linux-hardened/arch/mips/mm/dma-ip27.c
Al Viro 185a8ff528 [PATCH] gfp_t: dma-mapping (mips)
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-28 08:16:48 -07:00

257 lines
6 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2000 Ani Joshi <ajoshi@unixbox.com>
* Copyright (C) 2000, 2001 Ralf Baechle <ralf@gnu.org>
* swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
*/
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/pci.h>
#include <asm/cache.h>
#include <asm/pci/bridge.h>
#define pdev_to_baddr(pdev, addr) \
(BRIDGE_CONTROLLER(pdev->bus)->baddr + (addr))
#define dev_to_baddr(dev, addr) \
pdev_to_baddr(to_pci_dev(dev), (addr))
void *dma_alloc_noncoherent(struct device *dev, size_t size,
dma_addr_t * dma_handle, gfp_t gfp)
{
void *ret;
/* ignore region specifiers */
gfp &= ~(__GFP_DMA | __GFP_HIGHMEM);
if (dev == NULL || (dev->coherent_dma_mask < 0xffffffff))
gfp |= GFP_DMA;
ret = (void *) __get_free_pages(gfp, get_order(size));
if (ret != NULL) {
memset(ret, 0, size);
*dma_handle = dev_to_baddr(dev, virt_to_phys(ret));
}
return ret;
}
EXPORT_SYMBOL(dma_alloc_noncoherent);
void *dma_alloc_coherent(struct device *dev, size_t size,
dma_addr_t * dma_handle, gfp_t gfp)
__attribute__((alias("dma_alloc_noncoherent")));
EXPORT_SYMBOL(dma_alloc_coherent);
void dma_free_noncoherent(struct device *dev, size_t size, void *vaddr,
dma_addr_t dma_handle)
{
unsigned long addr = (unsigned long) vaddr;
free_pages(addr, get_order(size));
}
EXPORT_SYMBOL(dma_free_noncoherent);
void dma_free_coherent(struct device *dev, size_t size, void *vaddr,
dma_addr_t dma_handle) __attribute__((alias("dma_free_noncoherent")));
EXPORT_SYMBOL(dma_free_coherent);
dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size,
enum dma_data_direction direction)
{
BUG_ON(direction == DMA_NONE);
return dev_to_baddr(dev, __pa(ptr));
}
EXPORT_SYMBOL(dma_map_single);
void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
enum dma_data_direction direction)
{
BUG_ON(direction == DMA_NONE);
}
EXPORT_SYMBOL(dma_unmap_single);
int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
enum dma_data_direction direction)
{
int i;
BUG_ON(direction == DMA_NONE);
for (i = 0; i < nents; i++, sg++) {
sg->dma_address = (dma_addr_t) dev_to_baddr(dev,
page_to_phys(sg->page) + sg->offset);
}
return nents;
}
EXPORT_SYMBOL(dma_map_sg);
dma_addr_t dma_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size, enum dma_data_direction direction)
{
BUG_ON(direction == DMA_NONE);
return dev_to_baddr(dev, page_to_phys(page) + offset);
}
EXPORT_SYMBOL(dma_map_page);
void dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size,
enum dma_data_direction direction)
{
BUG_ON(direction == DMA_NONE);
}
EXPORT_SYMBOL(dma_unmap_page);
void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nhwentries,
enum dma_data_direction direction)
{
BUG_ON(direction == DMA_NONE);
}
EXPORT_SYMBOL(dma_unmap_sg);
void dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, size_t size,
enum dma_data_direction direction)
{
BUG_ON(direction == DMA_NONE);
}
EXPORT_SYMBOL(dma_sync_single_for_cpu);
void dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle, size_t size,
enum dma_data_direction direction)
{
BUG_ON(direction == DMA_NONE);
}
EXPORT_SYMBOL(dma_sync_single_for_device);
void dma_sync_single_range_for_cpu(struct device *dev, dma_addr_t dma_handle,
unsigned long offset, size_t size,
enum dma_data_direction direction)
{
BUG_ON(direction == DMA_NONE);
}
EXPORT_SYMBOL(dma_sync_single_range_for_cpu);
void dma_sync_single_range_for_device(struct device *dev, dma_addr_t dma_handle,
unsigned long offset, size_t size,
enum dma_data_direction direction)
{
BUG_ON(direction == DMA_NONE);
}
EXPORT_SYMBOL(dma_sync_single_range_for_device);
void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems,
enum dma_data_direction direction)
{
BUG_ON(direction == DMA_NONE);
}
EXPORT_SYMBOL(dma_sync_sg_for_cpu);
void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nelems,
enum dma_data_direction direction)
{
BUG_ON(direction == DMA_NONE);
}
EXPORT_SYMBOL(dma_sync_sg_for_device);
int dma_mapping_error(dma_addr_t dma_addr)
{
return 0;
}
EXPORT_SYMBOL(dma_mapping_error);
int dma_supported(struct device *dev, u64 mask)
{
/*
* we fall back to GFP_DMA when the mask isn't all 1s,
* so we can't guarantee allocations that must be
* within a tighter range than GFP_DMA..
*/
if (mask < 0x00ffffff)
return 0;
return 1;
}
EXPORT_SYMBOL(dma_supported);
int dma_is_consistent(dma_addr_t dma_addr)
{
return 1;
}
EXPORT_SYMBOL(dma_is_consistent);
void dma_cache_sync(void *vaddr, size_t size,
enum dma_data_direction direction)
{
BUG_ON(direction == DMA_NONE);
}
EXPORT_SYMBOL(dma_cache_sync);
dma64_addr_t pci_dac_page_to_dma(struct pci_dev *pdev,
struct page *page, unsigned long offset, int direction)
{
dma64_addr_t addr = page_to_phys(page) + offset;
return (dma64_addr_t) pdev_to_baddr(pdev, addr);
}
EXPORT_SYMBOL(pci_dac_page_to_dma);
struct page *pci_dac_dma_to_page(struct pci_dev *pdev,
dma64_addr_t dma_addr)
{
struct bridge_controller *bc = BRIDGE_CONTROLLER(pdev->bus);
return pfn_to_page((dma_addr - bc->baddr) >> PAGE_SHIFT);
}
EXPORT_SYMBOL(pci_dac_dma_to_page);
unsigned long pci_dac_dma_to_offset(struct pci_dev *pdev,
dma64_addr_t dma_addr)
{
return dma_addr & ~PAGE_MASK;
}
EXPORT_SYMBOL(pci_dac_dma_to_offset);
void pci_dac_dma_sync_single_for_cpu(struct pci_dev *pdev,
dma64_addr_t dma_addr, size_t len, int direction)
{
BUG_ON(direction == PCI_DMA_NONE);
}
EXPORT_SYMBOL(pci_dac_dma_sync_single_for_cpu);
void pci_dac_dma_sync_single_for_device(struct pci_dev *pdev,
dma64_addr_t dma_addr, size_t len, int direction)
{
BUG_ON(direction == PCI_DMA_NONE);
}
EXPORT_SYMBOL(pci_dac_dma_sync_single_for_device);