
(long long)slot->ds_last_generation,
|
|
(long long)le64_to_cpu(hb_block->hb_generation));
|
|
}
|
|
|
|
slot->ds_last_generation = le64_to_cpu(hb_block->hb_generation);
|
|
|
|
mlog(ML_HEARTBEAT, "Slot %d gen 0x%llx cksum 0x%x "
|
|
"seq %llu last %llu changed %u equal %u\n",
|
|
slot->ds_node_num, (long long)slot->ds_last_generation,
|
|
le32_to_cpu(hb_block->hb_cksum),
|
|
(unsigned long long)le64_to_cpu(hb_block->hb_seq),
|
|
(unsigned long long)slot->ds_last_time, slot->ds_changed_samples,
|
|
slot->ds_equal_samples);
|
|
|
|
spin_lock(&o2hb_live_lock);
|
|
|
|
fire_callbacks:
|
|
/* dead nodes only come to life after some number of
|
|
* changes at any time during their dead time */
|
|
if (list_empty(&slot->ds_live_item) &&
|
|
slot->ds_changed_samples >= O2HB_LIVE_THRESHOLD) {
|
|
mlog(ML_HEARTBEAT, "Node %d (id 0x%llx) joined my region\n",
|
|
slot->ds_node_num, (long long)slot->ds_last_generation);
|
|
|
|
/* first on the list generates a callback */
|
|
if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
|
|
set_bit(slot->ds_node_num, o2hb_live_node_bitmap);
|
|
|
|
o2hb_queue_node_event(&event, O2HB_NODE_UP_CB, node,
|
|
slot->ds_node_num);
|
|
|
|
changed = 1;
|
|
}
|
|
|
|
list_add_tail(&slot->ds_live_item,
|
|
&o2hb_live_slots[slot->ds_node_num]);
|
|
|
|
slot->ds_equal_samples = 0;
|
|
goto out;
|
|
}
|
|
|
|
/* if the list is dead, we're done.. */
|
|
if (list_empty(&slot->ds_live_item))
|
|
goto out;
|
|
|
|
/* live nodes only go dead after enough consequtive missed
|
|
* samples.. reset the missed counter whenever we see
|
|
* activity */
|
|
if (slot->ds_equal_samples >= o2hb_dead_threshold || gen_changed) {
|
|
mlog(ML_HEARTBEAT, "Node %d left my region\n",
|
|
slot->ds_node_num);
|
|
|
|
/* last off the live_slot generates a callback */
|
|
list_del_init(&slot->ds_live_item);
|
|
if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
|
|
clear_bit(slot->ds_node_num, o2hb_live_node_bitmap);
|
|
|
|
o2hb_queue_node_event(&event, O2HB_NODE_DOWN_CB, node,
|
|
slot->ds_node_num);
|
|
|
|
changed = 1;
|
|
}
|
|
|
|
/* We don't clear this because the node is still
|
|
* actually writing new blocks. */
|
|
if (!gen_changed)
|
|
slot->ds_changed_samples = 0;
|
|
goto out;
|
|
}
|
|
if (slot->ds_changed_samples) {
|
|
slot->ds_changed_samples = 0;
|
|
slot->ds_equal_samples = 0;
|
|
}
|
|
out:
|
|
spin_unlock(&o2hb_live_lock);
|
|
|
|
o2hb_run_event_list(&event);
|
|
|
|
o2nm_node_put(node);
|
|
return changed;
|
|
}
|
|
|
|
/* This could be faster if we just implmented a find_last_bit, but I
|
|
* don't think the circumstances warrant it. */
|
|
static int o2hb_highest_node(unsigned long *nodes,
|
|
int numbits)
|
|
{
|
|
int highest, node;
|
|
|
|
highest = numbits;
|
|
node = -1;
|
|
while ((node = find_next_bit(nodes, numbits, node + 1)) != -1) {
|
|
if (node >= numbits)
|
|
break;
|
|
|
|
highest = node;
|
|
}
|
|
|
|
return highest;
|
|
}
|
|
|
|
static void o2hb_do_disk_heartbeat(struct o2hb_region *reg)
|
|
{
|
|
int i, ret, highest_node, change = 0;
|
|
unsigned long configured_nodes[BITS_TO_LONGS(O2NM_MAX_NODES)];
|
|
struct bio *write_bio;
|
|
struct o2hb_bio_wait_ctxt write_wc;
|
|
|
|
if (o2nm_configured_node_map(configured_nodes, sizeof(configured_nodes)))
|
|
return;
|
|
|
|
highest_node = o2hb_highest_node(configured_nodes, O2NM_MAX_NODES);
|
|
if (highest_node >= O2NM_MAX_NODES) {
|
|
mlog(ML_NOTICE, "ocfs2_heartbeat: no configured nodes found!\n");
|
|
return;
|
|
}
|
|
|
|
/* No sense in reading the slots of nodes that don't exist
|
|
* yet. Of course, if the node definitions have holes in them
|
|
* then we're reading an empty slot anyway... Consider this
|
|
* best-effort. */
|
|
ret = o2hb_read_slots(reg, highest_node + 1);
|
|
if (ret < 0) {
|
|
mlog_errno(ret);
|
|
return;
|
|
}
|
|
|
|
/* With an up to date view of the slots, we can check that no
|
|
* other node has been improperly configured to heartbeat in
|
|
* our slot. */
|
|
if (!o2hb_check_last_timestamp(reg))
|
|
mlog(ML_ERROR, "Device \"%s\": another node is heartbeating "
|
|
"in our slot!\n", reg->hr_dev_name);
|
|
|
|
/* fill in the proper info for our next heartbeat */
|
|
o2hb_prepare_block(reg, reg->hr_generation);
|
|
|
|
/* And fire off the write. Note that we don't wait on this I/O
|
|
* until later. */
|
|
ret = o2hb_issue_node_write(reg, &write_bio, &write_wc);
|
|
if (ret < 0) {
|
|
mlog_errno(ret);
|
|
return;
|
|
}
|
|
|
|
i = -1;
|
|
while((i = find_next_bit(configured_nodes, O2NM_MAX_NODES, i + 1)) < O2NM_MAX_NODES) {
|
|
|
|
change |= o2hb_check_slot(reg, ®->hr_slots[i]);
|
|
}
|
|
|
|
/*
|
|
* We have to be sure we've advertised ourselves on disk
|
|
* before we can go to steady state. This ensures that
|
|
* people we find in our steady state have seen us.
