linux-hardened/fs/xfs/libxfs/xfs_ialloc_btree.c
Darrick J. Wong 3fd129b63f xfs: set up per-AG free space reservations
One unfortunate quirk of the reference count and reverse mapping
btrees -- they can expand in size when blocks are written to *other*
allocation groups if, say, one large extent becomes a lot of tiny
extents.  Since we don't want to start throwing errors in the middle
of CoWing, we need to reserve some blocks to handle future expansion.
The transaction block reservation counters aren't sufficient here
because we have to have a reserve of blocks in every AG, not just
somewhere in the filesystem.

Therefore, create two per-AG block reservation pools.  One feeds the
AGFL so that rmapbt expansion always succeeds, and the other feeds all
other metadata so that refcountbt expansion never fails.

Use the count of how many reserved blocks we need to have on hand to
create a virtual reservation in the AG.  Through selective clamping of
the maximum length of allocation requests and of the length of the
longest free extent, we can make it look like there's less free space
in the AG unless the reservation owner is asking for blocks.

In other words, play some accounting tricks in-core to make sure that
we always have blocks available.  On the plus side, there's nothing to
clean up if we crash, which is contrast to the strategy that the rough
draft used (actually removing extents from the freespace btrees).

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-09-19 10:30:52 +10:00

480 lines
12 KiB
C

/*
* Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_bit.h"
#include "xfs_mount.h"
#include "xfs_inode.h"
#include "xfs_btree.h"
#include "xfs_ialloc.h"
#include "xfs_ialloc_btree.h"
#include "xfs_alloc.h"
#include "xfs_error.h"
#include "xfs_trace.h"
#include "xfs_cksum.h"
#include "xfs_trans.h"
#include "xfs_rmap.h"
STATIC int
xfs_inobt_get_minrecs(
struct xfs_btree_cur *cur,
int level)
{
return cur->bc_mp->m_inobt_mnr[level != 0];
}
STATIC struct xfs_btree_cur *
xfs_inobt_dup_cursor(
struct xfs_btree_cur *cur)
{
return xfs_inobt_init_cursor(cur->bc_mp, cur->bc_tp,
cur->bc_private.a.agbp, cur->bc_private.a.agno,
cur->bc_btnum);
}
STATIC void
xfs_inobt_set_root(
struct xfs_btree_cur *cur,
union xfs_btree_ptr *nptr,
int inc) /* level change */
{
struct xfs_buf *agbp = cur->bc_private.a.agbp;
struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
agi->agi_root = nptr->s;
be32_add_cpu(&agi->agi_level, inc);
xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_ROOT | XFS_AGI_LEVEL);
}
STATIC void
xfs_finobt_set_root(
struct xfs_btree_cur *cur,
union xfs_btree_ptr *nptr,
int inc) /* level change */
{
struct xfs_buf *agbp = cur->bc_private.a.agbp;
struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
agi->agi_free_root = nptr->s;
be32_add_cpu(&agi->agi_free_level, inc);
xfs_ialloc_log_agi(cur->bc_tp, agbp,
XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL);
}
STATIC int
xfs_inobt_alloc_block(
struct xfs_btree_cur *cur,
union xfs_btree_ptr *start,
union xfs_btree_ptr *new,
int *stat)
{
xfs_alloc_arg_t args; /* block allocation args */
int error; /* error return value */
xfs_agblock_t sbno = be32_to_cpu(start->s);
XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
memset(&args, 0, sizeof(args));
args.tp = cur->bc_tp;
args.mp = cur->bc_mp;
xfs_rmap_ag_owner(&args.oinfo, XFS_RMAP_OWN_INOBT);
args.fsbno = XFS_AGB_TO_FSB(args.mp, cur->bc_private.a.agno, sbno);
args.minlen = 1;
args.maxlen = 1;
args.prod = 1;
args.type = XFS_ALLOCTYPE_NEAR_BNO;
error = xfs_alloc_vextent(&args);
if (error) {
XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
return error;
}
if (args.fsbno == NULLFSBLOCK) {
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
*stat = 0;
return 0;
}
ASSERT(args.len == 1);
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
new->s = cpu_to_be32(XFS_FSB_TO_AGBNO(args.mp, args.fsbno));
*stat = 1;
return 0;
}
STATIC int
xfs_inobt_free_block(
struct xfs_btree_cur *cur,
struct xfs_buf *bp)
{
struct xfs_owner_info oinfo;
xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_INOBT);
return xfs_free_extent(cur->bc_tp,
XFS_DADDR_TO_FSB(cur->bc_mp, XFS_BUF_ADDR(bp)), 1,
&oinfo, XFS_AG_RESV_NONE);
}
STATIC int
xfs_inobt_get_maxrecs(
struct xfs_btree_cur *cur,
int level)
{
return cur->bc_mp->m_inobt_mxr[level != 0];
}
STATIC void
xfs_inobt_init_key_from_rec(
union xfs_btree_key *key,
union xfs_btree_rec *rec)
{
key->inobt.ir_startino = rec->inobt.ir_startino;
}
STATIC void
xfs_inobt_init_rec_from_cur(
struct xfs_btree_cur *cur,
union xfs_btree_rec *rec)
{
rec->inobt.ir_startino = cpu_to_be32(cur->bc_rec.i.ir_startino);
if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
rec->inobt.ir_u.sp.ir_holemask =
cpu_to_be16(cur->bc_rec.i.ir_holemask);
rec->inobt.ir_u.sp.ir_count = cur->bc_rec.i.ir_count;
rec->inobt.ir_u.sp.ir_freecount = cur->bc_rec.i.ir_freecount;
} else {
/* ir_holemask/ir_count not supported on-disk */
rec->inobt.ir_u.f.ir_freecount =
cpu_to_be32(cur->bc_rec.i.ir_freecount);
}
rec->inobt.ir_free = cpu_to_be64(cur->bc_rec.i.ir_free);
}
/*
* initial value of ptr for lookup
*/
STATIC void
xfs_inobt_init_ptr_from_cur(
struct xfs_btree_cur *cur,
union xfs_btree_ptr *ptr)
{
struct xfs_agi *agi = XFS_BUF_TO_AGI(cur->bc_private.a.agbp);
ASSERT(cur->bc_private.a.agno == be32_to_cpu(agi->agi_seqno));
ptr->s = agi->agi_root;
}
STATIC void
xfs_finobt_init_ptr_from_cur(
struct xfs_btree_cur *cur,
union xfs_btree_ptr *ptr)
{
struct xfs_agi *agi = XFS_BUF_TO_AGI(cur->bc_private.a.agbp);
ASSERT(cur->bc_private.a.agno == be32_to_cpu(agi->agi_seqno));
ptr->s = agi->agi_free_root;
}
STATIC __int64_t
xfs_inobt_key_diff(
struct xfs_btree_cur *cur,
union xfs_btree_key *key)
{
return (__int64_t)be32_to_cpu(key->inobt.ir_startino) -
cur->bc_rec.i.ir_startino;
}
static int
xfs_inobt_verify(
struct xfs_buf *bp)
{
struct xfs_mount *mp = bp->b_target->bt_mount;
struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
unsigned int level;
/*
* During growfs operations, we can't verify the exact owner as the
* perag is not fully initialised and hence not attached to the buffer.
*
* Similarly, during log recovery we will have a perag structure
* attached, but the agi information will not yet have been initialised
* from the on disk AGI. We don't currently use any of this information,
* but beware of the landmine (i.e. need to check pag->pagi_init) if we
* ever do.
