61b520a9d0
btrfs_block_rsv_add{, _noflush}() have similar code, so abstract that code. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
7628 lines
201 KiB
C
7628 lines
201 KiB
C
/*
|
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License v2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 021110-1307, USA.
|
|
*/
|
|
#include <linux/sched.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/sort.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/ratelimit.h>
|
|
#include "compat.h"
|
|
#include "hash.h"
|
|
#include "ctree.h"
|
|
#include "disk-io.h"
|
|
#include "print-tree.h"
|
|
#include "transaction.h"
|
|
#include "volumes.h"
|
|
#include "locking.h"
|
|
#include "free-space-cache.h"
|
|
|
|
/* control flags for do_chunk_alloc's force field
|
|
* CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
|
|
* if we really need one.
|
|
*
|
|
* CHUNK_ALLOC_FORCE means it must try to allocate one
|
|
*
|
|
* CHUNK_ALLOC_LIMITED means to only try and allocate one
|
|
* if we have very few chunks already allocated. This is
|
|
* used as part of the clustering code to help make sure
|
|
* we have a good pool of storage to cluster in, without
|
|
* filling the FS with empty chunks
|
|
*
|
|
*/
|
|
enum {
|
|
CHUNK_ALLOC_NO_FORCE = 0,
|
|
CHUNK_ALLOC_FORCE = 1,
|
|
CHUNK_ALLOC_LIMITED = 2,
|
|
};
|
|
|
|
/*
|
|
* Control how reservations are dealt with.
|
|
*
|
|
* RESERVE_FREE - freeing a reservation.
|
|
* RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
|
|
* ENOSPC accounting
|
|
* RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
|
|
* bytes_may_use as the ENOSPC accounting is done elsewhere
|
|
*/
|
|
enum {
|
|
RESERVE_FREE = 0,
|
|
RESERVE_ALLOC = 1,
|
|
RESERVE_ALLOC_NO_ACCOUNT = 2,
|
|
};
|
|
|
|
static int update_block_group(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 bytenr, u64 num_bytes, int alloc);
|
|
static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 bytenr, u64 num_bytes, u64 parent,
|
|
u64 root_objectid, u64 owner_objectid,
|
|
u64 owner_offset, int refs_to_drop,
|
|
struct btrfs_delayed_extent_op *extra_op);
|
|
static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
|
|
struct extent_buffer *leaf,
|
|
struct btrfs_extent_item *ei);
|
|
static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 parent, u64 root_objectid,
|
|
u64 flags, u64 owner, u64 offset,
|
|
struct btrfs_key *ins, int ref_mod);
|
|
static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 parent, u64 root_objectid,
|
|
u64 flags, struct btrfs_disk_key *key,
|
|
int level, struct btrfs_key *ins);
|
|
static int do_chunk_alloc(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *extent_root, u64 alloc_bytes,
|
|
u64 flags, int force);
|
|
static int find_next_key(struct btrfs_path *path, int level,
|
|
struct btrfs_key *key);
|
|
static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
|
|
int dump_block_groups);
|
|
static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
|
|
u64 num_bytes, int reserve);
|
|
|
|
static noinline int
|
|
block_group_cache_done(struct btrfs_block_group_cache *cache)
|
|
{
|
|
smp_mb();
|
|
return cache->cached == BTRFS_CACHE_FINISHED;
|
|
}
|
|
|
|
static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
|
|
{
|
|
return (cache->flags & bits) == bits;
|
|
}
|
|
|
|
static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
|
|
{
|
|
atomic_inc(&cache->count);
|
|
}
|
|
|
|
void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
|
|
{
|
|
if (atomic_dec_and_test(&cache->count)) {
|
|
WARN_ON(cache->pinned > 0);
|
|
WARN_ON(cache->reserved > 0);
|
|
kfree(cache->free_space_ctl);
|
|
kfree(cache);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* this adds the block group to the fs_info rb tree for the block group
|
|
* cache
|
|
*/
|
|
static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
|
|
struct btrfs_block_group_cache *block_group)
|
|
{
|
|
struct rb_node **p;
|
|
struct rb_node *parent = NULL;
|
|
struct btrfs_block_group_cache *cache;
|
|
|
|
spin_lock(&info->block_group_cache_lock);
|
|
p = &info->block_group_cache_tree.rb_node;
|
|
|
|
while (*p) {
|
|
parent = *p;
|
|
cache = rb_entry(parent, struct btrfs_block_group_cache,
|
|
cache_node);
|
|
if (block_group->key.objectid < cache->key.objectid) {
|
|
p = &(*p)->rb_left;
|
|
} else if (block_group->key.objectid > cache->key.objectid) {
|
|
p = &(*p)->rb_right;
|
|
} else {
|
|
spin_unlock(&info->block_group_cache_lock);
|
|
return -EEXIST;
|
|
}
|
|
}
|
|
|
|
rb_link_node(&block_group->cache_node, parent, p);
|
|
rb_insert_color(&block_group->cache_node,
|
|
&info->block_group_cache_tree);
|
|
spin_unlock(&info->block_group_cache_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This will return the block group at or after bytenr if contains is 0, else
|
|
* it will return the block group that contains the bytenr
|
|
*/
|
|
static struct btrfs_block_group_cache *
|
|
block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
|
|
int contains)
|
|
{
|
|
struct btrfs_block_group_cache *cache, *ret = NULL;
|
|
struct rb_node *n;
|
|
u64 end, start;
|
|
|
|
spin_lock(&info->block_group_cache_lock);
|
|
n = info->block_group_cache_tree.rb_node;
|
|
|
|
while (n) {
|
|
cache = rb_entry(n, struct btrfs_block_group_cache,
|
|
cache_node);
|
|
end = cache->key.objectid + cache->key.offset - 1;
|
|
start = cache->key.objectid;
|
|
|
|
if (bytenr < start) {
|
|
if (!contains && (!ret || start < ret->key.objectid))
|
|
ret = cache;
|
|
n = n->rb_left;
|
|
} else if (bytenr > start) {
|
|
if (contains && bytenr <= end) {
|
|
ret = cache;
|
|
break;
|
|
}
|
|
n = n->rb_right;
|
|
} else {
|
|
ret = cache;
|
|
break;
|
|
}
|
|
}
|
|
if (ret)
|
|
btrfs_get_block_group(ret);
|
|
spin_unlock(&info->block_group_cache_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int add_excluded_extent(struct btrfs_root *root,
|
|
u64 start, u64 num_bytes)
|
|
{
|
|
u64 end = start + num_bytes - 1;
|
|
set_extent_bits(&root->fs_info->freed_extents[0],
|
|
start, end, EXTENT_UPTODATE, GFP_NOFS);
|
|
set_extent_bits(&root->fs_info->freed_extents[1],
|
|
start, end, EXTENT_UPTODATE, GFP_NOFS);
|
|
return 0;
|
|
}
|
|
|
|
static void free_excluded_extents(struct btrfs_root *root,
|
|
struct btrfs_block_group_cache *cache)
|
|
{
|
|
u64 start, end;
|
|
|
|
start = cache->key.objectid;
|
|
end = start + cache->key.offset - 1;
|
|
|
|
clear_extent_bits(&root->fs_info->freed_extents[0],
|
|
start, end, EXTENT_UPTODATE, GFP_NOFS);
|
|
clear_extent_bits(&root->fs_info->freed_extents[1],
|
|
start, end, EXTENT_UPTODATE, GFP_NOFS);
|
|
}
|
|
|
|
static int exclude_super_stripes(struct btrfs_root *root,
|
|
struct btrfs_block_group_cache *cache)
|
|
{
|
|
u64 bytenr;
|
|
u64 *logical;
|
|
int stripe_len;
|
|
int i, nr, ret;
|
|
|
|
if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
|
|
stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
|
|
cache->bytes_super += stripe_len;
|
|
ret = add_excluded_extent(root, cache->key.objectid,
|
|
stripe_len);
|
|
BUG_ON(ret);
|
|
}
|
|
|
|
for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
|
|
bytenr = btrfs_sb_offset(i);
|
|
ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
|
|
cache->key.objectid, bytenr,
|
|
0, &logical, &nr, &stripe_len);
|
|
BUG_ON(ret);
|
|
|
|
while (nr--) {
|
|
cache->bytes_super += stripe_len;
|
|
ret = add_excluded_extent(root, logical[nr],
|
|
stripe_len);
|
|
BUG_ON(ret);
|
|
}
|
|
|
|
kfree(logical);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct btrfs_caching_control *
|
|
get_caching_control(struct btrfs_block_group_cache *cache)
|
|
{
|
|
struct btrfs_caching_control *ctl;
|
|
|
|
spin_lock(&cache->lock);
|
|
if (cache->cached != BTRFS_CACHE_STARTED) {
|
|
spin_unlock(&cache->lock);
|
|
return NULL;
|
|
}
|
|
|
|
/* We're loading it the fast way, so we don't have a caching_ctl. */
|
|
if (!cache->caching_ctl) {
|
|
spin_unlock(&cache->lock);
|
|
return NULL;
|
|
}
|
|
|
|
ctl = cache->caching_ctl;
|
|
atomic_inc(&ctl->count);
|
|
spin_unlock(&cache->lock);
|
|
return ctl;
|
|
}
|
|
|
|
static void put_caching_control(struct btrfs_caching_control *ctl)
|
|
{
|
|
if (atomic_dec_and_test(&ctl->count))
|
|
kfree(ctl);
|
|
}
|
|
|
|
/*
|
|
* this is only called by cache_block_group, since we could have freed extents
|
|
* we need to check the pinned_extents for any extents that can't be used yet
|
|
* since their free space will be released as soon as the transaction commits.
|
|
*/
|
|
static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_fs_info *info, u64 start, u64 end)
|
|
{
|
|
u64 extent_start, extent_end, size, total_added = 0;
|
|
int ret;
|
|
|
|
while (start < end) {
|
|
ret = find_first_extent_bit(info->pinned_extents, start,
|
|
&extent_start, &extent_end,
|
|
EXTENT_DIRTY | EXTENT_UPTODATE);
|
|
if (ret)
|
|
break;
|
|
|
|
if (extent_start <= start) {
|
|
start = extent_end + 1;
|
|
} else if (extent_start > start && extent_start < end) {
|
|
size = extent_start - start;
|
|
total_added += size;
|
|
ret = btrfs_add_free_space(block_group, start,
|
|
size);
|
|
BUG_ON(ret);
|
|
start = extent_end + 1;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (start < end) {
|
|
size = end - start;
|
|
total_added += size;
|
|
ret = btrfs_add_free_space(block_group, start, size);
|
|
BUG_ON(ret);
|
|
}
|
|
|
|
return total_added;
|
|
}
|
|
|
|
static noinline void caching_thread(struct btrfs_work *work)
|
|
{
|
|
struct btrfs_block_group_cache *block_group;
|
|
struct btrfs_fs_info *fs_info;
|
|
struct btrfs_caching_control *caching_ctl;
|
|
struct btrfs_root *extent_root;
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key key;
|
|
u64 total_found = 0;
|
|
u64 last = 0;
|
|
u32 nritems;
|
|
int ret = 0;
|
|
|
|
caching_ctl = container_of(work, struct btrfs_caching_control, work);
|
|
block_group = caching_ctl->block_group;
|
|
fs_info = block_group->fs_info;
|
|
extent_root = fs_info->extent_root;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
goto out;
|
|
|
|
last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
|
|
|
|
/*
|
|
* We don't want to deadlock with somebody trying to allocate a new
|
|
* extent for the extent root while also trying to search the extent
|
|
* root to add free space. So we skip locking and search the commit
|
|
* root, since its read-only
|
|
*/
|
|
path->skip_locking = 1;
|
|
path->search_commit_root = 1;
|
|
path->reada = 1;
|
|
|
|
key.objectid = last;
|
|
key.offset = 0;
|
|
key.type = BTRFS_EXTENT_ITEM_KEY;
|
|
again:
|
|
mutex_lock(&caching_ctl->mutex);
|
|
/* need to make sure the commit_root doesn't disappear */
|
|
down_read(&fs_info->extent_commit_sem);
|
|
|
|
ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto err;
|
|
|
|
leaf = path->nodes[0];
|
|
nritems = btrfs_header_nritems(leaf);
|
|
|
|
while (1) {
|
|
if (btrfs_fs_closing(fs_info) > 1) {
|
|
last = (u64)-1;
|
|
break;
|
|
}
|
|
|
|
if (path->slots[0] < nritems) {
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
|
|
} else {
|
|
ret = find_next_key(path, 0, &key);
|
|
if (ret)
|
|
break;
|
|
|
|
if (need_resched() ||
|
|
btrfs_next_leaf(extent_root, path)) {
|
|
caching_ctl->progress = last;
|
|
btrfs_release_path(path);
|
|
up_read(&fs_info->extent_commit_sem);
|
|
mutex_unlock(&caching_ctl->mutex);
|
|
cond_resched();
|
|
goto again;
|
|
}
|
|
leaf = path->nodes[0];
|
|
nritems = btrfs_header_nritems(leaf);
|
|
continue;
|
|
}
|
|
|
|
if (key.objectid < block_group->key.objectid) {
|
|
path->slots[0]++;
|
|
continue;
|
|
}
|
|
|
|
if (key.objectid >= block_group->key.objectid +
|
|
block_group->key.offset)
|
|
break;
|
|
|
|
if (key.type == BTRFS_EXTENT_ITEM_KEY) {
|
|
total_found += add_new_free_space(block_group,
|
|
fs_info, last,
|
|
key.objectid);
|
|
last = key.objectid + key.offset;
|
|
|
|
if (total_found > (1024 * 1024 * 2)) {
|
|
total_found = 0;
|
|
wake_up(&caching_ctl->wait);
|
|
}
|
|
}
|
|
path->slots[0]++;
|
|
}
|
|
ret = 0;
|
|
|
|
total_found += add_new_free_space(block_group, fs_info, last,
|
|
block_group->key.objectid +
|
|
block_group->key.offset);
|
|
caching_ctl->progress = (u64)-1;
|
|
|
|
spin_lock(&block_group->lock);
|
|
block_group->caching_ctl = NULL;
|
|
block_group->cached = BTRFS_CACHE_FINISHED;
|
|
spin_unlock(&block_group->lock);
|
|
|
|
err:
|
|
btrfs_free_path(path);
|
|
up_read(&fs_info->extent_commit_sem);
|
|
|
|
free_excluded_extents(extent_root, block_group);
|
|
|
|
mutex_unlock(&caching_ctl->mutex);
|
|
out:
|
|
wake_up(&caching_ctl->wait);
|
|
|
|
put_caching_control(caching_ctl);
|
|
btrfs_put_block_group(block_group);
|
|
}
|
|
|
|
static int cache_block_group(struct btrfs_block_group_cache *cache,
|
|
struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
int load_cache_only)
|
|
{
|
|
struct btrfs_fs_info *fs_info = cache->fs_info;
|
|
struct btrfs_caching_control *caching_ctl;
|
|
int ret = 0;
|
|
|
|
smp_mb();
|
|
if (cache->cached != BTRFS_CACHE_NO)
|
|
return 0;
|
|
|
|
/*
|
|
* We can't do the read from on-disk cache during a commit since we need
|
|
* to have the normal tree locking. Also if we are currently trying to
|
|
* allocate blocks for the tree root we can't do the fast caching since
|
|
* we likely hold important locks.
|
|
*/
|
|
if (trans && (!trans->transaction->in_commit) &&
|
|
(root && root != root->fs_info->tree_root) &&
|
|
btrfs_test_opt(root, SPACE_CACHE)) {
|
|
spin_lock(&cache->lock);
|
|
if (cache->cached != BTRFS_CACHE_NO) {
|
|
spin_unlock(&cache->lock);
|
|
return 0;
|
|
}
|
|
cache->cached = BTRFS_CACHE_STARTED;
|
|
spin_unlock(&cache->lock);
|
|
|
|
ret = load_free_space_cache(fs_info, cache);
|
|
|
|
spin_lock(&cache->lock);
|
|
if (ret == 1) {
|
|
cache->cached = BTRFS_CACHE_FINISHED;
|
|
cache->last_byte_to_unpin = (u64)-1;
|
|
} else {
|
|
cache->cached = BTRFS_CACHE_NO;
|
|
}
|
|
spin_unlock(&cache->lock);
|
|
if (ret == 1) {
|
|
free_excluded_extents(fs_info->extent_root, cache);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (load_cache_only)
|
|
return 0;
|
|
|
|
caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
|
|
BUG_ON(!caching_ctl);
|
|
|
|
INIT_LIST_HEAD(&caching_ctl->list);
|
|
mutex_init(&caching_ctl->mutex);
|
|
init_waitqueue_head(&caching_ctl->wait);
|
|
caching_ctl->block_group = cache;
|
|
caching_ctl->progress = cache->key.objectid;
|
|
/* one for caching kthread, one for caching block group list */
|
|
atomic_set(&caching_ctl->count, 2);
|
|
caching_ctl->work.func = caching_thread;
|
|
|
|
spin_lock(&cache->lock);
|
|
if (cache->cached != BTRFS_CACHE_NO) {
|
|
spin_unlock(&cache->lock);
|
|
kfree(caching_ctl);
|
|
return 0;
|
|
}
|
|
cache->caching_ctl = caching_ctl;
|
|
cache->cached = BTRFS_CACHE_STARTED;
|
|
spin_unlock(&cache->lock);
|
|
|
|
down_write(&fs_info->extent_commit_sem);
|
|
list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
|
|
up_write(&fs_info->extent_commit_sem);
|
|
|
|
btrfs_get_block_group(cache);
|
|
|
|
btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* return the block group that starts at or after bytenr
|
|
*/
|
|
static struct btrfs_block_group_cache *
|
|
btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
|
|
{
|
|
struct btrfs_block_group_cache *cache;
|
|
|
|
cache = block_group_cache_tree_search(info, bytenr, 0);
|
|
|
|
return cache;
|
|
}
|
|
|
|
/*
|
|
* return the block group that contains the given bytenr
|
|
*/
|
|
struct btrfs_block_group_cache *btrfs_lookup_block_group(
|
|
struct btrfs_fs_info *info,
|
|
u64 bytenr)
|
|
{
|
|
struct btrfs_block_group_cache *cache;
|
|
|
|
cache = block_group_cache_tree_search(info, bytenr, 1);
|
|
|
|
return cache;
|
|
}
|
|
|
|
static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
|
|
u64 flags)
|
|
{
|
|
struct list_head *head = &info->space_info;
|
|
struct btrfs_space_info *found;
|
|
|
|
flags &= BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_SYSTEM |
|
|
BTRFS_BLOCK_GROUP_METADATA;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(found, head, list) {
|
|
if (found->flags & flags) {
|
|
rcu_read_unlock();
|
|
return found;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* after adding space to the filesystem, we need to clear the full flags
|
|
* on all the space infos.
