linux-hardened/sound/isa/gus/gus_dma.c
Ingo Molnar 8b7547f95c [ALSA] semaphore -> mutex (ISA part)
Semaphore to mutex conversion.

The conversion was generated via scripts, and the result was validated
automatically via a script as well.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2006-03-22 10:25:03 +01:00

244 lines
7 KiB
C

/*
* Routines for GF1 DMA control
* Copyright (c) by Jaroslav Kysela <perex@suse.cz>
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <sound/driver.h>
#include <asm/dma.h>
#include <linux/slab.h>
#include <sound/core.h>
#include <sound/gus.h>
static void snd_gf1_dma_ack(struct snd_gus_card * gus)
{
unsigned long flags;
spin_lock_irqsave(&gus->reg_lock, flags);
snd_gf1_write8(gus, SNDRV_GF1_GB_DRAM_DMA_CONTROL, 0x00);
snd_gf1_look8(gus, SNDRV_GF1_GB_DRAM_DMA_CONTROL);
spin_unlock_irqrestore(&gus->reg_lock, flags);
}
static void snd_gf1_dma_program(struct snd_gus_card * gus,
unsigned int addr,
unsigned long buf_addr,
unsigned int count,
unsigned int cmd)
{
unsigned long flags;
unsigned int address;
unsigned char dma_cmd;
unsigned int address_high;
// snd_printk("dma_transfer: addr=0x%x, buf=0x%lx, count=0x%x\n", addr, (long) buf, count);
if (gus->gf1.dma1 > 3) {
if (gus->gf1.enh_mode) {
address = addr >> 1;
} else {
if (addr & 0x1f) {
snd_printd("snd_gf1_dma_transfer: unaligned address (0x%x)?\n", addr);
return;
}
address = (addr & 0x000c0000) | ((addr & 0x0003ffff) >> 1);
}
} else {
address = addr;
}
dma_cmd = SNDRV_GF1_DMA_ENABLE | (unsigned short) cmd;
#if 0
dma_cmd |= 0x08;
#endif
if (dma_cmd & SNDRV_GF1_DMA_16BIT) {
count++;
count &= ~1; /* align */
}
if (gus->gf1.dma1 > 3) {
dma_cmd |= SNDRV_GF1_DMA_WIDTH16;
count++;
count &= ~1; /* align */
}
snd_gf1_dma_ack(gus);
snd_dma_program(gus->gf1.dma1, buf_addr, count, dma_cmd & SNDRV_GF1_DMA_READ ? DMA_MODE_READ : DMA_MODE_WRITE);
#if 0
snd_printk("address = 0x%x, count = 0x%x, dma_cmd = 0x%x\n", address << 1, count, dma_cmd);
#endif
spin_lock_irqsave(&gus->reg_lock, flags);
if (gus->gf1.enh_mode) {
address_high = ((address >> 16) & 0x000000f0) | (address & 0x0000000f);
snd_gf1_write16(gus, SNDRV_GF1_GW_DRAM_DMA_LOW, (unsigned short) (address >> 4));
snd_gf1_write8(gus, SNDRV_GF1_GB_DRAM_DMA_HIGH, (unsigned char) address_high);
} else
snd_gf1_write16(gus, SNDRV_GF1_GW_DRAM_DMA_LOW, (unsigned short) (address >> 4));
snd_gf1_write8(gus, SNDRV_GF1_GB_DRAM_DMA_CONTROL, dma_cmd);
spin_unlock_irqrestore(&gus->reg_lock, flags);
}
static struct snd_gf1_dma_block *snd_gf1_dma_next_block(struct snd_gus_card * gus)
{
struct snd_gf1_dma_block *block;
/* PCM block have bigger priority than synthesizer one */
if (gus->gf1.dma_data_pcm) {
block = gus->gf1.dma_data_pcm;
if (gus->gf1.dma_data_pcm_last == block) {
gus->gf1.dma_data_pcm =
gus->gf1.dma_data_pcm_last = NULL;
} else {
gus->gf1.dma_data_pcm = block->next;
}
} else if (gus->gf1.dma_data_synth) {
block = gus->gf1.dma_data_synth;
if (gus->gf1.dma_data_synth_last == block) {
gus->gf1.dma_data_synth =
gus->gf1.dma_data_synth_last = NULL;
} else {
gus->gf1.dma_data_synth = block->next;
}
} else {
block = NULL;
}
if (block) {
gus->gf1.dma_ack = block->ack;
gus->gf1.dma_private_data = block->private_data;
}
return block;
}