*/
switch (block->bb_magic) {
case cpu_to_be32(XFS_IBT_CRC_MAGIC):
case cpu_to_be32(XFS_FIBT_CRC_MAGIC):
if (!xfs_btree_sblock_v5hdr_verify(bp))
return false;
/* fall through */
case cpu_to_be32(XFS_IBT_MAGIC):
case cpu_to_be32(XFS_FIBT_MAGIC):
break;
default:
return 0;
}
/* level verification */
level = be16_to_cpu(block->bb_level);
if (level >= mp->m_in_maxlevels)
return false;
return xfs_btree_sblock_verify(bp, mp->m_inobt_mxr[level != 0]);
}
static void
xfs_inobt_read_verify(
struct xfs_buf *bp)
{
if (!xfs_btree_sblock_verify_crc(bp))
xfs_buf_ioerror(bp, -EFSBADCRC);
else if (!xfs_inobt_verify(bp))
xfs_buf_ioerror(bp, -EFSCORRUPTED);
if (bp->b_error) {
trace_xfs_btree_corrupt(bp, _RET_IP_);
xfs_verifier_error(bp);
}
}
static void
xfs_inobt_write_verify(
struct xfs_buf *bp)
{
if (!xfs_inobt_verify(bp)) {
trace_xfs_btree_corrupt(bp, _RET_IP_);
xfs_buf_ioerror(bp, -EFSCORRUPTED);
xfs_verifier_error(bp);
return;
}
xfs_btree_sblock_calc_crc(bp);
}
const struct xfs_buf_ops xfs_inobt_buf_ops = {
.name = "xfs_inobt",
.verify_read = xfs_inobt_read_verify,
.verify_write = xfs_inobt_write_verify,
};
#if defined(DEBUG) || defined(XFS_WARN)
STATIC int
xfs_inobt_keys_inorder(
struct xfs_btree_cur *cur,
union xfs_btree_key *k1,
union xfs_btree_key *k2)
{
return be32_to_cpu(k1->inobt.ir_startino) <
be32_to_cpu(k2->inobt.ir_startino);
}
STATIC int
xfs_inobt_recs_inorder(
struct xfs_btree_cur *cur,
union xfs_btree_rec *r1,
union xfs_btree_rec *r2)
{
return be32_to_cpu(r1->inobt.ir_startino) + XFS_INODES_PER_CHUNK <=
be32_to_cpu(r2->inobt.ir_startino);
}
#endif /* DEBUG */
static const struct xfs_btree_ops xfs_inobt_ops = {
.rec_len = sizeof(xfs_inobt_rec_t),
.key_len = sizeof(xfs_inobt_key_t),
.dup_cursor = xfs_inobt_dup_cursor,
.set_root = xfs_inobt_set_root,
.alloc_block = xfs_inobt_alloc_block,
.free_block = xfs_inobt_free_block,
.get_minrecs = xfs_inobt_get_minrecs,
.get_maxrecs = xfs_inobt_get_maxrecs,
.init_key_from_rec = xfs_inobt_init_key_from_rec,
.init_rec_from_cur = xfs_inobt_init_rec_from_cur,
.init_ptr_from_cur = xfs_inobt_init_ptr_from_cur,
.key_diff = xfs_inobt_key_diff,
.buf_ops = &xfs_inobt_buf_ops,
#if defined(DEBUG) || defined(XFS_WARN)
.keys_inorder = xfs_inobt_keys_inorder,
.recs_inorder = xfs_inobt_recs_inorder,
#endif
};
static const struct xfs_btree_ops xfs_finobt_ops = {
.rec_len = sizeof(xfs_inobt_rec_t),
.key_len = sizeof(xfs_inobt_key_t),
.dup_cursor = xfs_inobt_dup_cursor,
.set_root = xfs_finobt_set_root,
.alloc_block = xfs_inobt_alloc_block,
.free_block = xfs_inobt_free_block,
.get_minrecs = xfs_inobt_get_minrecs,
.get_maxrecs = xfs_inobt_get_maxrecs,
.init_key_from_rec = xfs_inobt_init_key_from_rec,
.init_rec_from_cur = xfs_inobt_init_rec_from_cur,
.init_ptr_from_cur = xfs_finobt_init_ptr_from_cur,
.key_diff = xfs_inobt_key_diff,
.buf_ops = &xfs_inobt_buf_ops,
#if defined(DEBUG) || defined(XFS_WARN)
.keys_inorder = xfs_inobt_keys_inorder,
.recs_inorder = xfs_inobt_recs_inorder,
#endif
};
/*
* Allocate a new inode btree cursor.