|
|
*/
|
|
void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
|
|
{
|
|
struct list_head *head = &info->space_info;
|
|
struct btrfs_space_info *found;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(found, head, list)
|
|
found->full = 0;
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static u64 div_factor(u64 num, int factor)
|
|
{
|
|
if (factor == 10)
|
|
return num;
|
|
num *= factor;
|
|
do_div(num, 10);
|
|
return num;
|
|
}
|
|
|
|
static u64 div_factor_fine(u64 num, int factor)
|
|
{
|
|
if (factor == 100)
|
|
return num;
|
|
num *= factor;
|
|
do_div(num, 100);
|
|
return num;
|
|
}
|
|
|
|
u64 btrfs_find_block_group(struct btrfs_root *root,
|
|
u64 search_start, u64 search_hint, int owner)
|
|
{
|
|
struct btrfs_block_group_cache *cache;
|
|
u64 used;
|
|
u64 last = max(search_hint, search_start);
|
|
u64 group_start = 0;
|
|
int full_search = 0;
|
|
int factor = 9;
|
|
int wrapped = 0;
|
|
again:
|
|
while (1) {
|
|
cache = btrfs_lookup_first_block_group(root->fs_info, last);
|
|
if (!cache)
|
|
break;
|
|
|
|
spin_lock(&cache->lock);
|
|
last = cache->key.objectid + cache->key.offset;
|
|
used = btrfs_block_group_used(&cache->item);
|
|
|
|
if ((full_search || !cache->ro) &&
|
|
block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
|
|
if (used + cache->pinned + cache->reserved <
|
|
div_factor(cache->key.offset, factor)) {
|
|
group_start = cache->key.objectid;
|
|
spin_unlock(&cache->lock);
|
|
btrfs_put_block_group(cache);
|
|
goto found;
|
|
}
|
|
}
|
|
spin_unlock(&cache->lock);
|
|
btrfs_put_block_group(cache);
|
|
cond_resched();
|
|
}
|
|
if (!wrapped) {
|
|
last = search_start;
|
|
wrapped = 1;
|
|
goto again;
|
|
}
|
|
if (!full_search && factor < 10) {
|
|
last = search_start;
|
|
full_search = 1;
|
|
factor = 10;
|
|
goto again;
|
|
}
|
|
found:
|
|
return group_start;
|
|
}
|
|
|
|
/* simple helper to search for an existing extent at a given offset */
|
|
int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
|
|
{
|
|
int ret;
|
|
struct btrfs_key key;
|
|
struct btrfs_path *path;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
key.objectid = start;
|
|
key.offset = len;
|
|
btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
|
|
ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
|
|
0, 0);
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* helper function to lookup reference count and flags of extent.
|
|
*
|
|
* the head node for delayed ref is used to store the sum of all the
|
|
* reference count modifications queued up in the rbtree. the head
|
|
* node may also store the extent flags to set. This way you can check
|
|
* to see what the reference count and extent flags would be if all of
|
|
* the delayed refs are not processed.
|
|
*/
|
|
int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, u64 bytenr,
|
|
u64 num_bytes, u64 *refs, u64 *flags)
|
|
{
|
|
struct btrfs_delayed_ref_head *head;
|
|
struct btrfs_delayed_ref_root *delayed_refs;
|
|
struct btrfs_path *path;
|
|
struct btrfs_extent_item *ei;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key key;
|
|
u32 item_size;
|
|
u64 num_refs;
|
|
u64 extent_flags;
|
|
int ret;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
key.objectid = bytenr;
|
|
key.type = BTRFS_EXTENT_ITEM_KEY;
|
|
key.offset = num_bytes;
|
|
if (!trans) {
|
|
path->skip_locking = 1;
|
|
path->search_commit_root = 1;
|
|
}
|
|
again:
|
|
ret = btrfs_search_slot(trans, root->fs_info->extent_root,
|
|
&key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto out_free;
|
|
|
|
if (ret == 0) {
|
|
leaf = path->nodes[0];
|
|
item_size = btrfs_item_size_nr(leaf, path->slots[0]);
|
|
if (item_size >= sizeof(*ei)) {
|
|
ei = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_extent_item);
|
|
num_refs = btrfs_extent_refs(leaf, ei);
|
|
extent_flags = btrfs_extent_flags(leaf, ei);
|
|
} else {
|
|
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
|
|
struct btrfs_extent_item_v0 *ei0;
|
|
BUG_ON(item_size != sizeof(*ei0));
|
|
ei0 = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_extent_item_v0);
|
|
num_refs = btrfs_extent_refs_v0(leaf, ei0);
|
|
/* FIXME: this isn't correct for data */
|
|
extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
|
|
#else
|
|
BUG();
|
|
#endif
|
|
}
|
|
BUG_ON(num_refs == 0);
|
|
} else {
|
|
num_refs = 0;
|
|
extent_flags = 0;
|
|
ret = 0;
|
|
}
|
|
|
|
if (!trans)
|
|
goto out;
|
|
|
|
delayed_refs = &trans->transaction->delayed_refs;
|
|
spin_lock(&delayed_refs->lock);
|
|
head = btrfs_find_delayed_ref_head(trans, bytenr);
|
|
if (head) {
|
|
if (!mutex_trylock(&head->mutex)) {
|
|
atomic_inc(&head->node.refs);
|
|
spin_unlock(&delayed_refs->lock);
|
|
|
|
btrfs_release_path(path);
|
|
|
|
/*
|
|
* Mutex was contended, block until it's released and try
|
|
* again
|
|
*/
|
|
mutex_lock(&head->mutex);
|
|
mutex_unlock(&head->mutex);
|
|
btrfs_put_delayed_ref(&head->node);
|
|
goto again;
|
|
}
|
|
if (head->extent_op && head->extent_op->update_flags)
|
|
extent_flags |= head->extent_op->flags_to_set;
|
|
else
|
|
BUG_ON(num_refs == 0);
|
|
|
|
num_refs += head->node.ref_mod;
|
|
mutex_unlock(&head->mutex);
|
|
}
|
|
spin_unlock(&delayed_refs->lock);
|
|
out:
|
|
WARN_ON(num_refs == 0);
|
|
if (refs)
|
|
*refs = num_refs;
|
|
if (flags)
|
|
*flags = extent_flags;
|
|
out_free:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Back reference rules. Back refs have three main goals:
|
|
*
|
|
* 1) differentiate between all holders of references to an extent so that
|
|
* when a reference is dropped we can make sure it was a valid reference
|
|
* before freeing the extent.
|
|
*
|
|
* 2) Provide enough information to quickly find the holders of an extent
|
|
* if we notice a given block is corrupted or bad.
|
|
*
|
|
* 3) Make it easy to migrate blocks for FS shrinking or storage pool
|
|
* maintenance. This is actually the same as #2, but with a slightly
|
|
* different use case.
|
|
*
|
|
* There are two kinds of back refs. The implicit back refs is optimized
|
|
* for pointers in non-shared tree blocks. For a given pointer in a block,
|
|
* back refs of this kind provide information about the block's owner tree
|
|
* and the pointer's key. These information allow us to find the block by
|
|
* b-tree searching. The full back refs is for pointers in tree blocks not
|
|
* referenced by their owner trees. The location of tree block is recorded
|
|
* in the back refs. Actually the full back refs is generic, and can be
|
|
* used in all cases the implicit back refs is used. The major shortcoming
|
|
* of the full back refs is its overhead. Every time a tree block gets
|
|
* COWed, we have to update back refs entry for all pointers in it.
|
|
*
|
|
* For a newly allocated tree block, we use implicit back refs for
|
|
* pointers in it. This means most tree related operations only involve
|
|
* implicit back refs. For a tree block created in old transaction, the
|
|
* only way to drop a reference to it is COW it. So we can detect the
|
|
* event that tree block loses its owner tree's reference and do the
|
|
* back refs conversion.
|
|
*
|
|
* When a tree block is COW'd through a tree, there are four cases:
|
|
*
|
|
* The reference count of the block is one and the tree is the block's
|
|
* owner tree. Nothing to do in this case.
|
|
*
|
|
* The reference count of the block is one and the tree is not the
|
|
* block's owner tree. In this case, full back refs is used for pointers
|
|
* in the block. Remove these full back refs, add implicit back refs for
|
|
* every pointers in the new block.
|
|
*
|
|
* The reference count of the block is greater than one and the tree is
|
|
* the block's owner tree. In this case, implicit back refs is used for
|
|
* pointers in the block. Add full back refs for every pointers in the
|
|
* block, increase lower level extents' reference counts. The original
|
|
* implicit back refs are entailed to the new block.
|
|
*
|
|
* The reference count of the block is greater than one and the tree is
|
|
* not the block's owner tree. Add implicit back refs for every pointer in
|
|
* the new block, increase lower level extents' reference count.
|
|
*
|
|
* Back Reference Key composing:
|
|
*
|
|
* The key objectid corresponds to the first byte in the extent,
|
|
* The key type is used to differentiate between types of back refs.
|
|
* There are different meanings of the key offset for different types
|
|
* of back refs.
|
|
*
|
|
* File extents can be referenced by:
|
|
*
|
|
* - multiple snapshots, subvolumes, or different generations in one subvol
|
|
* - different files inside a single subvolume
|
|
* - different offsets inside a file (bookend extents in file.c)
|
|
*
|
|
* The extent ref structure for the implicit back refs has fields for:
|
|
*
|
|
* - Objectid of the subvolume root
|
|
* - objectid of the file holding the reference
|
|
* - original offset in the file
|
|
* - how many bookend extents
|
|
*
|
|
* The key offset for the implicit back refs is hash of the first
|
|
* three fields.
|
|
*
|
|
* The extent ref structure for the full back refs has field for:
|
|
*
|
|
* - number of pointers in the tree leaf
|
|
*
|
|
* The key offset for the implicit back refs is the first byte of
|
|
* the tree leaf
|
|
*
|
|
* When a file extent is allocated, The implicit back refs is used.
|
|
* the fields are filled in:
|
|
*
|
|
* (root_key.objectid, inode objectid, offset in file, 1)
|
|
*
|
|
* When a file extent is removed file truncation, we find the
|
|
* corresponding implicit back refs and check the following fields:
|
|
*
|
|
* (btrfs_header_owner(leaf), inode objectid, offset in file)
|
|
*
|
|
* Btree extents can be referenced by:
|
|
*
|
|
* - Different subvolumes
|
|
*
|
|
* Both the implicit back refs and the full back refs for tree blocks
|
|
* only consist of key. The key offset for the implicit back refs is
|
|
* objectid of block's owner tree. The key offset for the full back refs
|
|
* is the first byte of parent block.
|
|
*
|
|
* When implicit back refs is used, information about the lowest key and
|
|
* level of the tree block are required. These information are stored in
|
|
* tree block info structure.
|
|
*/
|
|
|
|
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
|
|
static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
u64 owner, u32 extra_size)
|
|
{
|
|
struct btrfs_extent_item *item;
|
|
struct btrfs_extent_item_v0 *ei0;
|
|
struct btrfs_extent_ref_v0 *ref0;
|
|
struct btrfs_tree_block_info *bi;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key key;
|
|
struct btrfs_key found_key;
|
|
u32 new_size = sizeof(*item);
|
|
u64 refs;
|
|
int ret;
|
|
|
|
leaf = path->nodes[0];
|
|
BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
|
|
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
|
|
ei0 = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_extent_item_v0);
|
|
refs = btrfs_extent_refs_v0(leaf, ei0);
|
|
|
|
if (owner == (u64)-1) {
|
|
while (1) {
|
|
if (path->slots[0] >= btrfs_header_nritems(leaf)) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret < 0)
|
|
return ret;
|
|
BUG_ON(ret > 0);
|
|
leaf = path->nodes[0];
|
|
}
|
|
btrfs_item_key_to_cpu(leaf, &found_key,
|
|
path->slots[0]);
|
|
BUG_ON(key.objectid != found_key.objectid);
|
|
if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
|
|
path->slots[0]++;
|
|
continue;
|
|
}
|
|
ref0 = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_extent_ref_v0);
|
|
owner = btrfs_ref_objectid_v0(leaf, ref0);
|
|
break;
|
|
}
|
|
}
|
|
btrfs_release_path(path);
|
|
|
|
if (owner < BTRFS_FIRST_FREE_OBJECTID)
|
|
new_size += sizeof(*bi);
|
|
|
|
new_size -= sizeof(*ei0);
|
|
ret = btrfs_search_slot(trans, root, &key, path,
|
|
new_size + extra_size, 1);
|
|
if (ret < 0)
|
|
return ret;
|
|
BUG_ON(ret);
|
|
|
|
ret = btrfs_extend_item(trans, root, path, new_size);
|
|
|
|
leaf = path->nodes[0];
|
|
item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
|
|
btrfs_set_extent_refs(leaf, item, refs);
|
|
/* FIXME: get real generation */
|
|
btrfs_set_extent_generation(leaf, item, 0);
|
|
if (owner < BTRFS_FIRST_FREE_OBJECTID) {
|
|
btrfs_set_extent_flags(leaf, item,
|
|
BTRFS_EXTENT_FLAG_TREE_BLOCK |
|
|
BTRFS_BLOCK_FLAG_FULL_BACKREF);
|
|
bi = (struct btrfs_tree_block_info *)(item + 1);
|
|
/* FIXME: get first key of the block */
|
|
memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
|
|
btrfs_set_tree_block_level(leaf, bi, (int)owner);
|
|
} else {
|
|
btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
|
|
}
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
|
|
{
|
|
u32 high_crc = ~(u32)0;
|
|
u32 low_crc = ~(u32)0;
|
|
__le64 lenum;
|
|
|
|
lenum = cpu_to_le64(root_objectid);
|
|
high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
|
|
lenum = cpu_to_le64(owner);
|
|
low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
|
|
lenum = cpu_to_le64(offset);
|
|
low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
|
|
|
|
return ((u64)high_crc << 31) ^ (u64)low_crc;
|
|
}
|
|
|
|
static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
|
|
struct btrfs_extent_data_ref *ref)
|
|
{
|
|
return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
|
|
btrfs_extent_data_ref_objectid(leaf, ref),
|
|
btrfs_extent_data_ref_offset(leaf, ref));
|
|
}
|
|
|
|
static int match_extent_data_ref(struct extent_buffer *leaf,
|
|
struct btrfs_extent_data_ref *ref,
|
|
u64 root_objectid, u64 owner, u64 offset)
|
|
{
|
|
if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
|
|
btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
|
|
btrfs_extent_data_ref_offset(leaf, ref) != offset)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
u64 bytenr, u64 parent,
|
|
u64 root_objectid,
|
|
u64 owner, u64 offset)
|
|
{
|
|
struct btrfs_key key;
|
|
struct btrfs_extent_data_ref *ref;
|
|
struct extent_buffer *leaf;
|
|
u32 nritems;
|
|
int ret;
|
|
int recow;
|
|
int err = -ENOENT;
|
|
|
|
key.objectid = bytenr;
|
|
if (parent) {
|
|
key.type = BTRFS_SHARED_DATA_REF_KEY;
|
|
key.offset = parent;
|
|
} else {
|
|
key.type = BTRFS_EXTENT_DATA_REF_KEY;
|
|
key.offset = hash_extent_data_ref(root_objectid,
|
|
owner, offset);
|
|
}
|
|
again:
|
|
recow = 0;
|
|
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
|
|
if (ret < 0) {
|
|
err = ret;
|
|
goto fail;
|
|
}
|
|
|
|
if (parent) {
|
|
if (!ret)
|
|
return 0;
|
|
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
|
|
key.type = BTRFS_EXTENT_REF_V0_KEY;
|
|
btrfs_release_path(path);
|
|
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
|
|
if (ret < 0) {
|
|
err = ret;
|
|
goto fail;
|
|
}
|
|
if (!ret)
|
|
return 0;
|
|
#endif
|
|
goto fail;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
nritems = btrfs_header_nritems(leaf);
|
|
while (1) {
|
|
if (path->slots[0] >= nritems) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret < 0)
|
|
err = ret;
|
|
if (ret)
|
|
goto fail;
|
|
|
|
leaf = path->nodes[0];
|
|
nritems = btrfs_header_nritems(leaf);
|
|
recow = 1;
|
|
}
|
|
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
|
|
if (key.objectid != bytenr ||
|
|
key.type != BTRFS_EXTENT_DATA_REF_KEY)
|
|
goto fail;
|
|
|
|
ref = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_extent_data_ref);
|
|
|
|
if (match_extent_data_ref(leaf, ref, root_objectid,
|
|
owner, offset)) {
|
|
if (recow) {
|
|
btrfs_release_path(path);
|
|
goto again;
|
|
}
|
|
err = 0;
|
|
break;
|
|
}
|
|
path->slots[0]++;
|
|
}
|
|
fail:
|
|
return err;
|
|
}
|
|
|
|
static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
u64 bytenr, u64 parent,
|
|
u64 root_objectid, u64 owner,
|
|
u64 offset, int refs_to_add)
|
|
{
|
|
struct btrfs_key key;
|
|
struct extent_buffer *leaf;
|
|
u32 size;
|
|
u32 num_refs;
|
|
int ret;
|
|
|
|
key.objectid = bytenr;
|
|
if (parent) {
|
|
key.type = BTRFS_SHARED_DATA_REF_KEY;
|
|
key.offset = parent;
|
|
size = sizeof(struct btrfs_shared_data_ref);
|
|
} else {
|
|
key.type = BTRFS_EXTENT_DATA_REF_KEY;
|
|
key.offset = hash_extent_data_ref(root_objectid,
|
|
owner, offset);
|
|
size = sizeof(struct btrfs_extent_data_ref);
|
|
}
|
|
|
|
ret = btrfs_insert_empty_item(trans, root, path, &key, size);
|
|
if (ret && ret != -EEXIST)
|
|
goto fail;
|
|
|
|
leaf = path->nodes[0];
|
|
if (parent) {
|
|
struct btrfs_shared_data_ref *ref;
|
|
ref = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_shared_data_ref);
|
|
if (ret == 0) {
|
|
btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
|
|
} else {
|
|
num_refs = btrfs_shared_data_ref_count(leaf, ref);
|
|
num_refs += refs_to_add;
|
|
btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
|
|
}
|
|
} else {
|
|
struct btrfs_extent_data_ref *ref;
|
|
while (ret == -EEXIST) {
|
|
ref = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_extent_data_ref);
|
|
if (match_extent_data_ref(leaf, ref, root_objectid,
|
|
owner, offset))
|
|
break;
|
|
btrfs_release_path(path);
|
|
key.offset++;
|
|
ret = btrfs_insert_empty_item(trans, root, path, &key,
|
|
size);
|
|
if (ret && ret != -EEXIST)
|
|
goto fail;
|
|
|
|
leaf = path->nodes[0];
|
|
}
|
|
ref = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_extent_data_ref);
|
|
if (ret == 0) {
|
|
btrfs_set_extent_data_ref_root(leaf, ref,
|
|
root_objectid);
|
|
btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
|
|
btrfs_set_extent_data_ref_offset(leaf, ref, offset);
|
|
btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
|
|
} else {
|
|
num_refs = btrfs_extent_data_ref_count(leaf, ref);
|
|
num_refs += refs_to_add;
|
|
btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
|
|
}
|
|
}
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