|
|
*/
|
|
o2hb_wait_on_io(reg, &write_wc);
|
|
bio_put(write_bio);
|
|
o2hb_arm_write_timeout(reg);
|
|
|
|
/* let the person who launched us know when things are steady */
|
|
if (!change && (atomic_read(®->hr_steady_iterations) != 0)) {
|
|
if (atomic_dec_and_test(®->hr_steady_iterations))
|
|
wake_up(&o2hb_steady_queue);
|
|
}
|
|
}
|
|
|
|
/* Subtract b from a, storing the result in a. a *must* have a larger
|
|
* value than b. */
|
|
static void o2hb_tv_subtract(struct timeval *a,
|
|
struct timeval *b)
|
|
{
|
|
/* just return 0 when a is after b */
|
|
if (a->tv_sec < b->tv_sec ||
|
|
(a->tv_sec == b->tv_sec && a->tv_usec < b->tv_usec)) {
|
|
a->tv_sec = 0;
|
|
a->tv_usec = 0;
|
|
return;
|
|
}
|
|
|
|
a->tv_sec -= b->tv_sec;
|
|
a->tv_usec -= b->tv_usec;
|
|
while ( a->tv_usec < 0 ) {
|
|
a->tv_sec--;
|
|
a->tv_usec += 1000000;
|
|
}
|
|
}
|
|
|
|
static unsigned int o2hb_elapsed_msecs(struct timeval *start,
|
|
struct timeval *end)
|
|
{
|
|
struct timeval res = *end;
|
|
|
|
o2hb_tv_subtract(&res, start);
|
|
|
|
return res.tv_sec * 1000 + res.tv_usec / 1000;
|
|
}
|
|
|
|
/*
|
|
* we ride the region ref that the region dir holds. before the region
|
|
* dir is removed and drops it ref it will wait to tear down this
|
|
* thread.
|
|
*/
|
|
static int o2hb_thread(void *data)
|
|
{
|
|
int i, ret;
|
|
struct o2hb_region *reg = data;
|
|
struct bio *write_bio;
|
|
struct o2hb_bio_wait_ctxt write_wc;
|
|
struct timeval before_hb, after_hb;
|
|
unsigned int elapsed_msec;
|
|
|
|
mlog(ML_HEARTBEAT|ML_KTHREAD, "hb thread running\n");
|
|
|
|
set_user_nice(current, -20);
|
|
|
|
while (!kthread_should_stop() && !reg->hr_unclean_stop) {
|
|
/* We track the time spent inside
|
|
* o2hb_do_disk_heartbeat so that we avoid more then
|
|
* hr_timeout_ms between disk writes. On busy systems
|
|
* this should result in a heartbeat which is less
|
|
* likely to time itself out. */
|
|
do_gettimeofday(&before_hb);
|
|
|
|
o2hb_do_disk_heartbeat(reg);
|
|
|
|
do_gettimeofday(&after_hb);
|
|
elapsed_msec = o2hb_elapsed_msecs(&before_hb, &after_hb);
|
|
|
|
mlog(0, "start = %lu.%lu, end = %lu.%lu, msec = %u\n",
|
|
before_hb.tv_sec, (unsigned long) before_hb.tv_usec,
|
|
after_hb.tv_sec, (unsigned long) after_hb.tv_usec,
|
|
elapsed_msec);
|
|
|
|
if (elapsed_msec < reg->hr_timeout_ms) {
|
|
/* the kthread api has blocked signals for us so no
|
|
* need to record the return value. */
|
|
msleep_interruptible(reg->hr_timeout_ms - elapsed_msec);
|
|
}
|
|
}
|
|
|
|
o2hb_disarm_write_timeout(reg);
|
|
|
|
/* unclean stop is only used in very bad situation */
|
|
for(i = 0; !reg->hr_unclean_stop && i < reg->hr_blocks; i++)
|
|
o2hb_shutdown_slot(®->hr_slots[i]);
|
|
|
|
/* Explicit down notification - avoid forcing the other nodes
|
|
* to timeout on this region when we could just as easily
|
|
* write a clear generation - thus indicating to them that
|
|
* this node has left this region.