*/
struct xfs_btree_cur * /* new inode btree cursor */
xfs_inobt_init_cursor(
struct xfs_mount *mp, /* file system mount point */
struct xfs_trans *tp, /* transaction pointer */
struct xfs_buf *agbp, /* buffer for agi structure */
xfs_agnumber_t agno, /* allocation group number */
xfs_btnum_t btnum) /* ialloc or free ino btree */
{
struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
struct xfs_btree_cur *cur;
cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_SLEEP);
cur->bc_tp = tp;
cur->bc_mp = mp;
cur->bc_btnum = btnum;
if (btnum == XFS_BTNUM_INO) {
cur->bc_nlevels = be32_to_cpu(agi->agi_level);
cur->bc_ops = &xfs_inobt_ops;
} else {
cur->bc_nlevels = be32_to_cpu(agi->agi_free_level);
cur->bc_ops = &xfs_finobt_ops;
}
cur->bc_blocklog = mp->m_sb.sb_blocklog;
if (xfs_sb_version_hascrc(&mp->m_sb))
cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
cur->bc_private.a.agbp = agbp;
cur->bc_private.a.agno = agno;
return cur;
}
/*
* Calculate number of records in an inobt btree block.
*/
int
xfs_inobt_maxrecs(
struct xfs_mount *mp,
int blocklen,
int leaf)
{
blocklen -= XFS_INOBT_BLOCK_LEN(mp);
if (leaf)
return blocklen / sizeof(xfs_inobt_rec_t);
return blocklen / (sizeof(xfs_inobt_key_t) + sizeof(xfs_inobt_ptr_t));
}
/*
* Convert the inode record holemask to an inode allocation bitmap. The inode
* allocation bitmap is inode granularity and specifies whether an inode is
* physically allocated on disk (not whether the inode is considered allocated
* or free by the fs).
*
* A bit value of 1 means the inode is allocated, a value of 0 means it is free.
*/
uint64_t
xfs_inobt_irec_to_allocmask(
struct xfs_inobt_rec_incore *rec)
{
uint64_t bitmap = 0;
uint64_t inodespbit;
int nextbit;
uint allocbitmap;
/*
* The holemask has 16-bits for a 64 inode record. Therefore each
* holemask bit represents multiple inodes. Create a mask of bits to set
* in the allocmask for each holemask bit.
*/
inodespbit = (1 << XFS_INODES_PER_HOLEMASK_BIT) - 1;
/*
* Allocated inodes are represented by 0 bits in holemask. Invert the 0
* bits to 1 and convert to a uint so we can use xfs_next_bit(). Mask
* anything beyond the 16 holemask bits since this casts to a larger
* type.
*/
allocbitmap = ~rec->ir_holemask & ((1 << XFS_INOBT_HOLEMASK_BITS) - 1);
/*
* allocbitmap is the inverted holemask so every set bit represents
* allocated inodes. To expand from 16-bit holemask granularity to
* 64-bit (e.g., bit-per-inode), set inodespbit bits in the target
* bitmap for every holemask bit.
*/
nextbit = xfs_next_bit(&allocbitmap, 1, 0);
while (nextbit != -1) {
ASSERT(nextbit < (sizeof(rec->ir_holemask) * NBBY));
bitmap |= (inodespbit <<
(nextbit * XFS_INODES_PER_HOLEMASK_BIT));
nextbit = xfs_next_bit(&allocbitmap, 1, nextbit + 1);
}
return bitmap;
}
#if defined(DEBUG) || defined(XFS_WARN)
/*
* Verify that an in-core inode record has a valid inode count.
*/
int
xfs_inobt_rec_check_count(
struct xfs_mount *mp,
struct xfs_inobt_rec_incore *rec)
{
int inocount = 0;
int nextbit = 0;
uint64_t allocbmap;
int wordsz;
wordsz = sizeof(allocbmap) / sizeof(unsigned int);
allocbmap = xfs_inobt_irec_to_allocmask(rec);
nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, nextbit);
while (nextbit != -1) {
inocount++;
nextbit = xfs_next_bit((uint *) &allocbmap, wordsz,
nextbit + 1);
}
if (inocount != rec->ir_count)
return -EFSCORRUPTED;
return 0;
}
#endif /* DEBUG */