ret = 0;
|
|
fail:
|
|
btrfs_release_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
int refs_to_drop)
|
|
{
|
|
struct btrfs_key key;
|
|
struct btrfs_extent_data_ref *ref1 = NULL;
|
|
struct btrfs_shared_data_ref *ref2 = NULL;
|
|
struct extent_buffer *leaf;
|
|
u32 num_refs = 0;
|
|
int ret = 0;
|
|
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
|
|
|
|
if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
|
|
ref1 = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_extent_data_ref);
|
|
num_refs = btrfs_extent_data_ref_count(leaf, ref1);
|
|
} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
|
|
ref2 = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_shared_data_ref);
|
|
num_refs = btrfs_shared_data_ref_count(leaf, ref2);
|
|
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
|
|
} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
|
|
struct btrfs_extent_ref_v0 *ref0;
|
|
ref0 = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_extent_ref_v0);
|
|
num_refs = btrfs_ref_count_v0(leaf, ref0);
|
|
#endif
|
|
} else {
|
|
BUG();
|
|
}
|
|
|
|
BUG_ON(num_refs < refs_to_drop);
|
|
num_refs -= refs_to_drop;
|
|
|
|
if (num_refs == 0) {
|
|
ret = btrfs_del_item(trans, root, path);
|
|
} else {
|
|
if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
|
|
btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
|
|
else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
|
|
btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
|
|
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
|
|
else {
|
|
struct btrfs_extent_ref_v0 *ref0;
|
|
ref0 = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_extent_ref_v0);
|
|
btrfs_set_ref_count_v0(leaf, ref0, num_refs);
|
|
}
|
|
#endif
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static noinline u32 extent_data_ref_count(struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct btrfs_extent_inline_ref *iref)
|
|
{
|
|
struct btrfs_key key;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_extent_data_ref *ref1;
|
|
struct btrfs_shared_data_ref *ref2;
|
|
u32 num_refs = 0;
|
|
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
|
|
if (iref) {
|
|
if (btrfs_extent_inline_ref_type(leaf, iref) ==
|
|
BTRFS_EXTENT_DATA_REF_KEY) {
|
|
ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
|
|
num_refs = btrfs_extent_data_ref_count(leaf, ref1);
|
|
} else {
|
|
ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
|
|
num_refs = btrfs_shared_data_ref_count(leaf, ref2);
|
|
}
|
|
} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
|
|
ref1 = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_extent_data_ref);
|
|
num_refs = btrfs_extent_data_ref_count(leaf, ref1);
|
|
} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
|
|
ref2 = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_shared_data_ref);
|
|
num_refs = btrfs_shared_data_ref_count(leaf, ref2);
|
|
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
|
|
} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
|
|
struct btrfs_extent_ref_v0 *ref0;
|
|
ref0 = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_extent_ref_v0);
|
|
num_refs = btrfs_ref_count_v0(leaf, ref0);
|
|
#endif
|
|
} else {
|
|
WARN_ON(1);
|
|
}
|
|
return num_refs;
|
|
}
|
|
|
|
static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
u64 bytenr, u64 parent,
|
|
u64 root_objectid)
|
|
{
|
|
struct btrfs_key key;
|
|
int ret;
|
|
|
|
key.objectid = bytenr;
|
|
if (parent) {
|
|
key.type = BTRFS_SHARED_BLOCK_REF_KEY;
|
|
key.offset = parent;
|
|
} else {
|
|
key.type = BTRFS_TREE_BLOCK_REF_KEY;
|
|
key.offset = root_objectid;
|
|
}
|
|
|
|
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
|
|
if (ret > 0)
|
|
ret = -ENOENT;
|
|
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
|
|
if (ret == -ENOENT && parent) {
|
|
btrfs_release_path(path);
|
|
key.type = BTRFS_EXTENT_REF_V0_KEY;
|
|
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
|
|
if (ret > 0)
|
|
ret = -ENOENT;
|
|
}
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
u64 bytenr, u64 parent,
|
|
u64 root_objectid)
|
|
{
|
|
struct btrfs_key key;
|
|
int ret;
|
|
|
|
key.objectid = bytenr;
|
|
if (parent) {
|
|
key.type = BTRFS_SHARED_BLOCK_REF_KEY;
|
|
key.offset = parent;
|
|
} else {
|
|
key.type = BTRFS_TREE_BLOCK_REF_KEY;
|
|
key.offset = root_objectid;
|
|
}
|
|
|
|
ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
|
|
btrfs_release_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static inline int extent_ref_type(u64 parent, u64 owner)
|
|
{
|
|
int type;
|
|
if (owner < BTRFS_FIRST_FREE_OBJECTID) {
|
|
if (parent > 0)
|
|
type = BTRFS_SHARED_BLOCK_REF_KEY;
|
|
else
|
|
type = BTRFS_TREE_BLOCK_REF_KEY;
|
|
} else {
|
|
if (parent > 0)
|
|
type = BTRFS_SHARED_DATA_REF_KEY;
|
|
else
|
|
type = BTRFS_EXTENT_DATA_REF_KEY;
|
|
}
|
|
return type;
|
|
}
|
|
|
|
static int find_next_key(struct btrfs_path *path, int level,
|
|
struct btrfs_key *key)
|
|
|
|
{
|
|
for (; level < BTRFS_MAX_LEVEL; level++) {
|
|
if (!path->nodes[level])
|
|
break;
|
|
if (path->slots[level] + 1 >=
|
|
btrfs_header_nritems(path->nodes[level]))
|
|
continue;
|
|
if (level == 0)
|
|
btrfs_item_key_to_cpu(path->nodes[level], key,
|
|
path->slots[level] + 1);
|
|
else
|
|
btrfs_node_key_to_cpu(path->nodes[level], key,
|
|
path->slots[level] + 1);
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* look for inline back ref. if back ref is found, *ref_ret is set
|
|
* to the address of inline back ref, and 0 is returned.
|
|
*
|
|
* if back ref isn't found, *ref_ret is set to the address where it
|
|
* should be inserted, and -ENOENT is returned.
|
|
*
|
|
* if insert is true and there are too many inline back refs, the path
|
|
* points to the extent item, and -EAGAIN is returned.
|
|
*
|
|
* NOTE: inline back refs are ordered in the same way that back ref
|
|
* items in the tree are ordered.
|
|
*/
|
|
static noinline_for_stack
|
|
int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct btrfs_extent_inline_ref **ref_ret,
|
|
u64 bytenr, u64 num_bytes,
|
|
u64 parent, u64 root_objectid,
|
|
u64 owner, u64 offset, int insert)
|
|
{
|
|
struct btrfs_key key;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_extent_item *ei;
|
|
struct btrfs_extent_inline_ref *iref;
|
|
u64 flags;
|
|
u64 item_size;
|
|
unsigned long ptr;
|
|
unsigned long end;
|
|
int extra_size;
|
|
int type;
|
|
int want;
|
|
int ret;
|
|
int err = 0;
|
|
|
|
key.objectid = bytenr;
|
|
key.type = BTRFS_EXTENT_ITEM_KEY;
|
|
key.offset = num_bytes;
|
|
|
|
want = extent_ref_type(parent, owner);
|
|
if (insert) {
|
|
extra_size = btrfs_extent_inline_ref_size(want);
|
|
path->keep_locks = 1;
|
|
} else
|
|
extra_size = -1;
|
|
ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
|
|
if (ret < 0) {
|
|
err = ret;
|
|
goto out;
|
|
}
|
|
BUG_ON(ret);
|
|
|
|
leaf = path->nodes[0];
|
|
item_size = btrfs_item_size_nr(leaf, path->slots[0]);
|
|
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
|
|
if (item_size < sizeof(*ei)) {
|
|
if (!insert) {
|
|
err = -ENOENT;
|
|
goto out;
|
|
}
|
|
ret = convert_extent_item_v0(trans, root, path, owner,
|
|
extra_size);
|
|
if (ret < 0) {
|
|
err = ret;
|
|
goto out;
|
|
}
|
|
leaf = path->nodes[0];
|
|
item_size = btrfs_item_size_nr(leaf, path->slots[0]);
|
|
}
|
|
#endif
|
|
BUG_ON(item_size < sizeof(*ei));
|
|
|
|
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
|
|
flags = btrfs_extent_flags(leaf, ei);
|
|
|
|
ptr = (unsigned long)(ei + 1);
|
|
end = (unsigned long)ei + item_size;
|
|
|
|
if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
|
|
ptr += sizeof(struct btrfs_tree_block_info);
|
|
BUG_ON(ptr > end);
|
|
} else {
|
|
BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
|
|
}
|
|
|
|
err = -ENOENT;
|
|
while (1) {
|
|
if (ptr >= end) {
|
|
WARN_ON(ptr > end);
|
|
break;
|
|
}
|
|
iref = (struct btrfs_extent_inline_ref *)ptr;
|
|
type = btrfs_extent_inline_ref_type(leaf, iref);
|
|
if (want < type)
|
|
break;
|
|
if (want > type) {
|
|
ptr += btrfs_extent_inline_ref_size(type);
|
|
continue;
|
|
}
|
|
|
|
if (type == BTRFS_EXTENT_DATA_REF_KEY) {
|
|
struct btrfs_extent_data_ref *dref;
|
|
dref = (struct btrfs_extent_data_ref *)(&iref->offset);
|
|
if (match_extent_data_ref(leaf, dref, root_objectid,
|
|
owner, offset)) {
|
|
err = 0;
|
|
break;
|
|
}
|
|
if (hash_extent_data_ref_item(leaf, dref) <
|
|
hash_extent_data_ref(root_objectid, owner, offset))
|
|
break;
|
|
} else {
|
|
u64 ref_offset;
|
|
ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
|
|
if (parent > 0) {
|
|
if (parent == ref_offset) {
|
|
err = 0;
|
|
break;
|
|
}
|
|
if (ref_offset < parent)
|
|
break;
|
|
} else {
|
|
if (root_objectid == ref_offset) {
|
|
err = 0;
|
|
break;
|
|
}
|
|
if (ref_offset < root_objectid)
|
|
break;
|
|
}
|
|
}
|
|
ptr += btrfs_extent_inline_ref_size(type);
|
|
}
|
|
if (err == -ENOENT && insert) {
|
|
if (item_size + extra_size >=
|
|
BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
|
|
err = -EAGAIN;
|
|
goto out;
|
|
}
|
|
/*
|
|
* To add new inline back ref, we have to make sure
|
|
* there is no corresponding back ref item.
|
|
* For simplicity, we just do not add new inline back
|
|
* ref if there is any kind of item for this block
|
|
*/
|
|
if (find_next_key(path, 0, &key) == 0 &&
|
|
key.objectid == bytenr &&
|
|
key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
|
|
err = -EAGAIN;
|
|
goto out;
|
|
}
|
|
}
|
|
*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
|
|
out:
|
|
if (insert) {
|
|
path->keep_locks = 0;
|
|
btrfs_unlock_up_safe(path, 1);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* helper to add new inline back ref
|
|
*/
|
|
static noinline_for_stack
|
|
int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct btrfs_extent_inline_ref *iref,
|
|
u64 parent, u64 root_objectid,
|
|
u64 owner, u64 offset, int refs_to_add,
|
|
struct btrfs_delayed_extent_op *extent_op)
|
|
{
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_extent_item *ei;
|
|
unsigned long ptr;
|
|
unsigned long end;
|
|
unsigned long item_offset;
|
|
u64 refs;
|
|
int size;
|
|
int type;
|
|
int ret;
|
|
|
|
leaf = path->nodes[0];
|
|
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
|
|
item_offset = (unsigned long)iref - (unsigned long)ei;
|
|
|
|
type = extent_ref_type(parent, owner);
|
|
size = btrfs_extent_inline_ref_size(type);
|
|
|
|
ret = btrfs_extend_item(trans, root, path, size);
|
|
|
|
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
|
|
refs = btrfs_extent_refs(leaf, ei);
|
|
refs += refs_to_add;
|
|
btrfs_set_extent_refs(leaf, ei, refs);
|
|
if (extent_op)
|
|
__run_delayed_extent_op(extent_op, leaf, ei);
|
|
|
|
ptr = (unsigned long)ei + item_offset;
|
|
end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
|
|
if (ptr < end - size)
|
|
memmove_extent_buffer(leaf, ptr + size, ptr,
|
|
end - size - ptr);
|
|
|
|
iref = (struct btrfs_extent_inline_ref *)ptr;
|
|
btrfs_set_extent_inline_ref_type(leaf, iref, type);
|
|
if (type == BTRFS_EXTENT_DATA_REF_KEY) {
|
|
struct btrfs_extent_data_ref *dref;
|
|
dref = (struct btrfs_extent_data_ref *)(&iref->offset);
|
|
btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
|
|
btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
|
|
btrfs_set_extent_data_ref_offset(leaf, dref, offset);
|
|
btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
|
|
} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
|
|
struct btrfs_shared_data_ref *sref;
|
|
sref = (struct btrfs_shared_data_ref *)(iref + 1);
|
|
btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
|
|
btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
|
|
} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
|
|
btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
|
|
} else {
|
|
btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
|
|
}
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
return 0;
|
|
}
|
|
|
|
static int lookup_extent_backref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct btrfs_extent_inline_ref **ref_ret,
|
|
u64 bytenr, u64 num_bytes, u64 parent,
|
|
u64 root_objectid, u64 owner, u64 offset)
|
|
{
|
|
int ret;
|
|
|
|
ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
|
|
bytenr, num_bytes, parent,
|
|
root_objectid, owner, offset, 0);
|
|
if (ret != -ENOENT)
|
|
return ret;
|
|
|
|
btrfs_release_path(path);
|
|
*ref_ret = NULL;
|
|
|
|
if (owner < BTRFS_FIRST_FREE_OBJECTID) {
|
|
ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
|
|
root_objectid);
|
|
} else {
|
|
ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
|
|
root_objectid, owner, offset);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* helper to update/remove inline back ref
|
|
*/
|
|
static noinline_for_stack
|
|
int update_inline_extent_backref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct btrfs_extent_inline_ref *iref,
|
|
int refs_to_mod,
|
|
struct btrfs_delayed_extent_op *extent_op)
|
|
{
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_extent_item *ei;
|
|
struct btrfs_extent_data_ref *dref = NULL;
|
|
struct btrfs_shared_data_ref *sref = NULL;
|
|
unsigned long ptr;
|
|
unsigned long end;
|
|
u32 item_size;
|
|
int size;
|
|
int type;
|
|
int ret;
|
|
u64 refs;
|
|
|
|
leaf = path->nodes[0];
|
|
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
|
|
refs = btrfs_extent_refs(leaf, ei);
|
|
WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
|
|
refs += refs_to_mod;
|
|
btrfs_set_extent_refs(leaf, ei, refs);
|
|
if (extent_op)
|
|
__run_delayed_extent_op(extent_op, leaf, ei);
|
|
|
|
type = btrfs_extent_inline_ref_type(leaf, iref);
|
|
|
|
if (type == BTRFS_EXTENT_DATA_REF_KEY) {
|
|
dref = (struct btrfs_extent_data_ref *)(&iref->offset);
|
|
refs = btrfs_extent_data_ref_count(leaf, dref);
|
|
} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
|
|
sref = (struct btrfs_shared_data_ref *)(iref + 1);
|
|
refs = btrfs_shared_data_ref_count(leaf, sref);
|
|
} else {
|
|
refs = 1;
|
|
BUG_ON(refs_to_mod != -1);
|
|
}
|
|
|
|
BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
|
|
refs += refs_to_mod;
|
|
|
|
if (refs > 0) {
|
|
if (type == BTRFS_EXTENT_DATA_REF_KEY)
|
|
btrfs_set_extent_data_ref_count(leaf, dref, refs);
|
|
else
|
|
btrfs_set_shared_data_ref_count(leaf, sref, refs);
|
|
} else {
|
|
size = btrfs_extent_inline_ref_size(type);
|
|
item_size = btrfs_item_size_nr(leaf, path->slots[0]);
|
|
ptr = (unsigned long)iref;
|
|
end = (unsigned long)ei + item_size;
|
|
if (ptr + size < end)
|
|
memmove_extent_buffer(leaf, ptr, ptr + size,
|
|
end - ptr - size);
|
|
item_size -= size;
|
|
ret = btrfs_truncate_item(trans, root, path, item_size, 1);
|
|
}
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
return 0;
|
|
}
|
|
|
|
static noinline_for_stack
|
|
int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
u64 bytenr, u64 num_bytes, u64 parent,
|
|
u64 root_objectid, u64 owner,
|
|
u64 offset, int refs_to_add,
|
|
struct btrfs_delayed_extent_op *extent_op)
|
|
{
|
|
struct btrfs_extent_inline_ref *iref;
|
|
int ret;
|
|
|
|
ret = lookup_inline_extent_backref(trans, root, path, &iref,
|
|
bytenr, num_bytes, parent,
|
|
root_objectid, owner, offset, 1);
|
|
if (ret == 0) {
|
|
BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
|
|
ret = update_inline_extent_backref(trans, root, path, iref,
|
|
refs_to_add, extent_op);
|
|
} else if (ret == -ENOENT) {
|
|
ret = setup_inline_extent_backref(trans, root, path, iref,
|
|
parent, root_objectid,
|
|
owner, offset, refs_to_add,
|
|
extent_op);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int insert_extent_backref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
u64 bytenr, u64 parent, u64 root_objectid,
|
|
u64 owner, u64 offset, int refs_to_add)
|
|
{
|
|
int ret;
|
|
if (owner < BTRFS_FIRST_FREE_OBJECTID) {
|
|
BUG_ON(refs_to_add != 1);
|
|
ret = insert_tree_block_ref(trans, root, path, bytenr,
|
|
parent, root_objectid);
|
|
} else {
|
|
ret = insert_extent_data_ref(trans, root, path, bytenr,
|
|
parent, root_objectid,
|
|
owner, offset, refs_to_add);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int remove_extent_backref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct btrfs_extent_inline_ref *iref,
|
|
int refs_to_drop, int is_data)
|
|
{
|
|
int ret;
|
|
|
|
BUG_ON(!is_data && refs_to_drop != 1);
|
|
if (iref) {
|
|
ret = update_inline_extent_backref(trans, root, path, iref,
|
|
-refs_to_drop, NULL);
|
|
} else if (is_data) {
|
|
ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
|
|
} else {
|
|
ret = btrfs_del_item(trans, root, path);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_issue_discard(struct block_device *bdev,
|
|
u64 start, u64 len)
|
|
{
|
|
return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
|
|
}
|
|
|
|
static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
|
|
u64 num_bytes, u64 *actual_bytes)
|
|
{
|
|
int ret;
|
|
u64 discarded_bytes = 0;
|
|
struct btrfs_bio *bbio = NULL;
|
|
|
|
|
|
/* Tell the block device(s) that the sectors can be discarded */
|
|
ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
|
|
bytenr, &num_bytes, &bbio, 0);
|
|
if (!ret) {
|
|
struct btrfs_bio_stripe *stripe = bbio->stripes;
|
|
int i;
|
|
|
|
|
|
for (i = 0; i < bbio->num_stripes; i++, stripe++) {
|
|
if (!stripe->dev->can_discard)
|
|
continue;
|
|
|
|
ret = btrfs_issue_discard(stripe->dev->bdev,
|
|
stripe->physical,
|
|
stripe->length);
|
|
if (!ret)
|
|
discarded_bytes += stripe->length;
|
|
else if (ret != -EOPNOTSUPP)
|
|
break;
|
|
|
|
/*
|
|
* Just in case we get back EOPNOTSUPP for some reason,
|
|
* just ignore the return value so we don't screw up
|
|
* people calling discard_extent.