|
|
*
|
|
* XXX: Should we skip this on unclean_stop? */
|
|
o2hb_prepare_block(reg, 0);
|
|
ret = o2hb_issue_node_write(reg, &write_bio, &write_wc);
|
|
if (ret == 0) {
|
|
o2hb_wait_on_io(reg, &write_wc);
|
|
bio_put(write_bio);
|
|
} else {
|
|
mlog_errno(ret);
|
|
}
|
|
|
|
mlog(ML_HEARTBEAT|ML_KTHREAD, "hb thread exiting\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
void o2hb_init(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(o2hb_callbacks); i++)
|
|
INIT_LIST_HEAD(&o2hb_callbacks[i].list);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(o2hb_live_slots); i++)
|
|
INIT_LIST_HEAD(&o2hb_live_slots[i]);
|
|
|
|
INIT_LIST_HEAD(&o2hb_node_events);
|
|
|
|
memset(o2hb_live_node_bitmap, 0, sizeof(o2hb_live_node_bitmap));
|
|
}
|
|
|
|
/* if we're already in a callback then we're already serialized by the sem */
|
|
static void o2hb_fill_node_map_from_callback(unsigned long *map,
|
|
unsigned bytes)
|
|
{
|
|
BUG_ON(bytes < (BITS_TO_LONGS(O2NM_MAX_NODES) * sizeof(unsigned long)));
|
|
|
|
memcpy(map, &o2hb_live_node_bitmap, bytes);
|
|
}
|
|
|
|
/*
|
|
* get a map of all nodes that are heartbeating in any regions
|
|
*/
|
|
void o2hb_fill_node_map(unsigned long *map, unsigned bytes)
|
|
{
|
|
/* callers want to serialize this map and callbacks so that they
|
|
* can trust that they don't miss nodes coming to the party */
|
|
down_read(&o2hb_callback_sem);
|
|
spin_lock(&o2hb_live_lock);
|
|
o2hb_fill_node_map_from_callback(map, bytes);
|
|
spin_unlock(&o2hb_live_lock);
|
|
up_read(&o2hb_callback_sem);
|
|
}
|
|
EXPORT_SYMBOL_GPL(o2hb_fill_node_map);
|
|
|
|
/*
|
|
* heartbeat configfs bits. The heartbeat set is a default set under
|
|
* the cluster set in nodemanager.c.
|
|
*/
|
|
|
|
static struct o2hb_region *to_o2hb_region(struct config_item *item)
|
|
{
|
|
return item ? container_of(item, struct o2hb_region, hr_item) : NULL;
|
|
}
|
|
|
|
/* drop_item only drops its ref after killing the thread, nothing should
|
|
* be using the region anymore. this has to clean up any state that
|
|
* attributes might have built up. */
|
|
static void o2hb_region_release(struct config_item *item)
|
|
{
|
|
int i;
|
|
struct page *page;
|
|
struct o2hb_region *reg = to_o2hb_region(item);
|
|
|
|
if (reg->hr_tmp_block)
|
|
kfree(reg->hr_tmp_block);
|
|
|
|
if (reg->hr_slot_data) {
|
|
for (i = 0; i < reg->hr_num_pages; i++) {
|
|
page = reg->hr_slot_data[i];
|
|
if (page)
|
|
__free_page(page);
|
|
}
|
|
kfree(reg->hr_slot_data);
|
|
}
|
|
|
|
if (reg->hr_bdev)
|
|
blkdev_put(reg->hr_bdev);
|
|
|
|
if (reg->hr_slots)
|
|
kfree(reg->hr_slots);
|
|
|
|
spin_lock(&o2hb_live_lock);
|
|
list_del(®->hr_all_item);
|
|
spin_unlock(&o2hb_live_lock);
|
|
|
|
kfree(reg);
|
|
}
|
|
|
|
static int o2hb_read_block_input(struct o2hb_region *reg,
|
|
const char *page,
|
|
size_t count,
|
|
unsigned long *ret_bytes,
|
|
unsigned int *ret_bits)
|
|
{
|
|
unsigned long bytes;
|
|
char *p = (char *)page;
|
|
|
|
bytes = simple_strtoul(p, &p, 0);
|
|
if (!p || (*p && (*p != '\n')))
|
|
return -EINVAL;
|
|
|
|
/* Heartbeat and fs min / max block sizes are the same. */
|
|
if (bytes > 4096 || bytes < 512)
|
|
return -ERANGE;
|
|
if (hweight16(bytes) != 1)
|
|
return -EINVAL;
|
|
|
|
if (ret_bytes)
|
|
*ret_bytes = bytes;
|
|
if (ret_bits)
|
|
*ret_bits = ffs(bytes) - 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t o2hb_region_block_bytes_read(struct o2hb_region *reg,
|
|
char *page)
|
|
{
|
|
return sprintf(page, "%u\n", reg->hr_block_bytes);
|
|
}
|
|
|
|
static ssize_t o2hb_region_block_bytes_write(struct o2hb_region *reg,
|
|
const char *page,
|
|
size_t count)
|
|
{
|
|
int status;