static void snd_gf1_dma_interrupt(struct snd_gus_card * gus)
{
struct snd_gf1_dma_block *block;
snd_gf1_dma_ack(gus);
if (gus->gf1.dma_ack)
gus->gf1.dma_ack(gus, gus->gf1.dma_private_data);
spin_lock(&gus->dma_lock);
if (gus->gf1.dma_data_pcm == NULL &&
gus->gf1.dma_data_synth == NULL) {
gus->gf1.dma_ack = NULL;
gus->gf1.dma_flags &= ~SNDRV_GF1_DMA_TRIGGER;
spin_unlock(&gus->dma_lock);
return;
}
block = snd_gf1_dma_next_block(gus);
spin_unlock(&gus->dma_lock);
snd_gf1_dma_program(gus, block->addr, block->buf_addr, block->count, (unsigned short) block->cmd);
kfree(block);
#if 0
printk("program dma (IRQ) - addr = 0x%x, buffer = 0x%lx, count = 0x%x, cmd = 0x%x\n", addr, (long) buffer, count, cmd);
#endif
}
int snd_gf1_dma_init(struct snd_gus_card * gus)
{
mutex_lock(&gus->dma_mutex);
gus->gf1.dma_shared++;
if (gus->gf1.dma_shared > 1) {
mutex_unlock(&gus->dma_mutex);
return 0;
}
gus->gf1.interrupt_handler_dma_write = snd_gf1_dma_interrupt;
gus->gf1.dma_data_pcm =
gus->gf1.dma_data_pcm_last =
gus->gf1.dma_data_synth =
gus->gf1.dma_data_synth_last = NULL;
mutex_unlock(&gus->dma_mutex);
return 0;
}
int snd_gf1_dma_done(struct snd_gus_card * gus)
{
struct snd_gf1_dma_block *block;
mutex_lock(&gus->dma_mutex);
gus->gf1.dma_shared--;
if (!gus->gf1.dma_shared) {
snd_dma_disable(gus->gf1.dma1);
snd_gf1_set_default_handlers(gus, SNDRV_GF1_HANDLER_DMA_WRITE);
snd_gf1_dma_ack(gus);
while ((block = gus->gf1.dma_data_pcm)) {
gus->gf1.dma_data_pcm = block->next;
kfree(block);
}
while ((block = gus->gf1.dma_data_synth)) {
gus->gf1.dma_data_synth = block->next;
kfree(block);
}
gus->gf1.dma_data_pcm_last =
gus->gf1.dma_data_synth_last = NULL;
}
mutex_unlock(&gus->dma_mutex);
return 0;
}
int snd_gf1_dma_transfer_block(struct snd_gus_card * gus,
struct snd_gf1_dma_block * __block,
int atomic,
int synth)
{
unsigned long flags;
struct snd_gf1_dma_block *block;
block = kmalloc(sizeof(*block), atomic ? GFP_ATOMIC : GFP_KERNEL);
if (block == NULL) {
snd_printk(KERN_ERR "gf1: DMA transfer failure; not enough memory\n");
return -ENOMEM;
}
*block = *__block;
block->next = NULL;
#if 0
printk("addr = 0x%x, buffer = 0x%lx, count = 0x%x, cmd = 0x%x\n", block->addr, (long) block->buffer, block->count, block->cmd);
#endif
#if 0
printk("gus->gf1.dma_data_pcm_last = 0x%lx\n", (long)gus->gf1.dma_data_pcm_last);
printk("gus->gf1.dma_data_pcm = 0x%lx\n", (long)gus->gf1.dma_data_pcm);
#endif
spin_lock_irqsave(&gus->dma_lock, flags);
if (synth) {
if (gus->gf1.dma_data_synth_last) {
gus->gf1.dma_data_synth_last->next = block;
gus->gf1.dma_data_synth_last = block;
} else {
gus->gf1.dma_data_synth =
gus->gf1.dma_data_synth_last = block;
}
} else {
if (gus->gf1.dma_data_pcm_last) {
gus->gf1.dma_data_pcm_last->next = block;
gus->gf1.dma_data_pcm_last = block;
} else {
gus->gf1.dma_data_pcm =
gus->gf1.dma_data_pcm_last = block;
}
}
if (!(gus->gf1.dma_flags & SNDRV_GF1_DMA_TRIGGER)) {
gus->gf1.dma_flags |= SNDRV_GF1_DMA_TRIGGER;
block = snd_gf1_dma_next_block(gus);
spin_unlock_irqrestore(&gus->dma_lock, flags);
if (block == NULL)
return 0;
snd_gf1_dma_program(gus, block->addr, block->buf_addr, block->count, (unsigned short) block->cmd);
kfree(block);
return 0;
}
spin_unlock_irqrestore(&gus->dma_lock, flags);
return 0;
}