|
|
*/
|
|
ret = 0;
|
|
}
|
|
kfree(bbio);
|
|
}
|
|
|
|
if (actual_bytes)
|
|
*actual_bytes = discarded_bytes;
|
|
|
|
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 bytenr, u64 num_bytes, u64 parent,
|
|
u64 root_objectid, u64 owner, u64 offset)
|
|
{
|
|
int ret;
|
|
BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
|
|
root_objectid == BTRFS_TREE_LOG_OBJECTID);
|
|
|
|
if (owner < BTRFS_FIRST_FREE_OBJECTID) {
|
|
ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
|
|
parent, root_objectid, (int)owner,
|
|
BTRFS_ADD_DELAYED_REF, NULL);
|
|
} else {
|
|
ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
|
|
parent, root_objectid, owner, offset,
|
|
BTRFS_ADD_DELAYED_REF, NULL);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 bytenr, u64 num_bytes,
|
|
u64 parent, u64 root_objectid,
|
|
u64 owner, u64 offset, int refs_to_add,
|
|
struct btrfs_delayed_extent_op *extent_op)
|
|
{
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_extent_item *item;
|
|
u64 refs;
|
|
int ret;
|
|
int err = 0;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
path->reada = 1;
|
|
path->leave_spinning = 1;
|
|
/* this will setup the path even if it fails to insert the back ref */
|
|
ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
|
|
path, bytenr, num_bytes, parent,
|
|
root_objectid, owner, offset,
|
|
refs_to_add, extent_op);
|
|
if (ret == 0)
|
|
goto out;
|
|
|
|
if (ret != -EAGAIN) {
|
|
err = ret;
|
|
goto out;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
|
|
refs = btrfs_extent_refs(leaf, item);
|
|
btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
|
|
if (extent_op)
|
|
__run_delayed_extent_op(extent_op, leaf, item);
|
|
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
btrfs_release_path(path);
|
|
|
|
path->reada = 1;
|
|
path->leave_spinning = 1;
|
|
|
|
/* now insert the actual backref */
|
|
ret = insert_extent_backref(trans, root->fs_info->extent_root,
|
|
path, bytenr, parent, root_objectid,
|
|
owner, offset, refs_to_add);
|
|
BUG_ON(ret);
|
|
out:
|
|
btrfs_free_path(path);
|
|
return err;
|
|
}
|
|
|
|
static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_delayed_ref_node *node,
|
|
struct btrfs_delayed_extent_op *extent_op,
|
|
int insert_reserved)
|
|
{
|
|
int ret = 0;
|
|
struct btrfs_delayed_data_ref *ref;
|
|
struct btrfs_key ins;
|
|
u64 parent = 0;
|
|
u64 ref_root = 0;
|
|
u64 flags = 0;
|
|
|
|
ins.objectid = node->bytenr;
|
|
ins.offset = node->num_bytes;
|
|
ins.type = BTRFS_EXTENT_ITEM_KEY;
|
|
|
|
ref = btrfs_delayed_node_to_data_ref(node);
|
|
if (node->type == BTRFS_SHARED_DATA_REF_KEY)
|
|
parent = ref->parent;
|
|
else
|
|
ref_root = ref->root;
|
|
|
|
if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
|
|
if (extent_op) {
|
|
BUG_ON(extent_op->update_key);
|
|
flags |= extent_op->flags_to_set;
|
|
}
|
|
ret = alloc_reserved_file_extent(trans, root,
|
|
parent, ref_root, flags,
|
|
ref->objectid, ref->offset,
|
|
&ins, node->ref_mod);
|
|
} else if (node->action == BTRFS_ADD_DELAYED_REF) {
|
|
ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
|
|
node->num_bytes, parent,
|
|
ref_root, ref->objectid,
|
|
ref->offset, node->ref_mod,
|
|
extent_op);
|
|
} else if (node->action == BTRFS_DROP_DELAYED_REF) {
|
|
ret = __btrfs_free_extent(trans, root, node->bytenr,
|
|
node->num_bytes, parent,
|
|
ref_root, ref->objectid,
|
|
ref->offset, node->ref_mod,
|
|
extent_op);
|
|
} else {
|
|
BUG();
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
|
|
struct extent_buffer *leaf,
|
|
struct btrfs_extent_item *ei)
|
|
{
|
|
u64 flags = btrfs_extent_flags(leaf, ei);
|
|
if (extent_op->update_flags) {
|
|
flags |= extent_op->flags_to_set;
|
|
btrfs_set_extent_flags(leaf, ei, flags);
|
|
}
|
|
|
|
if (extent_op->update_key) {
|
|
struct btrfs_tree_block_info *bi;
|
|
BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
|
|
bi = (struct btrfs_tree_block_info *)(ei + 1);
|
|
btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
|
|
}
|
|
}
|
|
|
|
static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_delayed_ref_node *node,
|
|
struct btrfs_delayed_extent_op *extent_op)
|
|
{
|
|
struct btrfs_key key;
|
|
struct btrfs_path *path;
|
|
struct btrfs_extent_item *ei;
|
|
struct extent_buffer *leaf;
|
|
u32 item_size;
|
|
int ret;
|
|
int err = 0;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
key.objectid = node->bytenr;
|
|
key.type = BTRFS_EXTENT_ITEM_KEY;
|
|
key.offset = node->num_bytes;
|
|
|
|
path->reada = 1;
|
|
path->leave_spinning = 1;
|
|
ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
|
|
path, 0, 1);
|
|
if (ret < 0) {
|
|
err = ret;
|
|
goto out;
|
|
}
|
|
if (ret > 0) {
|
|
err = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
item_size = btrfs_item_size_nr(leaf, path->slots[0]);
|
|
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
|
|
if (item_size < sizeof(*ei)) {
|
|
ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
|
|
path, (u64)-1, 0);
|
|
if (ret < 0) {
|
|
err = ret;
|
|
goto out;
|
|
}
|
|
leaf = path->nodes[0];
|
|
item_size = btrfs_item_size_nr(leaf, path->slots[0]);
|
|
}
|
|
#endif
|
|
BUG_ON(item_size < sizeof(*ei));
|
|
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
|
|
__run_delayed_extent_op(extent_op, leaf, ei);
|
|
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
out:
|
|
btrfs_free_path(path);
|
|
return err;
|
|
}
|
|
|
|
static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_delayed_ref_node *node,
|
|
struct btrfs_delayed_extent_op *extent_op,
|
|
int insert_reserved)
|
|
{
|
|
int ret = 0;
|
|
struct btrfs_delayed_tree_ref *ref;
|
|
struct btrfs_key ins;
|
|
u64 parent = 0;
|
|
u64 ref_root = 0;
|
|
|
|
ins.objectid = node->bytenr;
|
|
ins.offset = node->num_bytes;
|
|
ins.type = BTRFS_EXTENT_ITEM_KEY;
|
|
|
|
ref = btrfs_delayed_node_to_tree_ref(node);
|
|
if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
|
|
parent = ref->parent;
|
|
else
|
|
ref_root = ref->root;
|
|
|
|
BUG_ON(node->ref_mod != 1);
|
|
if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
|
|
BUG_ON(!extent_op || !extent_op->update_flags ||
|
|
!extent_op->update_key);
|
|
ret = alloc_reserved_tree_block(trans, root,
|
|
parent, ref_root,
|
|
extent_op->flags_to_set,
|
|
&extent_op->key,
|
|
ref->level, &ins);
|
|
} else if (node->action == BTRFS_ADD_DELAYED_REF) {
|
|
ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
|
|
node->num_bytes, parent, ref_root,
|
|
ref->level, 0, 1, extent_op);
|
|
} else if (node->action == BTRFS_DROP_DELAYED_REF) {
|
|
ret = __btrfs_free_extent(trans, root, node->bytenr,
|
|
node->num_bytes, parent, ref_root,
|
|
ref->level, 0, 1, extent_op);
|
|
} else {
|
|
BUG();
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* helper function to actually process a single delayed ref entry */
|
|
static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_delayed_ref_node *node,
|
|
struct btrfs_delayed_extent_op *extent_op,
|
|
int insert_reserved)
|
|
{
|
|
int ret;
|
|
if (btrfs_delayed_ref_is_head(node)) {
|
|
struct btrfs_delayed_ref_head *head;
|
|
/*
|
|
* we've hit the end of the chain and we were supposed
|
|
* to insert this extent into the tree. But, it got
|
|
* deleted before we ever needed to insert it, so all
|
|
* we have to do is clean up the accounting
|
|
*/
|
|
BUG_ON(extent_op);
|
|
head = btrfs_delayed_node_to_head(node);
|
|
if (insert_reserved) {
|
|
btrfs_pin_extent(root, node->bytenr,
|
|
node->num_bytes, 1);
|
|
if (head->is_data) {
|
|
ret = btrfs_del_csums(trans, root,
|
|
node->bytenr,
|
|
node->num_bytes);
|
|
BUG_ON(ret);
|
|
}
|
|
}
|
|
mutex_unlock(&head->mutex);
|
|
return 0;
|
|
}
|
|
|
|
if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
|
|
node->type == BTRFS_SHARED_BLOCK_REF_KEY)
|
|
ret = run_delayed_tree_ref(trans, root, node, extent_op,
|
|
insert_reserved);
|
|
else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
|
|
node->type == BTRFS_SHARED_DATA_REF_KEY)
|
|
ret = run_delayed_data_ref(trans, root, node, extent_op,
|
|
insert_reserved);
|
|
else
|
|
BUG();
|
|
return ret;
|
|
}
|
|
|
|
static noinline struct btrfs_delayed_ref_node *
|
|
select_delayed_ref(struct btrfs_delayed_ref_head *head)
|
|
{
|
|
struct rb_node *node;
|
|
struct btrfs_delayed_ref_node *ref;
|
|
int action = BTRFS_ADD_DELAYED_REF;
|
|
again:
|
|
/*
|
|
* select delayed ref of type BTRFS_ADD_DELAYED_REF first.
|
|
* this prevents ref count from going down to zero when
|
|
* there still are pending delayed ref.
|
|
*/
|
|
node = rb_prev(&head->node.rb_node);
|
|
while (1) {
|
|
if (!node)
|
|
break;
|
|
ref = rb_entry(node, struct btrfs_delayed_ref_node,
|
|
rb_node);
|
|
if (ref->bytenr != head->node.bytenr)
|
|
break;
|
|
if (ref->action == action)
|
|
return ref;
|
|
node = rb_prev(node);
|
|
}
|
|
if (action == BTRFS_ADD_DELAYED_REF) {
|
|
action = BTRFS_DROP_DELAYED_REF;
|
|
goto again;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct list_head *cluster)
|
|
{
|
|
struct btrfs_delayed_ref_root *delayed_refs;
|
|
struct btrfs_delayed_ref_node *ref;
|
|
struct btrfs_delayed_ref_head *locked_ref = NULL;
|
|
struct btrfs_delayed_extent_op *extent_op;
|
|
int ret;
|
|
int count = 0;
|
|
int must_insert_reserved = 0;
|
|
|
|
delayed_refs = &trans->transaction->delayed_refs;
|
|
while (1) {
|
|
if (!locked_ref) {
|
|
/* pick a new head ref from the cluster list */
|
|
if (list_empty(cluster))
|
|
break;
|
|
|
|
locked_ref = list_entry(cluster->next,
|
|
struct btrfs_delayed_ref_head, cluster);
|
|
|
|
/* grab the lock that says we are going to process
|
|
* all the refs for this head */
|
|
ret = btrfs_delayed_ref_lock(trans, locked_ref);
|
|
|
|
/*
|
|
* we may have dropped the spin lock to get the head
|
|
* mutex lock, and that might have given someone else
|
|
* time to free the head. If that's true, it has been
|
|
* removed from our list and we can move on.
|
|
*/
|
|
if (ret == -EAGAIN) {
|
|
locked_ref = NULL;
|
|
count++;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* record the must insert reserved flag before we
|
|
* drop the spin lock.
|
|
*/
|
|
must_insert_reserved = locked_ref->must_insert_reserved;
|
|
locked_ref->must_insert_reserved = 0;
|
|
|
|
extent_op = locked_ref->extent_op;
|
|
locked_ref->extent_op = NULL;
|
|
|
|
/*
|
|
* locked_ref is the head node, so we have to go one
|
|
* node back for any delayed ref updates
|
|
*/
|
|
ref = select_delayed_ref(locked_ref);
|
|
if (!ref) {
|
|
/* All delayed refs have been processed, Go ahead
|
|
* and send the head node to run_one_delayed_ref,
|
|
* so that any accounting fixes can happen
|
|
*/
|
|
ref = &locked_ref->node;
|
|
|
|
if (extent_op && must_insert_reserved) {
|
|
kfree(extent_op);
|
|
extent_op = NULL;
|
|
}
|
|
|
|
if (extent_op) {
|
|
spin_unlock(&delayed_refs->lock);
|
|
|
|
ret = run_delayed_extent_op(trans, root,
|
|
ref, extent_op);
|
|
BUG_ON(ret);
|
|
kfree(extent_op);
|
|
|
|
cond_resched();
|
|
spin_lock(&delayed_refs->lock);
|
|
continue;
|
|
}
|
|
|
|
list_del_init(&locked_ref->cluster);
|
|
locked_ref = NULL;
|
|
}
|
|
|
|
ref->in_tree = 0;
|
|
rb_erase(&ref->rb_node, &delayed_refs->root);
|
|
delayed_refs->num_entries--;
|
|
|
|
spin_unlock(&delayed_refs->lock);
|
|
|
|
ret = run_one_delayed_ref(trans, root, ref, extent_op,
|
|
must_insert_reserved);
|
|
BUG_ON(ret);
|
|
|
|
btrfs_put_delayed_ref(ref);
|
|
kfree(extent_op);
|
|
count++;
|
|
|
|
cond_resched();
|
|
spin_lock(&delayed_refs->lock);
|
|
}
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* this starts processing the delayed reference count updates and
|
|
* extent insertions we have queued up so far. count can be
|
|
* 0, which means to process everything in the tree at the start
|
|
* of the run (but not newly added entries), or it can be some target
|
|
* number you'd like to process.