|
|
unsigned long block_bytes;
|
|
unsigned int block_bits;
|
|
|
|
if (reg->hr_bdev)
|
|
return -EINVAL;
|
|
|
|
status = o2hb_read_block_input(reg, page, count,
|
|
&block_bytes, &block_bits);
|
|
if (status)
|
|
return status;
|
|
|
|
reg->hr_block_bytes = (unsigned int)block_bytes;
|
|
reg->hr_block_bits = block_bits;
|
|
|
|
return count;
|
|
}
|
|
|
|
static ssize_t o2hb_region_start_block_read(struct o2hb_region *reg,
|
|
char *page)
|
|
{
|
|
return sprintf(page, "%llu\n", reg->hr_start_block);
|
|
}
|
|
|
|
static ssize_t o2hb_region_start_block_write(struct o2hb_region *reg,
|
|
const char *page,
|
|
size_t count)
|
|
{
|
|
unsigned long long tmp;
|
|
char *p = (char *)page;
|
|
|
|
if (reg->hr_bdev)
|
|
return -EINVAL;
|
|
|
|
tmp = simple_strtoull(p, &p, 0);
|
|
if (!p || (*p && (*p != '\n')))
|
|
return -EINVAL;
|
|
|
|
reg->hr_start_block = tmp;
|
|
|
|
return count;
|
|
}
|
|
|
|
static ssize_t o2hb_region_blocks_read(struct o2hb_region *reg,
|
|
char *page)
|
|
{
|
|
return sprintf(page, "%d\n", reg->hr_blocks);
|
|
}
|
|
|
|
static ssize_t o2hb_region_blocks_write(struct o2hb_region *reg,
|
|
const char *page,
|
|
size_t count)
|
|
{
|
|
unsigned long tmp;
|
|
char *p = (char *)page;
|
|
|
|
if (reg->hr_bdev)
|
|
return -EINVAL;
|
|
|
|
tmp = simple_strtoul(p, &p, 0);
|
|
if (!p || (*p && (*p != '\n')))
|
|
return -EINVAL;
|
|
|
|
if (tmp > O2NM_MAX_NODES || tmp == 0)
|
|
return -ERANGE;
|
|
|
|
reg->hr_blocks = (unsigned int)tmp;
|
|
|
|
return count;
|
|
}
|
|
|
|
static ssize_t o2hb_region_dev_read(struct o2hb_region *reg,
|
|
char *page)
|
|
{
|
|
unsigned int ret = 0;
|
|
|
|
if (reg->hr_bdev)
|
|
ret = sprintf(page, "%s\n", reg->hr_dev_name);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void o2hb_init_region_params(struct o2hb_region *reg)
|
|
{
|
|
reg->hr_slots_per_page = PAGE_CACHE_SIZE >> reg->hr_block_bits;
|
|
reg->hr_timeout_ms = O2HB_REGION_TIMEOUT_MS;
|
|
|
|
mlog(ML_HEARTBEAT, "hr_start_block = %llu, hr_blocks = %u\n",
|
|
reg->hr_start_block, reg->hr_blocks);
|
|
mlog(ML_HEARTBEAT, "hr_block_bytes = %u, hr_block_bits = %u\n",
|
|
reg->hr_block_bytes, reg->hr_block_bits);
|
|
mlog(ML_HEARTBEAT, "hr_timeout_ms = %u\n", reg->hr_timeout_ms);
|
|
mlog(ML_HEARTBEAT, "dead threshold = %u\n", o2hb_dead_threshold);
|
|
}
|
|
|
|
static int o2hb_map_slot_data(struct o2hb_region *reg)
|
|
{
|
|
int i, j;
|
|
unsigned int last_slot;
|
|
unsigned int spp = reg->hr_slots_per_page;
|
|
struct page *page;
|
|
char *raw;
|
|
struct o2hb_disk_slot *slot;
|
|
|
|
reg->hr_tmp_block = kmalloc(reg->hr_block_bytes, GFP_KERNEL);
|
|
if (reg->hr_tmp_block == NULL) {
|
|
mlog_errno(-ENOMEM);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
reg->hr_slots = kcalloc(reg->hr_blocks,
|
|
sizeof(struct o2hb_disk_slot), GFP_KERNEL);
|
|
if (reg->hr_slots == NULL) {
|
|
mlog_errno(-ENOMEM);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
for(i = 0; i < reg->hr_blocks; i++) {
|
|
slot = ®->hr_slots[i];
|
|
slot->ds_node_num = i;
|
|
INIT_LIST_HEAD(&slot->ds_live_item);
|
|
slot->ds_raw_block = NULL;
|
|
}
|
|
|
|
reg->hr_num_pages = (reg->hr_blocks + spp - 1) / spp;
|
|
mlog(ML_HEARTBEAT, "Going to require %u pages to cover %u blocks "
|
|
"at %u blocks per page\n",
|
|
reg->hr_num_pages, reg->hr_blocks, spp);
|
|
|
|
reg->hr_slot_data = kcalloc(reg->hr_num_pages, sizeof(struct page *),
|
|
GFP_KERNEL);
|
|
if (!reg->hr_slot_data) {
|
|
mlog_errno(-ENOMEM);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
for(i = 0; i < reg->hr_num_pages; i++) {
|
|
page = alloc_page(GFP_KERNEL);
|
|
if (!page) {
|
|
mlog_errno(-ENOMEM);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
reg->hr_slot_data[i] = page;
|
|
|
|
last_slot = i * spp;
|
|
raw = page_address(page);
|
|
for (j = 0;
|
|
(j < spp) && ((j + last_slot) < reg->hr_blocks);
|
|
j++) {
|
|
BUG_ON((j + last_slot) >= reg->hr_blocks);
|
|
|
|
slot = ®->hr_slots[j + last_slot];
|
|
slot->ds_raw_block =
|
|
(struct o2hb_disk_heartbeat_block *) raw;
|
|
|
|
raw += reg->hr_block_bytes;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Read in all the slots available and populate the tracking
|
|
* structures so that we can start with a baseline idea of what's
|
|
* there. */
|
|
static int o2hb_populate_slot_data(struct o2hb_region *reg)
|
|
{
|
|
int ret, i;
|
|
struct o2hb_disk_slot *slot;
|
|
struct o2hb_disk_heartbeat_block *hb_block;
|
|
|
|
mlog_entry_void();
|
|
|
|
ret = o2hb_read_slots(reg, reg->hr_blocks);
|
|
if (ret) {
|
|
mlog_errno(ret);
|
|
goto out;
|
|
}
|
|
|
|
/* We only want to get an idea of the values initially in each
|
|
* slot, so we do no verification - o2hb_check_slot will
|
|
* actually determine if each configured slot is valid and
|
|
* whether any values have changed. */
|
|
for(i = 0; i < reg->hr_blocks; i++) {
|
|
slot = ®->hr_slots[i];
|
|
hb_block = (struct o2hb_disk_heartbeat_block *) slot->ds_raw_block;
|
|
|
|
/* Only fill the values that o2hb_check_slot uses to
|
|
* determine changing slots */
|
|
slot->ds_last_time = le64_to_cpu(hb_block->hb_seq);
|
|
slot->ds_last_generation = le64_to_cpu(hb_block->hb_generation);
|
|
}
|
|
|
|
out:
|
|
mlog_exit(ret);
|
|
return ret;
|
|
}
|
|
|
|
/* this is acting as commit; we set up all of hr_bdev and hr_task or nothing */
|
|
static ssize_t o2hb_region_dev_write(struct o2hb_region *reg,
|
|
const char *page,
|
|
size_t count)
|
|
{
|
|
long fd;
|
|
int sectsize;
|
|
char *p = (char *)page;
|
|
struct file *filp = NULL;
|
|
struct inode *inode = NULL;
|
|
ssize_t ret = -EINVAL;
|
|
|
|
if (reg->hr_bdev)
|
|
goto out;
|
|
|
|
/* We can't heartbeat without having had our node number
|
|
* configured yet. */
|
|
if (o2nm_this_node() == O2NM_MAX_NODES)
|
|
goto out;
|
|
|
|
fd = simple_strtol(p, &p, 0);
|
|
if (!p || (*p && (*p != '\n')))
|
|
goto out;
|
|
|
|
if (fd < 0 || fd >= INT_MAX)
|
|
goto out;
|
|
|
|
filp = fget(fd);
|
|
if (filp == NULL)
|
|
goto out;
|
|
|
|
if (reg->hr_blocks == 0 || reg->hr_start_block == 0 ||
|
|
reg->hr_block_bytes == 0)
|
|
goto out;
|
|
|
|
inode = igrab(filp->f_mapping->host);
|
|
if (inode == NULL)
|
|
goto out;
|
|
|
|
if (!S_ISBLK(inode->i_mode))
|
|
goto out;
|
|
|
|
reg->hr_bdev = I_BDEV(filp->f_mapping->host);
|
|
ret = blkdev_get(reg->hr_bdev, FMODE_WRITE | FMODE_READ, 0);
|
|
if (ret) {
|
|
reg->hr_bdev = NULL;
|
|
goto out;
|
|
}
|
|
inode = NULL;
|
|
|
|
bdevname(reg->hr_bdev, reg->hr_dev_name);
|
|
|
|
sectsize = bdev_hardsect_size(reg->hr_bdev);
|
|
if (sectsize != reg->hr_block_bytes) {
|
|
mlog(ML_ERROR,
|
|
"blocksize %u incorrect for device, expected %d",
|
|
reg->hr_block_bytes, sectsize);
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
o2hb_init_region_params(reg);
|
|
|
|
/* Generation of zero is invalid */
|
|
do {
|
|
get_random_bytes(®->hr_generation,
|
|
sizeof(reg->hr_generation));
|
|
} while (reg->hr_generation == 0);
|
|
|
|
ret = o2hb_map_slot_data(reg);
|
|
if (ret) {
|
|
mlog_errno(ret);
|
|
goto out;
|
|
}
|
|
|
|
ret = o2hb_populate_slot_data(reg);
|
|
if (ret) {
|
|
mlog_errno(ret);
|
|
goto out;
|
|
}
|
|
|
|
INIT_WORK(®->hr_write_timeout_work, o2hb_write_timeout, reg);
|
|
|
|
/*
|
|
* A node is considered live after it has beat LIVE_THRESHOLD
|
|
* times. We're not steady until we've given them a chance
|
|
* _after_ our first read.