|
|
*/
|
|
int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, unsigned long count)
|
|
{
|
|
struct rb_node *node;
|
|
struct btrfs_delayed_ref_root *delayed_refs;
|
|
struct btrfs_delayed_ref_node *ref;
|
|
struct list_head cluster;
|
|
int ret;
|
|
int run_all = count == (unsigned long)-1;
|
|
int run_most = 0;
|
|
|
|
if (root == root->fs_info->extent_root)
|
|
root = root->fs_info->tree_root;
|
|
|
|
delayed_refs = &trans->transaction->delayed_refs;
|
|
INIT_LIST_HEAD(&cluster);
|
|
again:
|
|
spin_lock(&delayed_refs->lock);
|
|
if (count == 0) {
|
|
count = delayed_refs->num_entries * 2;
|
|
run_most = 1;
|
|
}
|
|
while (1) {
|
|
if (!(run_all || run_most) &&
|
|
delayed_refs->num_heads_ready < 64)
|
|
break;
|
|
|
|
/*
|
|
* go find something we can process in the rbtree. We start at
|
|
* the beginning of the tree, and then build a cluster
|
|
* of refs to process starting at the first one we are able to
|
|
* lock
|
|
*/
|
|
ret = btrfs_find_ref_cluster(trans, &cluster,
|
|
delayed_refs->run_delayed_start);
|
|
if (ret)
|
|
break;
|
|
|
|
ret = run_clustered_refs(trans, root, &cluster);
|
|
BUG_ON(ret < 0);
|
|
|
|
count -= min_t(unsigned long, ret, count);
|
|
|
|
if (count == 0)
|
|
break;
|
|
}
|
|
|
|
if (run_all) {
|
|
node = rb_first(&delayed_refs->root);
|
|
if (!node)
|
|
goto out;
|
|
count = (unsigned long)-1;
|
|
|
|
while (node) {
|
|
ref = rb_entry(node, struct btrfs_delayed_ref_node,
|
|
rb_node);
|
|
if (btrfs_delayed_ref_is_head(ref)) {
|
|
struct btrfs_delayed_ref_head *head;
|
|
|
|
head = btrfs_delayed_node_to_head(ref);
|
|
atomic_inc(&ref->refs);
|
|
|
|
spin_unlock(&delayed_refs->lock);
|
|
/*
|
|
* Mutex was contended, block until it's
|
|
* released and try again
|
|
*/
|
|
mutex_lock(&head->mutex);
|
|
mutex_unlock(&head->mutex);
|
|
|
|
btrfs_put_delayed_ref(ref);
|
|
cond_resched();
|
|
goto again;
|
|
}
|
|
node = rb_next(node);
|
|
}
|
|
spin_unlock(&delayed_refs->lock);
|
|
schedule_timeout(1);
|
|
goto again;
|
|
}
|
|
out:
|
|
spin_unlock(&delayed_refs->lock);
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 bytenr, u64 num_bytes, u64 flags,
|
|
int is_data)
|
|
{
|
|
struct btrfs_delayed_extent_op *extent_op;
|
|
int ret;
|
|
|
|
extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
|
|
if (!extent_op)
|
|
return -ENOMEM;
|
|
|
|
extent_op->flags_to_set = flags;
|
|
extent_op->update_flags = 1;
|
|
extent_op->update_key = 0;
|
|
extent_op->is_data = is_data ? 1 : 0;
|
|
|
|
ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
|
|
if (ret)
|
|
kfree(extent_op);
|
|
return ret;
|
|
}
|
|
|
|
static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
u64 objectid, u64 offset, u64 bytenr)
|
|
{
|
|
struct btrfs_delayed_ref_head *head;
|
|
struct btrfs_delayed_ref_node *ref;
|
|
struct btrfs_delayed_data_ref *data_ref;
|
|
struct btrfs_delayed_ref_root *delayed_refs;
|
|
struct rb_node *node;
|
|
int ret = 0;
|
|
|
|
ret = -ENOENT;
|
|
delayed_refs = &trans->transaction->delayed_refs;
|
|
spin_lock(&delayed_refs->lock);
|
|
head = btrfs_find_delayed_ref_head(trans, bytenr);
|
|
if (!head)
|
|
goto out;
|
|
|
|
if (!mutex_trylock(&head->mutex)) {
|
|
atomic_inc(&head->node.refs);
|
|
spin_unlock(&delayed_refs->lock);
|
|
|
|
btrfs_release_path(path);
|
|
|
|
/*
|
|
* Mutex was contended, block until it's released and let
|
|
* caller try again
|
|
*/
|
|
mutex_lock(&head->mutex);
|
|
mutex_unlock(&head->mutex);
|
|
btrfs_put_delayed_ref(&head->node);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
node = rb_prev(&head->node.rb_node);
|
|
if (!node)
|
|
goto out_unlock;
|
|
|
|
ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
|
|
|
|
if (ref->bytenr != bytenr)
|
|
goto out_unlock;
|
|
|
|
ret = 1;
|
|
if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
|
|
goto out_unlock;
|
|
|
|
data_ref = btrfs_delayed_node_to_data_ref(ref);
|
|
|
|
node = rb_prev(node);
|
|
if (node) {
|
|
ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
|
|
if (ref->bytenr == bytenr)
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (data_ref->root != root->root_key.objectid ||
|
|
data_ref->objectid != objectid || data_ref->offset != offset)
|
|
goto out_unlock;
|
|
|
|
ret = 0;
|
|
out_unlock:
|
|
mutex_unlock(&head->mutex);
|
|
out:
|
|
spin_unlock(&delayed_refs->lock);
|
|
return ret;
|
|
}
|
|
|
|
static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
u64 objectid, u64 offset, u64 bytenr)
|
|
{
|
|
struct btrfs_root *extent_root = root->fs_info->extent_root;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_extent_data_ref *ref;
|
|
struct btrfs_extent_inline_ref *iref;
|
|
struct btrfs_extent_item *ei;
|
|
struct btrfs_key key;
|
|
u32 item_size;
|
|
int ret;
|
|
|
|
key.objectid = bytenr;
|
|
key.offset = (u64)-1;
|
|
key.type = BTRFS_EXTENT_ITEM_KEY;
|
|
|
|
ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
BUG_ON(ret == 0);
|
|
|
|
ret = -ENOENT;
|
|
if (path->slots[0] == 0)
|
|
goto out;
|
|
|
|
path->slots[0]--;
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
|
|
|
|
if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
|
|
goto out;
|
|
|
|
ret = 1;
|
|
item_size = btrfs_item_size_nr(leaf, path->slots[0]);
|
|
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
|
|
if (item_size < sizeof(*ei)) {
|
|
WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
|
|
goto out;
|
|
}
|
|
#endif
|
|
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
|
|
|
|
if (item_size != sizeof(*ei) +
|
|
btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
|
|
goto out;
|
|
|
|
if (btrfs_extent_generation(leaf, ei) <=
|
|
btrfs_root_last_snapshot(&root->root_item))
|
|
goto out;
|
|
|
|
iref = (struct btrfs_extent_inline_ref *)(ei + 1);
|
|
if (btrfs_extent_inline_ref_type(leaf, iref) !=
|
|
BTRFS_EXTENT_DATA_REF_KEY)
|
|
goto out;
|
|
|
|
ref = (struct btrfs_extent_data_ref *)(&iref->offset);
|
|
if (btrfs_extent_refs(leaf, ei) !=
|
|
btrfs_extent_data_ref_count(leaf, ref) ||
|
|
btrfs_extent_data_ref_root(leaf, ref) !=
|
|
root->root_key.objectid ||
|
|
btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
|
|
btrfs_extent_data_ref_offset(leaf, ref) != offset)
|
|
goto out;
|
|
|
|
ret = 0;
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 objectid, u64 offset, u64 bytenr)
|
|
{
|
|
struct btrfs_path *path;
|
|
int ret;
|
|
int ret2;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOENT;
|
|
|
|
do {
|
|
ret = check_committed_ref(trans, root, path, objectid,
|
|
offset, bytenr);
|
|
if (ret && ret != -ENOENT)
|
|
goto out;
|
|
|
|
ret2 = check_delayed_ref(trans, root, path, objectid,
|
|
offset, bytenr);
|
|
} while (ret2 == -EAGAIN);
|
|
|
|
if (ret2 && ret2 != -ENOENT) {
|
|
ret = ret2;
|
|
goto out;
|
|
}
|
|
|
|
if (ret != -ENOENT || ret2 != -ENOENT)
|
|
ret = 0;
|
|
out:
|
|
btrfs_free_path(path);
|
|
if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
|
|
WARN_ON(ret > 0);
|
|
return ret;
|
|
}
|
|
|
|
static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct extent_buffer *buf,
|
|
int full_backref, int inc)
|
|
{
|
|
u64 bytenr;
|
|
u64 num_bytes;
|
|
u64 parent;
|
|
u64 ref_root;
|
|
u32 nritems;
|
|
struct btrfs_key key;
|
|
struct btrfs_file_extent_item *fi;
|
|
int i;
|
|
int level;
|
|
int ret = 0;
|
|
int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
|
|
u64, u64, u64, u64, u64, u64);
|
|
|
|
ref_root = btrfs_header_owner(buf);
|
|
nritems = btrfs_header_nritems(buf);
|
|
level = btrfs_header_level(buf);
|
|
|
|
if (!root->ref_cows && level == 0)
|
|
return 0;
|
|
|
|
if (inc)
|
|
process_func = btrfs_inc_extent_ref;
|
|
else
|
|
process_func = btrfs_free_extent;
|
|
|
|
if (full_backref)
|
|
parent = buf->start;
|
|
else
|
|
parent = 0;
|
|
|
|
for (i = 0; i < nritems; i++) {
|
|
if (level == 0) {
|
|
btrfs_item_key_to_cpu(buf, &key, i);
|
|
if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
|
|
continue;
|
|
fi = btrfs_item_ptr(buf, i,
|
|
struct btrfs_file_extent_item);
|
|
if (btrfs_file_extent_type(buf, fi) ==
|
|
BTRFS_FILE_EXTENT_INLINE)
|
|
continue;
|
|
bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
|
|
if (bytenr == 0)
|
|
continue;
|
|
|
|
num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
|
|
key.offset -= btrfs_file_extent_offset(buf, fi);
|
|
ret = process_func(trans, root, bytenr, num_bytes,
|
|
parent, ref_root, key.objectid,
|
|
key.offset);
|
|
if (ret)
|
|
goto fail;
|
|
} else {
|
|
bytenr = btrfs_node_blockptr(buf, i);
|
|
num_bytes = btrfs_level_size(root, level - 1);
|
|
ret = process_func(trans, root, bytenr, num_bytes,
|
|
parent, ref_root, level - 1, 0);
|
|
if (ret)
|
|
goto fail;
|
|
}
|
|
}
|
|
return 0;
|
|
fail:
|
|
BUG();
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
|
|
struct extent_buffer *buf, int full_backref)
|
|
{
|
|
return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
|
|
}
|
|
|
|
int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
|
|
struct extent_buffer *buf, int full_backref)
|
|
{
|
|
return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
|
|
}
|
|
|
|
static int write_one_cache_group(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct btrfs_block_group_cache *cache)
|
|
{
|
|
int ret;
|
|
struct btrfs_root *extent_root = root->fs_info->extent_root;
|
|
unsigned long bi;
|
|
struct extent_buffer *leaf;
|
|
|
|
ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
|
|
if (ret < 0)
|
|
goto fail;
|
|
BUG_ON(ret);
|
|
|
|
leaf = path->nodes[0];
|
|
bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
|
|
write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
btrfs_release_path(path);
|
|
fail:
|
|
if (ret)
|
|
return ret;
|
|
return 0;
|
|
|
|
}
|
|
|
|
static struct btrfs_block_group_cache *
|
|
next_block_group(struct btrfs_root *root,
|
|
struct btrfs_block_group_cache *cache)
|
|
{
|
|
struct rb_node *node;
|
|
spin_lock(&root->fs_info->block_group_cache_lock);
|
|
node = rb_next(&cache->cache_node);
|
|
btrfs_put_block_group(cache);
|
|
if (node) {
|
|
cache = rb_entry(node, struct btrfs_block_group_cache,
|
|
cache_node);
|
|
btrfs_get_block_group(cache);
|
|
} else
|
|
cache = NULL;
|
|
spin_unlock(&root->fs_info->block_group_cache_lock);
|
|
return cache;
|
|
}
|
|
|
|
static int cache_save_setup(struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_trans_handle *trans,
|
|
struct btrfs_path *path)
|
|
{
|
|
struct btrfs_root *root = block_group->fs_info->tree_root;
|
|
struct inode *inode = NULL;
|
|
u64 alloc_hint = 0;
|
|
int dcs = BTRFS_DC_ERROR;
|
|
int num_pages = 0;
|
|
int retries = 0;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* If this block group is smaller than 100 megs don't bother caching the
|
|
* block group.
|
|
*/
|
|
if (block_group->key.offset < (100 * 1024 * 1024)) {
|
|
spin_lock(&block_group->lock);
|
|
block_group->disk_cache_state = BTRFS_DC_WRITTEN;
|
|
spin_unlock(&block_group->lock);
|
|
return 0;
|
|
}
|
|
|
|
again:
|
|
inode = lookup_free_space_inode(root, block_group, path);
|
|
if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
|
|
ret = PTR_ERR(inode);
|
|
btrfs_release_path(path);
|
|
goto out;
|
|
}
|
|
|
|
if (IS_ERR(inode)) {
|
|
BUG_ON(retries);
|
|
retries++;
|
|
|
|
if (block_group->ro)
|
|
goto out_free;
|
|
|
|
ret = create_free_space_inode(root, trans, block_group, path);
|
|
if (ret)
|
|
goto out_free;
|
|
goto again;
|
|
}
|
|
|
|
/* We've already setup this transaction, go ahead and exit */
|
|
if (block_group->cache_generation == trans->transid &&
|
|
i_size_read(inode)) {
|
|
dcs = BTRFS_DC_SETUP;
|
|
goto out_put;
|
|
}
|
|
|
|
/*
|
|
* We want to set the generation to 0, that way if anything goes wrong
|
|
* from here on out we know not to trust this cache when we load up next
|
|
* time.
|
|
*/
|
|
BTRFS_I(inode)->generation = 0;
|
|
ret = btrfs_update_inode(trans, root, inode);
|
|
WARN_ON(ret);
|
|
|
|
if (i_size_read(inode) > 0) {
|
|
ret = btrfs_truncate_free_space_cache(root, trans, path,
|
|
inode);
|
|
if (ret)
|
|
goto out_put;
|
|
}
|
|
|
|
spin_lock(&block_group->lock);
|
|
if (block_group->cached != BTRFS_CACHE_FINISHED) {
|
|
/* We're not cached, don't bother trying to write stuff out */
|
|
dcs = BTRFS_DC_WRITTEN;
|
|
spin_unlock(&block_group->lock);
|
|
goto out_put;
|
|
}
|
|
spin_unlock(&block_group->lock);
|
|
|
|
num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
|
|
if (!num_pages)
|
|
num_pages = 1;
|
|
|
|
/*
|
|
* Just to make absolutely sure we have enough space, we're going to
|
|
* preallocate 12 pages worth of space for each block group. In
|
|
* practice we ought to use at most 8, but we need extra space so we can
|
|
* add our header and have a terminator between the extents and the
|
|
* bitmaps.
|
|
*/
|
|
num_pages *= 16;
|
|
num_pages *= PAGE_CACHE_SIZE;
|
|
|
|
ret = btrfs_check_data_free_space(inode, num_pages);
|
|
if (ret)
|
|
goto out_put;
|
|
|
|
ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
|
|
num_pages, num_pages,
|
|
&alloc_hint);
|
|
if (!ret)
|
|
dcs = BTRFS_DC_SETUP;
|
|
btrfs_free_reserved_data_space(inode, num_pages);
|
|
|
|
out_put:
|
|
iput(inode);
|
|
out_free:
|
|
btrfs_release_path(path);
|
|
out:
|
|
spin_lock(&block_group->lock);
|
|
if (!ret)
|
|
block_group->cache_generation = trans->transid;
|
|
block_group->disk_cache_state = dcs;
|
|
spin_unlock(&block_group->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
struct btrfs_block_group_cache *cache;
|
|
int err = 0;
|
|
struct btrfs_path *path;
|
|
u64 last = 0;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
again:
|
|
while (1) {
|
|
cache = btrfs_lookup_first_block_group(root->fs_info, last);
|
|
while (cache) {
|
|
if (cache->disk_cache_state == BTRFS_DC_CLEAR)
|
|
break;
|
|
cache = next_block_group(root, cache);
|
|
}
|
|
if (!cache) {
|
|
if (last == 0)
|
|
break;
|
|
last = 0;
|
|
continue;
|
|
}
|
|
err = cache_save_setup(cache, trans, path);
|
|
last = cache->key.objectid + cache->key.offset;
|
|
btrfs_put_block_group(cache);
|
|
}
|
|
|
|
while (1) {
|
|
if (last == 0) {
|
|
err = btrfs_run_delayed_refs(trans, root,
|
|
(unsigned long)-1);
|
|
BUG_ON(err);
|
|
}
|
|
|
|
cache = btrfs_lookup_first_block_group(root->fs_info, last);
|
|
while (cache) {
|
|
if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
|
|
btrfs_put_block_group(cache);
|
|
goto again;
|
|
}
|
|
|
|
if (cache->dirty)
|
|
break;
|
|
cache = next_block_group(root, cache);
|
|
}
|
|
if (!cache) {
|
|
if (last == 0)
|
|
break;
|
|
last = 0;
|
|
continue;
|
|
}
|
|
|
|
if (cache->disk_cache_state == BTRFS_DC_SETUP)
|
|
cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
|
|
cache->dirty = 0;
|
|
last = cache->key.objectid + cache->key.offset;
|
|
|
|
err = write_one_cache_group(trans, root, path, cache);
|
|
BUG_ON(err);
|
|
btrfs_put_block_group(cache);
|
|
}
|
|
|
|
while (1) {
|
|
/*
|
|
* I don't think this is needed since we're just marking our
|
|
* preallocated extent as written, but just in case it can't
|
|
* hurt.
|
|
*/
|
|
if (last == 0) {
|
|
err = btrfs_run_delayed_refs(trans, root,
|
|
(unsigned long)-1);
|
|
BUG_ON(err);
|
|
}
|
|
|
|
cache = btrfs_lookup_first_block_group(root->fs_info, last);
|
|
while (cache) {
|
|
/*
|
|
* Really this shouldn't happen, but it could if we
|
|
* couldn't write the entire preallocated extent and
|
|
* splitting the extent resulted in a new block.
|
|
*/
|
|
if (cache->dirty) {
|
|
btrfs_put_block_group(cache);
|
|
goto again;
|
|
}
|
|
if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
|
|
break;
|
|
cache = next_block_group(root, cache);
|
|
}
|
|
if (!cache) {
|
|
if (last == 0)
|
|
break;
|
|
last = 0;
|
|
continue;
|
|
}
|
|
|
|
btrfs_write_out_cache(root, trans, cache, path);
|
|
|
|
/*
|
|
* If we didn't have an error then the cache state is still
|
|
* NEED_WRITE, so we can set it to WRITTEN.
|
|
*/
|
|
if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
|
|
cache->disk_cache_state = BTRFS_DC_WRITTEN;
|
|
last = cache->key.objectid + cache->key.offset;
|
|
btrfs_put_block_group(cache);
|
|
}
|
|
|
|
btrfs_free_path(path);
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
|
|
{
|
|
struct btrfs_block_group_cache *block_group;
|
|
int readonly = 0;
|
|
|
|
block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
|
|
if (!block_group || block_group->ro)
|
|
readonly = 1;
|
|
if (block_group)
|
|
btrfs_put_block_group(block_group);
|
|
return readonly;
|
|
}
|
|
|
|
static int update_space_info(struct btrfs_fs_info *info, u64 flags,
|
|
u64 total_bytes, u64 bytes_used,
|
|
struct btrfs_space_info **space_info)
|
|
{
|
|
struct btrfs_space_info *found;
|
|
int i;
|
|
int factor;
|
|
|
|
if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
|
|
BTRFS_BLOCK_GROUP_RAID10))
|
|
factor = 2;
|
|
else
|
|
factor = 1;
|
|
|
|
found = __find_space_info(info, flags);
|
|
if (found) {
|
|
spin_lock(&found->lock);
|
|
found->total_bytes += total_bytes;
|
|
found->disk_total += total_bytes * factor;
|
|
found->bytes_used += bytes_used;
|
|
found->disk_used += bytes_used * factor;
|
|
found->full = 0;
|
|
spin_unlock(&found->lock);
|
|
*space_info = found;
|
|
return 0;
|
|
}
|
|
found = kzalloc(sizeof(*found), GFP_NOFS);
|
|
if (!found)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
|
|
INIT_LIST_HEAD(&found->block_groups[i]);
|
|
init_rwsem(&found->groups_sem);
|
|
spin_lock_init(&found->lock);
|
|
found->flags = flags & (BTRFS_BLOCK_GROUP_DATA |
|
|
BTRFS_BLOCK_GROUP_SYSTEM |
|
|
BTRFS_BLOCK_GROUP_METADATA);
|
|
found->total_bytes = total_bytes;
|
|
found->disk_total = total_bytes * factor;
|
|
found->bytes_used = bytes_used;
|
|
found->disk_used = bytes_used * factor;
|
|
found->bytes_pinned = 0;
|
|
found->bytes_reserved = 0;
|
|
found->bytes_readonly = 0;
|
|
found->bytes_may_use = 0;
|
|
found->full = 0;
|
|
found->force_alloc = CHUNK_ALLOC_NO_FORCE;
|
|
found->chunk_alloc = 0;
|
|
found->flush = 0;
|
|
init_waitqueue_head(&found->wait);
|
|
*space_info = found;
|
|
list_add_rcu(&found->list, &info->space_info);
|
|
return 0;
|
|
}
|
|
|
|
static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
|
|
{
|
|
u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 |
|
|
BTRFS_BLOCK_GROUP_RAID1 |
|
|
BTRFS_BLOCK_GROUP_RAID10 |
|
|
BTRFS_BLOCK_GROUP_DUP);
|
|
if (extra_flags) {
|
|
if (flags & BTRFS_BLOCK_GROUP_DATA)
|
|
fs_info->avail_data_alloc_bits |= extra_flags;
|
|
if (flags & BTRFS_BLOCK_GROUP_METADATA)
|
|
fs_info->avail_metadata_alloc_bits |= extra_flags;
|
|
if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
|
|
fs_info->avail_system_alloc_bits |= extra_flags;
|
|
}
|
|
}
|
|
|
|
u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
|
|
{
|
|
/*
|
|
* we add in the count of missing devices because we want
|
|
* to make sure that any RAID levels on a degraded FS
|
|
* continue to be honored.
|
|
*/
|
|
u64 num_devices = root->fs_info->fs_devices->rw_devices +
|
|
root->fs_info->fs_devices->missing_devices;
|
|
|
|
if (num_devices == 1)
|
|
flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
|
|
if (num_devices < 4)
|
|
flags &= ~BTRFS_BLOCK_GROUP_RAID10;
|
|
|
|
if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
|
|
(flags & (BTRFS_BLOCK_GROUP_RAID1 |
|
|
BTRFS_BLOCK_GROUP_RAID10))) {
|
|
flags &= ~BTRFS_BLOCK_GROUP_DUP;
|
|
}
|
|
|
|
if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
|
|
(flags & BTRFS_BLOCK_GROUP_RAID10)) {
|
|
flags &= ~BTRFS_BLOCK_GROUP_RAID1;
|
|
}
|
|
|
|
if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
|
|
((flags & BTRFS_BLOCK_GROUP_RAID1) |
|
|
(flags & BTRFS_BLOCK_GROUP_RAID10) |
|
|
(flags & BTRFS_BLOCK_GROUP_DUP)))
|
|
flags &= ~BTRFS_BLOCK_GROUP_RAID0;
|
|
return flags;
|
|
}
|
|
|
|
static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
|
|
{
|
|
if (flags & BTRFS_BLOCK_GROUP_DATA)
|
|
flags |= root->fs_info->avail_data_alloc_bits &
|
|
root->fs_info->data_alloc_profile;
|
|
else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
|
|
flags |= root->fs_info->avail_system_alloc_bits &
|
|
root->fs_info->system_alloc_profile;
|
|
else if (flags & BTRFS_BLOCK_GROUP_METADATA)
|
|
flags |= root->fs_info->avail_metadata_alloc_bits &
|
|
root->fs_info->metadata_alloc_profile;
|
|
return btrfs_reduce_alloc_profile(root, flags);
|
|
}
|
|
|
|
u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
|
|
{
|
|
u64 flags;
|
|
|
|
if (data)
|
|
flags = BTRFS_BLOCK_GROUP_DATA;
|
|
else if (root == root->fs_info->chunk_root)
|
|
flags = BTRFS_BLOCK_GROUP_SYSTEM;
|
|
else
|
|
flags = BTRFS_BLOCK_GROUP_METADATA;
|
|
|
|
return get_alloc_profile(root, flags);
|
|
}
|
|
|
|
void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
|
|
{
|
|
BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
|
|
BTRFS_BLOCK_GROUP_DATA);
|
|
}
|
|
|
|
/*
|
|
* This will check the space that the inode allocates from to make sure we have
|
|
* enough space for bytes.
|
|
*/
|
|
int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
|
|
{
|
|
struct btrfs_space_info *data_sinfo;
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
u64 used;
|
|
int ret = 0, committed = 0, alloc_chunk = 1;
|
|
|
|
/* make sure bytes are sectorsize aligned */
|
|
bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
|
|
|
|
if (root == root->fs_info->tree_root ||
|
|
BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
|
|
alloc_chunk = 0;
|
|
committed = 1;
|
|
}
|
|
|
|
data_sinfo = BTRFS_I(inode)->space_info;
|
|
if (!data_sinfo)
|
|
goto alloc;
|
|
|
|
again:
|
|
/* make sure we have enough space to handle the data first */
|
|
spin_lock(&data_sinfo->lock);
|
|
used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
|
|
data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
|
|
data_sinfo->bytes_may_use;
|
|
|
|
if (used + bytes > data_sinfo->total_bytes) {
|
|
struct btrfs_trans_handle *trans;
|
|
|
|
/*
|
|
* if we don't have enough free bytes in this space then we need
|
|
* to alloc a new chunk.
|
|
*/
|
|
if (!data_sinfo->full && alloc_chunk) {
|
|
u64 alloc_target;
|
|
|
|
data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
|
|
spin_unlock(&data_sinfo->lock);
|
|
alloc:
|
|
alloc_target = btrfs_get_alloc_profile(root, 1);
|
|
trans = btrfs_join_transaction(root);
|
|
if (IS_ERR(trans))
|
|
return PTR_ERR(trans);
|
|
|
|
ret = do_chunk_alloc(trans, root->fs_info->extent_root,
|
|
bytes + 2 * 1024 * 1024,
|
|
alloc_target,
|
|
CHUNK_ALLOC_NO_FORCE);
|
|
btrfs_end_transaction(trans, root);
|
|
if (ret < 0) {
|
|
if (ret != -ENOSPC)
|
|
return ret;
|
|
else
|
|
goto commit_trans;
|
|
}
|
|
|
|
if (!data_sinfo) {
|
|
btrfs_set_inode_space_info(root, inode);
|
|
data_sinfo = BTRFS_I(inode)->space_info;
|
|
}
|
|
goto again;
|
|
}
|
|
|
|
/*
|
|
* If we have less pinned bytes than we want to allocate then
|
|
* don't bother committing the transaction, it won't help us.
|
|
*/
|
|
if (data_sinfo->bytes_pinned < bytes)
|
|
committed = 1;
|
|
spin_unlock(&data_sinfo->lock);
|
|
|
|
/* commit the current transaction and try again */
|
|
commit_trans:
|
|
if (!committed &&
|
|
!atomic_read(&root->fs_info->open_ioctl_trans)) {
|
|
committed = 1;
|
|
trans = btrfs_join_transaction(root);
|
|
if (IS_ERR(trans))
|
|
return PTR_ERR(trans);
|
|
ret = btrfs_commit_transaction(trans, root);
|
|
if (ret)
|
|
return ret;
|
|
goto again;
|
|
}
|
|
|
|
return -ENOSPC;
|
|
}
|
|
data_sinfo->bytes_may_use += bytes;
|
|
spin_unlock(&data_sinfo->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Called if we need to clear a data reservation for this inode.
|
|
*/
|
|
void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_space_info *data_sinfo;
|
|
|
|
/* make sure bytes are sectorsize aligned */
|
|
bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
|
|
|
|
data_sinfo = BTRFS_I(inode)->space_info;
|
|
spin_lock(&data_sinfo->lock);
|
|
data_sinfo->bytes_may_use -= bytes;
|
|
spin_unlock(&data_sinfo->lock);
|
|
}
|
|
|
|
static void force_metadata_allocation(struct btrfs_fs_info *info)
|
|
{
|
|
struct list_head *head = &info->space_info;
|
|
struct btrfs_space_info *found;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(found, head, list) {
|
|
if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
|
|
found->force_alloc = CHUNK_ALLOC_FORCE;
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static int should_alloc_chunk(struct btrfs_root *root,
|
|
struct btrfs_space_info *sinfo, u64 alloc_bytes,
|
|
int force)
|
|
{
|
|
struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
|
|
u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
|
|
u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
|
|
u64 thresh;
|
|
|
|
if (force == CHUNK_ALLOC_FORCE)
|
|
return 1;
|
|
|
|
/*
|
|
* We need to take into account the global rsv because for all intents
|
|
* and purposes it's used space. Don't worry about locking the
|
|
* global_rsv, it doesn't change except when the transaction commits.
|
|
*/
|
|
num_allocated += global_rsv->size;
|
|
|
|
/*
|
|
* in limited mode, we want to have some free space up to
|
|
* about 1% of the FS size.
|
|
*/
|
|
if (force == CHUNK_ALLOC_LIMITED) {
|
|
thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
|
|
thresh = max_t(u64, 64 * 1024 * 1024,
|
|
div_factor_fine(thresh, 1));
|
|
|
|
if (num_bytes - num_allocated < thresh)
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* we have two similar checks here, one based on percentage
|
|
* and once based on a hard number of 256MB. The idea
|
|
* is that if we have a good amount of free
|
|
* room, don't allocate a chunk. A good mount is
|
|
* less than 80% utilized of the chunks we have allocated,
|
|
* or more than 256MB free
|
|
*/
|
|
if (num_allocated + alloc_bytes + 256 * 1024 * 1024 < num_bytes)
|
|
return 0;
|
|
|
|
if (num_allocated + alloc_bytes < div_factor(num_bytes, 8))
|
|
return 0;
|
|
|
|
thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
|
|
|
|
/* 256MB or 5% of the FS */
|
|
thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 5));
|
|
|
|
if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 3))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static int do_chunk_alloc(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *extent_root, u64 alloc_bytes,
|
|
u64 flags, int force)
|
|
{
|
|
struct btrfs_space_info *space_info;
|
|
struct btrfs_fs_info *fs_info = extent_root->fs_info;
|
|
int wait_for_alloc = 0;
|
|
int ret = 0;
|
|
|
|
flags = btrfs_reduce_alloc_profile(extent_root, flags);
|
|
|
|
space_info = __find_space_info(extent_root->fs_info, flags);
|
|
if (!space_info) {
|
|
ret = update_space_info(extent_root->fs_info, flags,
|
|
0, 0, &space_info);
|
|
BUG_ON(ret);
|
|
}
|
|
BUG_ON(!space_info);
|
|
|
|
again:
|
|
spin_lock(&space_info->lock);
|
|
if (space_info->force_alloc)
|
|
force = space_info->force_alloc;
|
|
if (space_info->full) {
|
|
spin_unlock(&space_info->lock);
|
|
return 0;
|
|
}
|
|
|
|
if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) {
|
|
spin_unlock(&space_info->lock);
|
|
return 0;
|
|
} else if (space_info->chunk_alloc) {
|
|
wait_for_alloc = 1;
|
|
} else {
|
|
space_info->chunk_alloc = 1;
|
|
}
|
|
|
|
spin_unlock(&space_info->lock);
|
|
|
|
mutex_lock(&fs_info->chunk_mutex);
|
|
|
|
/*
|
|
* The chunk_mutex is held throughout the entirety of a chunk
|
|
* allocation, so once we've acquired the chunk_mutex we know that the
|
|
* other guy is done and we need to recheck and see if we should
|
|
* allocate.
|
|
*/
|
|
if (wait_for_alloc) {
|
|
mutex_unlock(&fs_info->chunk_mutex);
|
|
wait_for_alloc = 0;
|
|
goto again;
|
|
}
|
|
|
|
/*
|
|
* If we have mixed data/metadata chunks we want to make sure we keep
|
|
* allocating mixed chunks instead of individual chunks.
|
|
*/
|
|
if (btrfs_mixed_space_info(space_info))
|
|
flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
|
|
|
|
/*
|
|
* if we're doing a data chunk, go ahead and make sure that
|
|
* we keep a reasonable number of metadata chunks allocated in the
|
|
* FS as well.
|
|
*/
|
|
if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
|
|
fs_info->data_chunk_allocations++;
|
|
if (!(fs_info->data_chunk_allocations %
|
|
fs_info->metadata_ratio))
|
|
force_metadata_allocation(fs_info);
|
|
}
|
|
|
|
ret = btrfs_alloc_chunk(trans, extent_root, flags);
|
|
if (ret < 0 && ret != -ENOSPC)
|
|
goto out;
|
|
|
|
spin_lock(&space_info->lock);
|
|
if (ret)
|
|
space_info->full = 1;
|
|
else
|
|
ret = 1;
|
|
|
|
space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
|
|
space_info->chunk_alloc = 0;
|
|
spin_unlock(&space_info->lock);
|
|
out:
|
|
mutex_unlock(&extent_root->fs_info->chunk_mutex);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* shrink metadata reservation for delalloc
|
|
*/
|
|
static int shrink_delalloc(struct btrfs_root *root, u64 to_reclaim,
|
|
bool wait_ordered)
|
|
{
|
|
struct btrfs_block_rsv *block_rsv;
|
|
struct btrfs_space_info *space_info;
|
|
struct btrfs_trans_handle *trans;
|
|
u64 reserved;
|
|
u64 max_reclaim;
|
|
u64 reclaimed = 0;
|
|
long time_left;
|
|
unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
|
|
int loops = 0;
|
|
unsigned long progress;
|
|
|
|
trans = (struct btrfs_trans_handle *)current->journal_info;
|
|
block_rsv = &root->fs_info->delalloc_block_rsv;
|
|
space_info = block_rsv->space_info;
|
|
|
|
smp_mb();
|
|
reserved = space_info->bytes_may_use;
|
|
progress = space_info->reservation_progress;
|
|
|
|
if (reserved == 0)
|
|
return 0;
|
|
|
|
smp_mb();
|
|
if (root->fs_info->delalloc_bytes == 0) {
|
|
if (trans)
|
|
return 0;
|
|
btrfs_wait_ordered_extents(root, 0, 0);
|
|
return 0;
|
|
}
|
|
|
|
max_reclaim = min(reserved, to_reclaim);
|
|
nr_pages = max_t(unsigned long, nr_pages,
|
|
max_reclaim >> PAGE_CACHE_SHIFT);
|
|
while (loops < 1024) {
|
|
/* have the flusher threads jump in and do some IO */
|
|
smp_mb();
|
|
nr_pages = min_t(unsigned long, nr_pages,
|
|
root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT);
|
|
writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages);
|
|
|
|
spin_lock(&space_info->lock);
|
|
if (reserved > space_info->bytes_may_use)
|
|
reclaimed += reserved - space_info->bytes_may_use;
|
|
reserved = space_info->bytes_may_use;
|
|
spin_unlock(&space_info->lock);
|
|
|
|
loops++;
|
|
|
|
if (reserved == 0 || reclaimed >= max_reclaim)
|
|
break;
|
|
|
|
if (trans && trans->transaction->blocked)
|
|
return -EAGAIN;
|
|
|
|
if (wait_ordered && !trans) {
|
|
btrfs_wait_ordered_extents(root, 0, 0);
|
|
} else {
|
|
time_left = schedule_timeout_interruptible(1);
|
|
|
|
/* We were interrupted, exit */
|
|
if (time_left)
|
|
break;
|
|
}
|
|
|
|
/* we've kicked the IO a few times, if anything has been freed,
|
|
* exit. There is no sense in looping here for a long time
|
|
* when we really need to commit the transaction, or there are
|
|
* just too many writers without enough free space
|
|
*/
|
|
|
|
if (loops > 3) {
|
|
smp_mb();
|
|
if (progress != space_info->reservation_progress)
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
return reclaimed >= to_reclaim;
|
|
}
|
|
|
|
/**
|
|
* maybe_commit_transaction - possibly commit the transaction if its ok to
|
|
* @root - the root we're allocating for
|
|
* @bytes - the number of bytes we want to reserve
|
|
* @force - force the commit
|
|
*
|
|
* This will check to make sure that committing the transaction will actually
|
|
* get us somewhere and then commit the transaction if it does. Otherwise it
|
|
* will return -ENOSPC.
|
|
*/
|
|
static int may_commit_transaction(struct btrfs_root *root,
|
|
struct btrfs_space_info *space_info,
|
|
u64 bytes, int force)
|
|
{
|
|
struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
|
|
struct btrfs_trans_handle *trans;
|
|
|
|
trans = (struct btrfs_trans_handle *)current->journal_info;
|
|
if (trans)
|
|
return -EAGAIN;
|
|
|
|
if (force)
|
|
goto commit;
|
|
|
|
/* See if there is enough pinned space to make this reservation */
|
|
spin_lock(&space_info->lock);
|
|
if (space_info->bytes_pinned >= bytes) {
|
|
spin_unlock(&space_info->lock);
|
|
goto commit;
|
|
}
|
|
spin_unlock(&space_info->lock);
|
|
|
|
/*
|
|
* See if there is some space in the delayed insertion reservation for
|
|
* this reservation.
|
|
*/
|
|
if (space_info != delayed_rsv->space_info)
|
|
return -ENOSPC;
|
|
|
|
spin_lock(&delayed_rsv->lock);
|
|
if (delayed_rsv->size < bytes) {
|
|
spin_unlock(&delayed_rsv->lock);
|
|
return -ENOSPC;
|
|
}
|
|
spin_unlock(&delayed_rsv->lock);
|
|
|
|
commit:
|
|
trans = btrfs_join_transaction(root);
|
|
if (IS_ERR(trans))
|
|
return -ENOSPC;
|
|
|
|
return btrfs_commit_transaction(trans, root);
|
|
}
|
|
|
|
/**
|
|
* reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
|
|
* @root - the root we're allocating for
|
|
* @block_rsv - the block_rsv we're allocating for
|
|
* @orig_bytes - the number of bytes we want
|
|
* @flush - wether or not we can flush to make our reservation
|
|
*
|
|
* This will reserve orgi_bytes number of bytes from the space info associated
|
|
* with the block_rsv. If there is not enough space it will make an attempt to
|
|
* flush out space to make room. It will do this by flushing delalloc if
|
|
* possible or committing the transaction. If flush is 0 then no attempts to
|
|
* regain reservations will be made and this will fail if there is not enough
|
|
* space already.