|
|
*/
|
|
atomic_set(®->hr_steady_iterations, O2HB_LIVE_THRESHOLD + 1);
|
|
|
|
reg->hr_task = kthread_run(o2hb_thread, reg, "o2hb-%s",
|
|
reg->hr_item.ci_name);
|
|
if (IS_ERR(reg->hr_task)) {
|
|
ret = PTR_ERR(reg->hr_task);
|
|
mlog_errno(ret);
|
|
reg->hr_task = NULL;
|
|
goto out;
|
|
}
|
|
|
|
ret = wait_event_interruptible(o2hb_steady_queue,
|
|
atomic_read(®->hr_steady_iterations) == 0);
|
|
if (ret) {
|
|
kthread_stop(reg->hr_task);
|
|
reg->hr_task = NULL;
|
|
goto out;
|
|
}
|
|
|
|
ret = count;
|
|
out:
|
|
if (filp)
|
|
fput(filp);
|
|
if (inode)
|
|
iput(inode);
|
|
if (ret < 0) {
|
|
if (reg->hr_bdev) {
|
|
blkdev_put(reg->hr_bdev);
|
|
reg->hr_bdev = NULL;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
struct o2hb_region_attribute {
|
|
struct configfs_attribute attr;
|
|
ssize_t (*show)(struct o2hb_region *, char *);
|
|
ssize_t (*store)(struct o2hb_region *, const char *, size_t);
|
|
};
|
|
|
|
static struct o2hb_region_attribute o2hb_region_attr_block_bytes = {
|
|
.attr = { .ca_owner = THIS_MODULE,
|
|
.ca_name = "block_bytes",
|
|
.ca_mode = S_IRUGO | S_IWUSR },
|
|
.show = o2hb_region_block_bytes_read,
|
|
.store = o2hb_region_block_bytes_write,
|
|
};
|
|
|
|
static struct o2hb_region_attribute o2hb_region_attr_start_block = {
|
|
.attr = { .ca_owner = THIS_MODULE,
|
|
.ca_name = "start_block",
|
|
.ca_mode = S_IRUGO | S_IWUSR },
|
|
.show = o2hb_region_start_block_read,
|
|
.store = o2hb_region_start_block_write,
|
|
};
|
|
|
|
static struct o2hb_region_attribute o2hb_region_attr_blocks = {
|
|
.attr = { .ca_owner = THIS_MODULE,
|
|
.ca_name = "blocks",
|
|
.ca_mode = S_IRUGO | S_IWUSR },
|
|
.show = o2hb_region_blocks_read,
|
|
.store = o2hb_region_blocks_write,
|
|
};
|
|
|
|
static struct o2hb_region_attribute o2hb_region_attr_dev = {
|
|
.attr = { .ca_owner = THIS_MODULE,
|
|
.ca_name = "dev",
|
|
.ca_mode = S_IRUGO | S_IWUSR },
|
|
.show = o2hb_region_dev_read,
|
|
.store = o2hb_region_dev_write,
|
|
};
|
|
|
|
static struct configfs_attribute *o2hb_region_attrs[] = {
|
|
&o2hb_region_attr_block_bytes.attr,
|
|
&o2hb_region_attr_start_block.attr,
|
|
&o2hb_region_attr_blocks.attr,
|
|
&o2hb_region_attr_dev.attr,
|
|
NULL,
|
|
};
|
|
|
|
static ssize_t o2hb_region_show(struct config_item *item,
|
|
struct configfs_attribute *attr,
|
|
char *page)
|
|
{
|
|
struct o2hb_region *reg = to_o2hb_region(item);
|
|
struct o2hb_region_attribute *o2hb_region_attr =
|
|
container_of(attr, struct o2hb_region_attribute, attr);
|
|
ssize_t ret = 0;
|
|
|
|
if (o2hb_region_attr->show)
|
|
ret = o2hb_region_attr->show(reg, page);
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t o2hb_region_store(struct config_item *item,
|
|
struct configfs_attribute *attr,
|
|
const char *page, size_t count)
|
|
{
|
|
struct o2hb_region *reg = to_o2hb_region(item);
|
|
struct o2hb_region_attribute *o2hb_region_attr =
|
|
container_of(attr, struct o2hb_region_attribute, attr);
|
|
ssize_t ret = -EINVAL;
|
|
|
|
if (o2hb_region_attr->store)
|
|
ret = o2hb_region_attr->store(reg, page, count);
|
|
return ret;
|
|
}
|
|
|
|
static struct configfs_item_operations o2hb_region_item_ops = {
|
|
.release = o2hb_region_release,
|
|
.show_attribute = o2hb_region_show,
|
|
.store_attribute = o2hb_region_store,
|
|
};
|
|
|
|
static struct config_item_type o2hb_region_type = {
|
|
.ct_item_ops = &o2hb_region_item_ops,
|
|
.ct_attrs = o2hb_region_attrs,
|
|
.ct_owner = THIS_MODULE,
|
|
};
|
|
|
|
/* heartbeat set */
|
|
|
|
struct o2hb_heartbeat_group {
|
|
struct config_group hs_group;
|
|
/* some stuff? */
|
|
};
|
|
|
|
static struct o2hb_heartbeat_group *to_o2hb_heartbeat_group(struct config_group *group)
|
|
{
|
|
return group ?
|
|
container_of(group, struct o2hb_heartbeat_group, hs_group)
|
|
: NULL;
|
|
}
|
|
|
|
static struct config_item *o2hb_heartbeat_group_make_item(struct config_group *group,
|
|
const char *name)
|
|
{
|
|
struct o2hb_region *reg = NULL;
|
|
struct config_item *ret = NULL;
|
|
|
|
reg = kcalloc(1, sizeof(struct o2hb_region), GFP_KERNEL);
|
|
if (reg == NULL)
|
|
goto out; /* ENOMEM */
|
|
|
|
config_item_init_type_name(®->hr_item, name, &o2hb_region_type);
|
|
|
|
ret = ®->hr_item;
|
|
|
|
spin_lock(&o2hb_live_lock);
|
|
list_add_tail(®->hr_all_item, &o2hb_all_regions);
|
|
spin_unlock(&o2hb_live_lock);
|
|
out:
|
|
if (ret == NULL)
|
|
kfree(reg);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void o2hb_heartbeat_group_drop_item(struct config_group *group,
|
|
struct config_item *item)
|
|
{
|
|
struct o2hb_region *reg = to_o2hb_region(item);
|
|
|
|
/* stop the thread when the user removes the region dir */
|
|
if (reg->hr_task) {
|
|
kthread_stop(reg->hr_task);
|
|
reg->hr_task = NULL;
|
|
}
|
|
|
|
config_item_put(item);
|
|
}
|
|
|
|
struct o2hb_heartbeat_group_attribute {
|
|
struct configfs_attribute attr;
|
|
ssize_t (*show)(struct o2hb_heartbeat_group *, char *);
|
|
ssize_t (*store)(struct o2hb_heartbeat_group *, const char *, size_t);
|
|
};
|
|
|
|
static ssize_t o2hb_heartbeat_group_show(struct config_item *item,
|
|
struct configfs_attribute *attr,
|
|
char *page)
|
|
{
|
|
struct o2hb_heartbeat_group *reg = to_o2hb_heartbeat_group(to_config_group(item));
|
|
struct o2hb_heartbeat_group_attribute *o2hb_heartbeat_group_attr =
|
|
container_of(attr, struct o2hb_heartbeat_group_attribute, attr);
|
|
ssize_t ret = 0;
|
|
|
|
if (o2hb_heartbeat_group_attr->show)
|
|
ret = o2hb_heartbeat_group_attr->show(reg, page);
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t o2hb_heartbeat_group_store(struct config_item *item,
|
|
struct configfs_attribute *attr,
|
|
const char *page, size_t count)
|
|
{
|
|
struct o2hb_heartbeat_group *reg = to_o2hb_heartbeat_group(to_config_group(item));
|
|
struct o2hb_heartbeat_group_attribute *o2hb_heartbeat_group_attr =
|
|
container_of(attr, struct o2hb_heartbeat_group_attribute, attr);
|
|
ssize_t ret = -EINVAL;
|
|
|
|
if (o2hb_heartbeat_group_attr->store)
|
|
ret = o2hb_heartbeat_group_attr->store(reg, page, count);
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t o2hb_heartbeat_group_threshold_show(struct o2hb_heartbeat_group *group,
|
|
char *page)
|
|
{
|
|
return sprintf(page, "%u\n", o2hb_dead_threshold);
|
|
}
|
|
|
|
static ssize_t o2hb_heartbeat_group_threshold_store(struct o2hb_heartbeat_group *group,
|
|
const char *page,
|
|
size_t count)
|
|
{
|
|
unsigned long tmp;
|
|
char *p = (char *)page;
|
|
|
|
tmp = simple_strtoul(p, &p, 10);
|
|
if (!p || (*p && (*p != '\n')))
|
|
return -EINVAL;
|
|
|
|
/* this will validate ranges for us. */
|
|
o2hb_dead_threshold_set((unsigned int) tmp);
|
|
|
|
return count;
|
|
}
|
|
|
|
static struct o2hb_heartbeat_group_attribute o2hb_heartbeat_group_attr_threshold = {
|
|
.attr = { .ca_owner = THIS_MODULE,
|
|
.ca_name = "dead_threshold",
|
|
.ca_mode = S_IRUGO | S_IWUSR },
|
|
.show = o2hb_heartbeat_group_threshold_show,
|
|
.store = o2hb_heartbeat_group_threshold_store,
|
|
};
|
|
|
|
static struct configfs_attribute *o2hb_heartbeat_group_attrs[] = {
|
|
&o2hb_heartbeat_group_attr_threshold.attr,
|
|
NULL,
|
|
};
|
|
|
|
static struct configfs_item_operations o2hb_hearbeat_group_item_ops = {
|
|
.show_attribute = o2hb_heartbeat_group_show,
|
|
.store_attribute = o2hb_heartbeat_group_store,
|
|
};
|
|
|
|
static struct configfs_group_operations o2hb_heartbeat_group_group_ops = {
|
|
.make_item = o2hb_heartbeat_group_make_item,
|
|
.drop_item = o2hb_heartbeat_group_drop_item,
|
|
};
|
|
|
|
static struct config_item_type o2hb_heartbeat_group_type = {
|
|
.ct_group_ops = &o2hb_heartbeat_group_group_ops,
|
|
.ct_item_ops = &o2hb_hearbeat_group_item_ops,
|
|
.ct_attrs = o2hb_heartbeat_group_attrs,
|
|
.ct_owner = THIS_MODULE,
|
|
};
|
|
|
|
/* this is just here to avoid touching group in heartbeat.h which the
|
|
* entire damn world #includes */
|
|
struct config_group *o2hb_alloc_hb_set(void)
|
|
{
|
|
struct o2hb_heartbeat_group *hs = NULL;
|
|
struct config_group *ret = NULL;
|
|
|
|
hs = kcalloc(1, sizeof(struct o2hb_heartbeat_group), GFP_KERNEL);
|
|
if (hs == NULL)
|
|
goto out;
|
|
|