|
|
*/
|
|
static int reserve_metadata_bytes(struct btrfs_root *root,
|
|
struct btrfs_block_rsv *block_rsv,
|
|
u64 orig_bytes, int flush)
|
|
{
|
|
struct btrfs_space_info *space_info = block_rsv->space_info;
|
|
u64 used;
|
|
u64 num_bytes = orig_bytes;
|
|
int retries = 0;
|
|
int ret = 0;
|
|
bool committed = false;
|
|
bool flushing = false;
|
|
bool wait_ordered = false;
|
|
|
|
again:
|
|
ret = 0;
|
|
spin_lock(&space_info->lock);
|
|
/*
|
|
* We only want to wait if somebody other than us is flushing and we are
|
|
* actually alloed to flush.
|
|
*/
|
|
while (flush && !flushing && space_info->flush) {
|
|
spin_unlock(&space_info->lock);
|
|
/*
|
|
* If we have a trans handle we can't wait because the flusher
|
|
* may have to commit the transaction, which would mean we would
|
|
* deadlock since we are waiting for the flusher to finish, but
|
|
* hold the current transaction open.
|
|
*/
|
|
if (current->journal_info)
|
|
return -EAGAIN;
|
|
ret = wait_event_interruptible(space_info->wait,
|
|
!space_info->flush);
|
|
/* Must have been interrupted, return */
|
|
if (ret)
|
|
return -EINTR;
|
|
|
|
spin_lock(&space_info->lock);
|
|
}
|
|
|
|
ret = -ENOSPC;
|
|
used = space_info->bytes_used + space_info->bytes_reserved +
|
|
space_info->bytes_pinned + space_info->bytes_readonly +
|
|
space_info->bytes_may_use;
|
|
|
|
/*
|
|
* The idea here is that we've not already over-reserved the block group
|
|
* then we can go ahead and save our reservation first and then start
|
|
* flushing if we need to. Otherwise if we've already overcommitted
|
|
* lets start flushing stuff first and then come back and try to make
|
|
* our reservation.
|
|
*/
|
|
if (used <= space_info->total_bytes) {
|
|
if (used + orig_bytes <= space_info->total_bytes) {
|
|
space_info->bytes_may_use += orig_bytes;
|
|
ret = 0;
|
|
} else {
|
|
/*
|
|
* Ok set num_bytes to orig_bytes since we aren't
|
|
* overocmmitted, this way we only try and reclaim what
|
|
* we need.
|
|
*/
|
|
num_bytes = orig_bytes;
|
|
}
|
|
} else {
|
|
/*
|
|
* Ok we're over committed, set num_bytes to the overcommitted
|
|
* amount plus the amount of bytes that we need for this
|
|
* reservation.
|
|
*/
|
|
wait_ordered = true;
|
|
num_bytes = used - space_info->total_bytes +
|
|
(orig_bytes * (retries + 1));
|
|
}
|
|
|
|
if (ret) {
|
|
u64 profile = btrfs_get_alloc_profile(root, 0);
|
|
u64 avail;
|
|
|
|
/*
|
|
* If we have a lot of space that's pinned, don't bother doing
|
|
* the overcommit dance yet and just commit the transaction.
|
|
*/
|
|
avail = (space_info->total_bytes - space_info->bytes_used) * 8;
|
|
do_div(avail, 10);
|
|
if (space_info->bytes_pinned >= avail && flush && !committed) {
|
|
space_info->flush = 1;
|
|
flushing = true;
|
|
spin_unlock(&space_info->lock);
|
|
ret = may_commit_transaction(root, space_info,
|
|
orig_bytes, 1);
|
|
if (ret)
|
|
goto out;
|
|
committed = true;
|
|
goto again;
|
|
}
|
|
|
|
spin_lock(&root->fs_info->free_chunk_lock);
|
|
avail = root->fs_info->free_chunk_space;
|
|
|
|
/*
|
|
* If we have dup, raid1 or raid10 then only half of the free
|
|
* space is actually useable.
|
|
*/
|
|
if (profile & (BTRFS_BLOCK_GROUP_DUP |
|
|
BTRFS_BLOCK_GROUP_RAID1 |
|
|
BTRFS_BLOCK_GROUP_RAID10))
|
|
avail >>= 1;
|
|
|
|
/*
|
|
* If we aren't flushing don't let us overcommit too much, say
|
|
* 1/8th of the space. If we can flush, let it overcommit up to
|
|
* 1/2 of the space.
|
|
*/
|
|
if (flush)
|
|
avail >>= 3;
|
|
else
|
|
avail >>= 1;
|
|
spin_unlock(&root->fs_info->free_chunk_lock);
|
|
|
|
if (used + num_bytes < space_info->total_bytes + avail) {
|
|
space_info->bytes_may_use += orig_bytes;
|
|
ret = 0;
|
|
} else {
|
|
wait_ordered = true;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Couldn't make our reservation, save our place so while we're trying
|
|
* to reclaim space we can actually use it instead of somebody else
|
|
* stealing it from us.
|
|
*/
|
|
if (ret && flush) {
|
|
flushing = true;
|
|
space_info->flush = 1;
|
|
}
|
|
|
|
spin_unlock(&space_info->lock);
|
|
|
|
if (!ret || !flush)
|
|
goto out;
|
|
|
|
/*
|
|
* We do synchronous shrinking since we don't actually unreserve
|
|
* metadata until after the IO is completed.
|
|
*/
|
|
ret = shrink_delalloc(root, num_bytes, wait_ordered);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
ret = 0;
|
|
|
|
/*
|
|
* So if we were overcommitted it's possible that somebody else flushed
|
|
* out enough space and we simply didn't have enough space to reclaim,
|
|
* so go back around and try again.
|
|
*/
|
|
if (retries < 2) {
|
|
wait_ordered = true;
|
|
retries++;
|
|
goto again;
|
|
}
|
|
|
|
ret = -ENOSPC;
|
|
if (committed)
|
|
goto out;
|
|
|
|
ret = may_commit_transaction(root, space_info, orig_bytes, 0);
|
|
if (!ret) {
|
|
committed = true;
|
|
goto again;
|
|
}
|
|
|
|
out:
|
|
if (flushing) {
|
|
spin_lock(&space_info->lock);
|
|
space_info->flush = 0;
|
|
wake_up_all(&space_info->wait);
|
|
spin_unlock(&space_info->lock);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
struct btrfs_block_rsv *block_rsv = NULL;
|
|
|
|
if (root->ref_cows || root == root->fs_info->csum_root)
|
|
block_rsv = trans->block_rsv;
|
|
|
|
if (!block_rsv)
|
|
block_rsv = root->block_rsv;
|
|
|
|
if (!block_rsv)
|
|
block_rsv = &root->fs_info->empty_block_rsv;
|
|
|
|
return block_rsv;
|
|
}
|
|
|
|
static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
|
|
u64 num_bytes)
|
|
{
|
|
int ret = -ENOSPC;
|
|
spin_lock(&block_rsv->lock);
|
|
if (block_rsv->reserved >= num_bytes) {
|
|
block_rsv->reserved -= num_bytes;
|
|
if (block_rsv->reserved < block_rsv->size)
|
|
block_rsv->full = 0;
|
|
ret = 0;
|
|
}
|
|
spin_unlock(&block_rsv->lock);
|
|
return ret;
|
|
}
|
|
|
|
static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
|
|
u64 num_bytes, int update_size)
|
|
{
|
|
spin_lock(&block_rsv->lock);
|
|
block_rsv->reserved += num_bytes;
|
|
if (update_size)
|
|
block_rsv->size += num_bytes;
|
|
else if (block_rsv->reserved >= block_rsv->size)
|
|
block_rsv->full = 1;
|
|
spin_unlock(&block_rsv->lock);
|
|
}
|
|
|
|
static void block_rsv_release_bytes(struct btrfs_block_rsv *block_rsv,
|
|
struct btrfs_block_rsv *dest, u64 num_bytes)
|
|
{
|
|
struct btrfs_space_info *space_info = block_rsv->space_info;
|
|
|
|
spin_lock(&block_rsv->lock);
|
|
if (num_bytes == (u64)-1)
|
|
num_bytes = block_rsv->size;
|
|
block_rsv->size -= num_bytes;
|
|
if (block_rsv->reserved >= block_rsv->size) {
|
|
num_bytes = block_rsv->reserved - block_rsv->size;
|
|
block_rsv->reserved = block_rsv->size;
|
|
block_rsv->full = 1;
|
|
} else {
|
|
num_bytes = 0;
|
|
}
|
|
spin_unlock(&block_rsv->lock);
|
|
|
|
if (num_bytes > 0) {
|
|
if (dest) {
|
|
spin_lock(&dest->lock);
|
|
if (!dest->full) {
|
|
u64 bytes_to_add;
|
|
|
|
bytes_to_add = dest->size - dest->reserved;
|
|
bytes_to_add = min(num_bytes, bytes_to_add);
|
|
dest->reserved += bytes_to_add;
|
|
if (dest->reserved >= dest->size)
|
|
dest->full = 1;
|
|
num_bytes -= bytes_to_add;
|
|
}
|
|
spin_unlock(&dest->lock);
|
|
}
|
|
if (num_bytes) {
|
|
spin_lock(&space_info->lock);
|
|
space_info->bytes_may_use -= num_bytes;
|
|
space_info->reservation_progress++;
|
|
spin_unlock(&space_info->lock);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
|
|
struct btrfs_block_rsv *dst, u64 num_bytes)
|
|
{
|
|
int ret;
|
|
|
|
ret = block_rsv_use_bytes(src, num_bytes);
|
|
if (ret)
|
|
return ret;
|
|
|
|
block_rsv_add_bytes(dst, num_bytes, 1);
|
|
return 0;
|
|
}
|
|
|
|
void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
|
|
{
|
|
memset(rsv, 0, sizeof(*rsv));
|
|
spin_lock_init(&rsv->lock);
|
|
}
|
|
|
|
struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_block_rsv *block_rsv;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
|
|
block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
|
|
if (!block_rsv)
|
|
return NULL;
|
|
|
|
btrfs_init_block_rsv(block_rsv);
|
|
block_rsv->space_info = __find_space_info(fs_info,
|
|
BTRFS_BLOCK_GROUP_METADATA);
|
|
return block_rsv;
|
|
}
|
|
|
|
void btrfs_free_block_rsv(struct btrfs_root *root,
|
|
struct btrfs_block_rsv *rsv)
|
|
{
|
|
btrfs_block_rsv_release(root, rsv, (u64)-1);
|
|
kfree(rsv);
|
|
}
|
|
|
|
static inline int __block_rsv_add(struct btrfs_root *root,
|
|
struct btrfs_block_rsv *block_rsv,
|
|
u64 num_bytes, int flush)
|
|
{
|
|
int ret;
|
|
|
|
if (num_bytes == 0)
|
|
return 0;
|
|
|
|
ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
|
|
if (!ret) {
|
|
block_rsv_add_bytes(block_rsv, num_bytes, 1);
|
|
return 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_block_rsv_add(struct btrfs_root *root,
|
|
struct btrfs_block_rsv *block_rsv,
|
|
u64 num_bytes)
|
|
{
|
|
return __block_rsv_add(root, block_rsv, num_bytes, 1);
|
|
}
|
|
|
|
int btrfs_block_rsv_add_noflush(struct btrfs_root *root,
|
|
struct btrfs_block_rsv *block_rsv,
|
|
u64 num_bytes)
|
|
{
|
|
return __block_rsv_add(root, block_rsv, num_bytes, 0);
|
|
}
|
|
|
|
int btrfs_block_rsv_check(struct btrfs_root *root,
|
|
struct btrfs_block_rsv *block_rsv, int min_factor)
|
|
{
|
|
u64 num_bytes = 0;
|
|
int ret = -ENOSPC;
|
|
|
|
if (!block_rsv)
|
|
return 0;
|
|
|
|
spin_lock(&block_rsv->lock);
|
|
num_bytes = div_factor(block_rsv->size, min_factor);
|
|
if (block_rsv->reserved >= num_bytes)
|
|
ret = 0;
|
|
spin_unlock(&block_rsv->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_block_rsv_refill(struct btrfs_root *root,
|
|
struct btrfs_block_rsv *block_rsv,
|
|
u64 min_reserved)
|
|
{
|
|
u64 num_bytes = 0;
|
|
int ret = -ENOSPC;
|
|
|
|
if (!block_rsv)
|
|
return 0;
|
|
|
|
spin_lock(&block_rsv->lock);
|
|
num_bytes = min_reserved;
|
|
if (block_rsv->reserved >= num_bytes)
|
|
ret = 0;
|
|
else
|
|
num_bytes -= block_rsv->reserved;
|
|
spin_unlock(&block_rsv->lock);
|
|
|
|
if (!ret)
|
|
return 0;
|
|
|
|
ret = reserve_metadata_bytes(root, block_rsv, num_bytes, 1);
|
|
if (!ret) {
|
|
block_rsv_add_bytes(block_rsv, num_bytes, 0);
|
|
return 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
|
|
struct btrfs_block_rsv *dst_rsv,
|
|
u64 num_bytes)
|
|
{
|
|
return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
|
|
}
|
|
|
|
void btrfs_block_rsv_release(struct btrfs_root *root,
|
|
struct btrfs_block_rsv *block_rsv,
|
|
u64 num_bytes)
|
|
{
|
|
struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
|
|
if (global_rsv->full || global_rsv == block_rsv ||
|
|
block_rsv->space_info != global_rsv->space_info)
|
|
global_rsv = NULL;
|
|
block_rsv_release_bytes(block_rsv, global_rsv, num_bytes);
|
|
}
|
|
|
|
/*
|
|
* helper to calculate size of global block reservation.
|
|
* the desired value is sum of space used by extent tree,
|
|
* checksum tree and root tree
|
|
*/
|
|
static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_space_info *sinfo;
|
|
u64 num_bytes;
|
|
u64 meta_used;
|
|
u64 data_used;
|
|
int csum_size = btrfs_super_csum_size(fs_info->super_copy);
|
|
|
|
sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
|
|
spin_lock(&sinfo->lock);
|
|
data_used = sinfo->bytes_used;
|
|
spin_unlock(&sinfo->lock);
|
|
|
|
sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
|
|
spin_lock(&sinfo->lock);
|
|
if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
|
|
data_used = 0;
|
|
meta_used = sinfo->bytes_used;
|
|
spin_unlock(&sinfo->lock);
|
|
|
|
num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
|
|
csum_size * 2;
|
|
num_bytes += div64_u64(data_used + meta_used, 50);
|
|
|
|
if (num_bytes * 3 > meta_used)
|
|
num_bytes = div64_u64(meta_used, 3);
|
|
|
|
return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
|
|
}
|
|
|
|
static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
|
|
struct btrfs_space_info *sinfo = block_rsv->space_info;
|
|
u64 num_bytes;
|
|
|
|
num_bytes = calc_global_metadata_size(fs_info);
|
|
|
|
spin_lock(&block_rsv->lock);
|
|
spin_lock(&sinfo->lock);
|
|
|
|
block_rsv->size = num_bytes;
|
|
|
|
num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
|
|
sinfo->bytes_reserved + sinfo->bytes_readonly +
|
|
sinfo->bytes_may_use;
|
|
|
|
if (sinfo->total_bytes > num_bytes) {
|
|
num_bytes = sinfo->total_bytes - num_bytes;
|
|
block_rsv->reserved += num_bytes;
|
|
sinfo->bytes_may_use += num_bytes;
|
|
}
|
|
|
|
if (block_rsv->reserved >= block_rsv->size) {
|
|
num_bytes = block_rsv->reserved - block_rsv->size;
|
|
sinfo->bytes_may_use -= num_bytes;
|
|
sinfo->reservation_progress++;
|
|
block_rsv->reserved = block_rsv->size;
|
|
block_rsv->full = 1;
|
|
}
|
|
|
|
spin_unlock(&sinfo->lock);
|
|
spin_unlock(&block_rsv->lock);
|
|
}
|
|
|
|
static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_space_info *space_info;
|
|
|
|
space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
|
|
fs_info->chunk_block_rsv.space_info = space_info;
|
|
|
|
space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
|
|
fs_info->global_block_rsv.space_info = space_info;
|
|
fs_info->delalloc_block_rsv.space_info = space_info;
|
|
fs_info->trans_block_rsv.space_info = space_info;
|
|
fs_info->empty_block_rsv.space_info = space_info;
|
|
fs_info->delayed_block_rsv.space_info = space_info;
|
|
|
|
fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
|
|
fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
|
|
fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
|
|
fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
|
|
fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
|
|
|
|
update_global_block_rsv(fs_info);
|
|
}
|
|
|
|
static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
|
|
{
|
|
block_rsv_release_bytes(&fs_info->global_block_rsv, NULL, (u64)-1);
|
|
WARN_ON(fs_info->delalloc_block_rsv.size > 0);
|
|
WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
|
|
WARN_ON(fs_info->trans_block_rsv.size > 0);
|
|
WARN_ON(fs_info->trans_block_rsv.reserved > 0);
|
|
WARN_ON(fs_info->chunk_block_rsv.size > 0);
|
|
WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
|
|
WARN_ON(fs_info->delayed_block_rsv.size > 0);
|
|
WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
|
|
}
|
|
|
|
void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
if (!trans->bytes_reserved)
|
|
return;
|
|
|
|
btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
|
|
trans->bytes_reserved = 0;
|
|
}
|
|
|
|
int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
|
|
struct inode *inode)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
|
|
struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
|
|
|
|
/*
|
|
* We need to hold space in order to delete our orphan item once we've
|
|
* added it, so this takes the reservation so we can release it later
|
|
* when we are truly done with the orphan item.
|
|
*/
|
|
u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
|
|
return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
|
|
}
|
|
|
|
void btrfs_orphan_release_metadata(struct inode *inode)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
|
|
btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
|
|
}
|
|
|
|
int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
|
|
struct btrfs_pending_snapshot *pending)
|
|
{
|
|
struct btrfs_root *root = pending->root;
|
|
struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
|
|
struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
|
|
/*
|
|
* two for root back/forward refs, two for directory entries
|
|
* and one for root of the snapshot.
|
|
*/
|
|
u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
|
|
dst_rsv->space_info = src_rsv->space_info;
|
|
return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
|
|
}
|
|
|
|
/**
|
|
* drop_outstanding_extent - drop an outstanding extent
|
|
* @inode: the inode we're dropping the extent for
|
|
*
|
|
* This is called when we are freeing up an outstanding extent, either called
|
|
* after an error or after an extent is written. This will return the number of
|
|
* reserved extents that need to be freed. This must be called with
|
|
* BTRFS_I(inode)->lock held.