|
config_group_init_type_name(&hs->hs_group, "heartbeat",
|
|
&o2hb_heartbeat_group_type);
|
|
|
|
ret = &hs->hs_group;
|
|
out:
|
|
if (ret == NULL)
|
|
kfree(hs);
|
|
return ret;
|
|
}
|
|
|
|
void o2hb_free_hb_set(struct config_group *group)
|
|
{
|
|
struct o2hb_heartbeat_group *hs = to_o2hb_heartbeat_group(group);
|
|
kfree(hs);
|
|
}
|
|
|
|
/* hb callback registration and issueing */
|
|
|
|
static struct o2hb_callback *hbcall_from_type(enum o2hb_callback_type type)
|
|
{
|
|
if (type == O2HB_NUM_CB)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
return &o2hb_callbacks[type];
|
|
}
|
|
|
|
void o2hb_setup_callback(struct o2hb_callback_func *hc,
|
|
enum o2hb_callback_type type,
|
|
o2hb_cb_func *func,
|
|
void *data,
|
|
int priority)
|
|
{
|
|
INIT_LIST_HEAD(&hc->hc_item);
|
|
hc->hc_func = func;
|
|
hc->hc_data = data;
|
|
hc->hc_priority = priority;
|
|
hc->hc_type = type;
|
|
hc->hc_magic = O2HB_CB_MAGIC;
|
|
}
|
|
EXPORT_SYMBOL_GPL(o2hb_setup_callback);
|
|
|
|
int o2hb_register_callback(struct o2hb_callback_func *hc)
|
|
{
|
|
struct o2hb_callback_func *tmp;
|
|
struct list_head *iter;
|
|
struct o2hb_callback *hbcall;
|
|
int ret;
|
|
|
|
BUG_ON(hc->hc_magic != O2HB_CB_MAGIC);
|
|
BUG_ON(!list_empty(&hc->hc_item));
|
|
|
|
hbcall = hbcall_from_type(hc->hc_type);
|
|
if (IS_ERR(hbcall)) {
|
|
ret = PTR_ERR(hbcall);
|
|
goto out;
|
|
}
|
|
|
|
down_write(&o2hb_callback_sem);
|
|
|
|
list_for_each(iter, &hbcall->list) {
|
|
tmp = list_entry(iter, struct o2hb_callback_func, hc_item);
|
|
if (hc->hc_priority < tmp->hc_priority) {
|
|
list_add_tail(&hc->hc_item, iter);
|
|
break;
|
|
}
|
|
}
|
|
if (list_empty(&hc->hc_item))
|
|
list_add_tail(&hc->hc_item, &hbcall->list);
|
|
|
|
up_write(&o2hb_callback_sem);
|
|
ret = 0;
|
|
out:
|
|
mlog(ML_HEARTBEAT, "returning %d on behalf of %p for funcs %p\n",
|
|
ret, __builtin_return_address(0), hc);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(o2hb_register_callback);
|
|
|
|
int o2hb_unregister_callback(struct o2hb_callback_func *hc)
|
|
{
|
|
BUG_ON(hc->hc_magic != O2HB_CB_MAGIC);
|
|
|
|
mlog(ML_HEARTBEAT, "on behalf of %p for funcs %p\n",
|
|
__builtin_return_address(0), hc);
|
|
|
|
if (list_empty(&hc->hc_item))
|
|
return 0;
|
|
|
|
down_write(&o2hb_callback_sem);
|
|
|
|
list_del_init(&hc->hc_item);
|
|
|
|
up_write(&o2hb_callback_sem);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(o2hb_unregister_callback);
|
|
|
|
int o2hb_check_node_heartbeating(u8 node_num)
|
|
{
|
|
unsigned long testing_map[BITS_TO_LONGS(O2NM_MAX_NODES)];
|
|
|
|
o2hb_fill_node_map(testing_map, sizeof(testing_map));
|
|
if (!test_bit(node_num, testing_map)) {
|
|
mlog(ML_HEARTBEAT,
|
|
"node (%u) does not have heartbeating enabled.\n",
|
|
node_num);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
EXPORT_SYMBOL_GPL(o2hb_check_node_heartbeating);
|
|
|
|
int o2hb_check_node_heartbeating_from_callback(u8 node_num)
|
|
{
|
|
unsigned long testing_map[BITS_TO_LONGS(O2NM_MAX_NODES)];
|
|
|
|
o2hb_fill_node_map_from_callback(testing_map, sizeof(testing_map));
|
|
if (!test_bit(node_num, testing_map)) {
|
|
mlog(ML_HEARTBEAT,
|
|
"node (%u) does not have heartbeating enabled.\n",
|
|
node_num);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
EXPORT_SYMBOL_GPL(o2hb_check_node_heartbeating_from_callback);
|
|
|
|
/* Makes sure our local node is configured with a node number, and is
|
|
* heartbeating. */
|
|
int o2hb_check_local_node_heartbeating(void)
|
|
{
|
|
u8 node_num;
|
|
|
|
/* if this node was set then we have networking */
|
|
node_num = o2nm_this_node();
|
|
if (node_num == O2NM_MAX_NODES) {
|
|
mlog(ML_HEARTBEAT, "this node has not been configured.\n");
|
|
return 0;
|
|
}
|
|
|
|
return o2hb_check_node_heartbeating(node_num);
|
|
}
|
|
EXPORT_SYMBOL_GPL(o2hb_check_local_node_heartbeating);
|
|
|
|
/*
|
|
* this is just a hack until we get the plumbing which flips file systems
|
|
* read only and drops the hb ref instead of killing the node dead.
|
|
*/
|
|
void o2hb_stop_all_regions(void)
|
|
{
|
|
struct o2hb_region *reg;
|
|
|
|
mlog(ML_ERROR, "stopping heartbeat on all active regions.\n");
|
|
|
|
spin_lock(&o2hb_live_lock);
|
|
|
|
list_for_each_entry(reg, &o2hb_all_regions, hr_all_item)
|
|
reg->hr_unclean_stop = 1;
|
|
|
|
spin_unlock(&o2hb_live_lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(o2hb_stop_all_regions);
|