|
|
*/
|
|
static unsigned drop_outstanding_extent(struct inode *inode)
|
|
{
|
|
unsigned drop_inode_space = 0;
|
|
unsigned dropped_extents = 0;
|
|
|
|
BUG_ON(!BTRFS_I(inode)->outstanding_extents);
|
|
BTRFS_I(inode)->outstanding_extents--;
|
|
|
|
if (BTRFS_I(inode)->outstanding_extents == 0 &&
|
|
BTRFS_I(inode)->delalloc_meta_reserved) {
|
|
drop_inode_space = 1;
|
|
BTRFS_I(inode)->delalloc_meta_reserved = 0;
|
|
}
|
|
|
|
/*
|
|
* If we have more or the same amount of outsanding extents than we have
|
|
* reserved then we need to leave the reserved extents count alone.
|
|
*/
|
|
if (BTRFS_I(inode)->outstanding_extents >=
|
|
BTRFS_I(inode)->reserved_extents)
|
|
return drop_inode_space;
|
|
|
|
dropped_extents = BTRFS_I(inode)->reserved_extents -
|
|
BTRFS_I(inode)->outstanding_extents;
|
|
BTRFS_I(inode)->reserved_extents -= dropped_extents;
|
|
return dropped_extents + drop_inode_space;
|
|
}
|
|
|
|
/**
|
|
* calc_csum_metadata_size - return the amount of metada space that must be
|
|
* reserved/free'd for the given bytes.
|
|
* @inode: the inode we're manipulating
|
|
* @num_bytes: the number of bytes in question
|
|
* @reserve: 1 if we are reserving space, 0 if we are freeing space
|
|
*
|
|
* This adjusts the number of csum_bytes in the inode and then returns the
|
|
* correct amount of metadata that must either be reserved or freed. We
|
|
* calculate how many checksums we can fit into one leaf and then divide the
|
|
* number of bytes that will need to be checksumed by this value to figure out
|
|
* how many checksums will be required. If we are adding bytes then the number
|
|
* may go up and we will return the number of additional bytes that must be
|
|
* reserved. If it is going down we will return the number of bytes that must
|
|
* be freed.
|
|
*
|
|
* This must be called with BTRFS_I(inode)->lock held.
|
|
*/
|
|
static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
|
|
int reserve)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
u64 csum_size;
|
|
int num_csums_per_leaf;
|
|
int num_csums;
|
|
int old_csums;
|
|
|
|
if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
|
|
BTRFS_I(inode)->csum_bytes == 0)
|
|
return 0;
|
|
|
|
old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
|
|
if (reserve)
|
|
BTRFS_I(inode)->csum_bytes += num_bytes;
|
|
else
|
|
BTRFS_I(inode)->csum_bytes -= num_bytes;
|
|
csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
|
|
num_csums_per_leaf = (int)div64_u64(csum_size,
|
|
sizeof(struct btrfs_csum_item) +
|
|
sizeof(struct btrfs_disk_key));
|
|
num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
|
|
num_csums = num_csums + num_csums_per_leaf - 1;
|
|
num_csums = num_csums / num_csums_per_leaf;
|
|
|
|
old_csums = old_csums + num_csums_per_leaf - 1;
|
|
old_csums = old_csums / num_csums_per_leaf;
|
|
|
|
/* No change, no need to reserve more */
|
|
if (old_csums == num_csums)
|
|
return 0;
|
|
|
|
if (reserve)
|
|
return btrfs_calc_trans_metadata_size(root,
|
|
num_csums - old_csums);
|
|
|
|
return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
|
|
}
|
|
|
|
int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
|
|
u64 to_reserve = 0;
|
|
unsigned nr_extents = 0;
|
|
int flush = 1;
|
|
int ret;
|
|
|
|
if (btrfs_is_free_space_inode(root, inode))
|
|
flush = 0;
|
|
|
|
if (flush && btrfs_transaction_in_commit(root->fs_info))
|
|
schedule_timeout(1);
|
|
|
|
num_bytes = ALIGN(num_bytes, root->sectorsize);
|
|
|
|
spin_lock(&BTRFS_I(inode)->lock);
|
|
BTRFS_I(inode)->outstanding_extents++;
|
|
|
|
if (BTRFS_I(inode)->outstanding_extents >
|
|
BTRFS_I(inode)->reserved_extents) {
|
|
nr_extents = BTRFS_I(inode)->outstanding_extents -
|
|
BTRFS_I(inode)->reserved_extents;
|
|
BTRFS_I(inode)->reserved_extents += nr_extents;
|
|
}
|
|
|
|
/*
|
|
* Add an item to reserve for updating the inode when we complete the
|
|
* delalloc io.
|
|
*/
|
|
if (!BTRFS_I(inode)->delalloc_meta_reserved) {
|
|
nr_extents++;
|
|
BTRFS_I(inode)->delalloc_meta_reserved = 1;
|
|
}
|
|
|
|
to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
|
|
to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
|
|
spin_unlock(&BTRFS_I(inode)->lock);
|
|
|
|
ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
|
|
if (ret) {
|
|
u64 to_free = 0;
|
|
unsigned dropped;
|
|
|
|
spin_lock(&BTRFS_I(inode)->lock);
|
|
dropped = drop_outstanding_extent(inode);
|
|
to_free = calc_csum_metadata_size(inode, num_bytes, 0);
|
|
spin_unlock(&BTRFS_I(inode)->lock);
|
|
to_free += btrfs_calc_trans_metadata_size(root, dropped);
|
|
|
|
/*
|
|
* Somebody could have come in and twiddled with the
|
|
* reservation, so if we have to free more than we would have
|
|
* reserved from this reservation go ahead and release those
|
|
* bytes.
|
|
*/
|
|
to_free -= to_reserve;
|
|
if (to_free)
|
|
btrfs_block_rsv_release(root, block_rsv, to_free);
|
|
return ret;
|
|
}
|
|
|
|
block_rsv_add_bytes(block_rsv, to_reserve, 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* btrfs_delalloc_release_metadata - release a metadata reservation for an inode
|
|
* @inode: the inode to release the reservation for
|
|
* @num_bytes: the number of bytes we're releasing
|
|
*
|
|
* This will release the metadata reservation for an inode. This can be called
|
|
* once we complete IO for a given set of bytes to release their metadata
|
|
* reservations.
|
|
*/
|
|
void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
u64 to_free = 0;
|
|
unsigned dropped;
|
|
|
|
num_bytes = ALIGN(num_bytes, root->sectorsize);
|
|
spin_lock(&BTRFS_I(inode)->lock);
|
|
dropped = drop_outstanding_extent(inode);
|
|
|
|
to_free = calc_csum_metadata_size(inode, num_bytes, 0);
|
|
spin_unlock(&BTRFS_I(inode)->lock);
|
|
if (dropped > 0)
|
|
to_free += btrfs_calc_trans_metadata_size(root, dropped);
|
|
|
|
btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
|
|
to_free);
|
|
}
|
|
|
|
/**
|
|
* btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
|
|
* @inode: inode we're writing to
|
|
* @num_bytes: the number of bytes we want to allocate
|
|
*
|
|
* This will do the following things
|
|
*
|
|
* o reserve space in the data space info for num_bytes
|
|
* o reserve space in the metadata space info based on number of outstanding
|
|
* extents and how much csums will be needed
|
|
* o add to the inodes ->delalloc_bytes
|
|
* o add it to the fs_info's delalloc inodes list.
|
|
*
|
|
* This will return 0 for success and -ENOSPC if there is no space left.
|
|
*/
|
|
int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
|
|
{
|
|
int ret;
|
|
|
|
ret = btrfs_check_data_free_space(inode, num_bytes);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
|
|
if (ret) {
|
|
btrfs_free_reserved_data_space(inode, num_bytes);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* btrfs_delalloc_release_space - release data and metadata space for delalloc
|
|
* @inode: inode we're releasing space for
|
|
* @num_bytes: the number of bytes we want to free up
|
|
*
|
|
* This must be matched with a call to btrfs_delalloc_reserve_space. This is
|
|
* called in the case that we don't need the metadata AND data reservations
|
|
* anymore. So if there is an error or we insert an inline extent.
|
|
*
|
|
* This function will release the metadata space that was not used and will
|
|
* decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
|
|
* list if there are no delalloc bytes left.
|
|
*/
|
|
void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
|
|
{
|
|
btrfs_delalloc_release_metadata(inode, num_bytes);
|
|
btrfs_free_reserved_data_space(inode, num_bytes);
|
|
}
|
|
|
|
static int update_block_group(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 bytenr, u64 num_bytes, int alloc)
|
|
{
|
|
struct btrfs_block_group_cache *cache = NULL;
|
|
struct btrfs_fs_info *info = root->fs_info;
|
|
u64 total = num_bytes;
|
|
u64 old_val;
|
|
u64 byte_in_group;
|
|
int factor;
|
|
|
|
/* block accounting for super block */
|
|
spin_lock(&info->delalloc_lock);
|
|
old_val = btrfs_super_bytes_used(info->super_copy);
|
|
if (alloc)
|
|
old_val += num_bytes;
|
|
else
|
|
old_val -= num_bytes;
|
|
btrfs_set_super_bytes_used(info->super_copy, old_val);
|
|
spin_unlock(&info->delalloc_lock);
|
|
|
|
while (total) {
|
|
cache = btrfs_lookup_block_group(info, bytenr);
|
|
if (!cache)
|
|
return -1;
|
|
if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
|
|
BTRFS_BLOCK_GROUP_RAID1 |
|
|
BTRFS_BLOCK_GROUP_RAID10))
|
|
factor = 2;
|
|
else
|
|
factor = 1;
|
|
/*
|
|
* If this block group has free space cache written out, we
|
|
* need to make sure to load it if we are removing space. This
|
|
* is because we need the unpinning stage to actually add the
|
|
* space back to the block group, otherwise we will leak space.
|
|
*/
|
|
if (!alloc && cache->cached == BTRFS_CACHE_NO)
|
|
cache_block_group(cache, trans, NULL, 1);
|
|
|
|
byte_in_group = bytenr - cache->key.objectid;
|
|
WARN_ON(byte_in_group > cache->key.offset);
|
|
|
|
spin_lock(&cache->space_info->lock);
|
|
spin_lock(&cache->lock);
|
|
|
|
if (btrfs_test_opt(root, SPACE_CACHE) &&
|
|
cache->disk_cache_state < BTRFS_DC_CLEAR)
|
|
cache->disk_cache_state = BTRFS_DC_CLEAR;
|
|
|
|
cache->dirty = 1;
|
|
old_val = btrfs_block_group_used(&cache->item);
|
|
num_bytes = min(total, cache->key.offset - byte_in_group);
|
|
if (alloc) {
|
|
old_val += num_bytes;
|
|
btrfs_set_block_group_used(&cache->item, old_val);
|
|
cache->reserved -= num_bytes;
|
|
cache->space_info->bytes_reserved -= num_bytes;
|
|
cache->space_info->bytes_used += num_bytes;
|
|
cache->space_info->disk_used += num_bytes * factor;
|
|
spin_unlock(&cache->lock);
|
|
spin_unlock(&cache->space_info->lock);
|
|
} else {
|
|
old_val -= num_bytes;
|
|
btrfs_set_block_group_used(&cache->item, old_val);
|
|
cache->pinned += num_bytes;
|
|
cache->space_info->bytes_pinned += num_bytes;
|
|
cache->space_info->bytes_used -= num_bytes;
|
|
cache->space_info->disk_used -= num_bytes * factor;
|
|
spin_unlock(&cache->lock);
|
|
spin_unlock(&cache->space_info->lock);
|
|
|
|
set_extent_dirty(info->pinned_extents,
|
|
bytenr, bytenr + num_bytes - 1,
|
|
GFP_NOFS | __GFP_NOFAIL);
|
|
}
|
|
btrfs_put_block_group(cache);
|
|
total -= num_bytes;
|
|
bytenr += num_bytes;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
|
|
{
|
|
struct btrfs_block_group_cache *cache;
|
|
u64 bytenr;
|
|
|
|
cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
|
|
if (!cache)
|
|
return 0;
|
|
|
|
bytenr = cache->key.objectid;
|
|
btrfs_put_block_group(cache);
|
|
|
|
return bytenr;
|
|
}
|
|
|
|
static int pin_down_extent(struct btrfs_root *root,
|
|
struct btrfs_block_group_cache *cache,
|
|
u64 bytenr, u64 num_bytes, int reserved)
|
|
{
|
|
spin_lock(&cache->space_info->lock);
|
|
spin_lock(&cache->lock);
|
|
cache->pinned += num_bytes;
|
|
cache->space_info->bytes_pinned += num_bytes;
|
|
if (reserved) {
|
|
cache->reserved -= num_bytes;
|
|
cache->space_info->bytes_reserved -= num_bytes;
|
|
}
|
|
spin_unlock(&cache->lock);
|
|
spin_unlock(&cache->space_info->lock);
|
|
|
|
set_extent_dirty(root->fs_info->pinned_extents, bytenr,
|
|
bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* this function must be called within transaction
|
|
*/
|
|
int btrfs_pin_extent(struct btrfs_root *root,
|
|
u64 bytenr, u64 num_bytes, int reserved)
|
|
{
|
|
struct btrfs_block_group_cache *cache;
|
|
|
|
cache = btrfs_lookup_block_group(root->fs_info, bytenr);
|
|
BUG_ON(!cache);
|
|
|
|
pin_down_extent(root, cache, bytenr, num_bytes, reserved);
|
|
|
|
btrfs_put_block_group(cache);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* this function must be called within transaction
|
|
*/
|
|
int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 bytenr, u64 num_bytes)
|
|
{
|
|
struct btrfs_block_group_cache *cache;
|
|
|
|
cache = btrfs_lookup_block_group(root->fs_info, bytenr);
|
|
BUG_ON(!cache);
|
|
|
|
/*
|
|
* pull in the free space cache (if any) so that our pin
|
|
* removes the free space from the cache. We have load_only set
|
|
* to one because the slow code to read in the free extents does check
|
|
* the pinned extents.
|
|
*/
|
|
cache_block_group(cache, trans, root, 1);
|
|
|
|
pin_down_extent(root, cache, bytenr, num_bytes, 0);
|
|
|
|
/* remove us from the free space cache (if we're there at all) */
|
|
btrfs_remove_free_space(cache, bytenr, num_bytes);
|
|
btrfs_put_block_group(cache);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* btrfs_update_reserved_bytes - update the block_group and space info counters
|
|
* @cache: The cache we are manipulating
|
|
* @num_bytes: The number of bytes in question
|
|
* @reserve: One of the reservation enums
|
|
*
|
|
* This is called by the allocator when it reserves space, or by somebody who is
|
|
* freeing space that was never actually used on disk. For example if you
|
|
* reserve some space for a new leaf in transaction A and before transaction A
|
|
* commits you free that leaf, you call this with reserve set to 0 in order to
|
|
* clear the reservation.
|
|
*
|
|
* Metadata reservations should be called with RESERVE_ALLOC so we do the proper
|
|
* ENOSPC accounting. For data we handle the reservation through clearing the
|
|
* delalloc bits in the io_tree. We have to do this since we could end up
|
|
* allocating less disk space for the amount of data we have reserved in the
|
|
* case of compression.
|
|
*
|
|
* If this is a reservation and the block group has become read only we cannot
|
|
* make the reservation and return -EAGAIN, otherwise this function always
|
|
* succeeds.
|
|
*/
|
|
static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
|
|
u64 num_bytes, int reserve)
|
|
{
|
|
struct btrfs_space_info *space_info = cache->space_info;
|
|
int ret = 0;
|
|
spin_lock(&space_info->lock);
|
|
spin_lock(&cache->lock);
|
|
if (reserve != RESERVE_FREE) {
|
|
if (cache->ro) {
|
|
ret = -EAGAIN;
|
|
} else {
|
|
cache->reserved += num_bytes;
|
|
space_info->bytes_reserved += num_bytes;
|
|
if (reserve == RESERVE_ALLOC) {
|
|
BUG_ON(space_info->bytes_may_use < num_bytes);
|
|
space_info->bytes_may_use -= num_bytes;
|
|
}
|
|
}
|
|
} else {
|
|
if (cache->ro)
|
|
space_info->bytes_readonly += num_bytes;
|
|
cache->reserved -= num_bytes;
|
|
space_info->bytes_reserved -= num_bytes;
|
|
space_info->reservation_progress++;
|
|
}
|
|
spin_unlock(&cache->lock);
|
|
spin_unlock(&space_info->lock);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_caching_control *next;
|
|
struct btrfs_caching_control *caching_ctl;
|
|
struct btrfs_block_group_cache *cache;
|
|
|
|
down_write(&fs_info->extent_commit_sem);
|
|
|
|
list_for_each_entry_safe(caching_ctl, next,
|
|
&fs_info->caching_block_groups, list) {
|
|
cache = caching_ctl->block_group;
|
|
if (block_group_cache_done(cache)) {
|
|
cache->last_byte_to_unpin = (u64)-1;
|
|
list_del_init(&caching_ctl->list);
|
|
put_caching_control(caching_ctl);
|
|
} else {
|
|
cache->last_byte_to_unpin = caching_ctl->progress;
|
|
}
|
|
}
|
|
|
|
if (fs_info->pinned_extents == &fs_info->freed_extents[0])
|
|
fs_info->pinned_extents = &fs_info->freed_extents[1];
|
|
else
|
|
fs_info->pinned_extents = &fs_info->freed_extents[0];
|
|
|
|
up_write(&fs_info->extent_commit_sem);
|
|
|
|
update_global_block_rsv(fs_info);
|
|
return 0;
|
|
}
|
|
|
|
static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_block_group_cache *cache = NULL;
|
|
u64 len;
|
|
|
|
while (start <= end) {
|
|
if (!cache ||
|
|
start >= cache->key.objectid + cache->key.offset) {
|
|
if (cache)
|
|
btrfs_put_block_group(cache);
|
|
cache = btrfs_lookup_block_group(fs_info, start);
|
|
BUG_ON(!cache);
|
|
}
|
|
|
|
len = cache->key.objectid + cache->key.offset - start;
|
|
len = min(len, end + 1 - start);
|
|
|
|
if (start < cache->last_byte_to_unpin) {
|
|
len = min(len, cache->last_byte_to_unpin - start);
|
|
btrfs_add_free_space(cache, start, len);
|
|
}
|
|
|
|
start += len;
|
|
|
|
spin_lock(&cache->space_info->lock);
|
|
spin_lock(&cache->lock);
|
|
cache->pinned -= len;
|
|
cache->space_info->bytes_pinned -= len;
|
|
if (cache->ro)
|
|
cache->space_info->bytes_readonly += len;
|
|
spin_unlock(&cache->lock);
|
|
spin_unlock(&cache->space_info->lock);
|
|
}
|
|
|
|
if (cache)
|
|
btrfs_put_block_group(cache);
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct extent_io_tree *unpin;
|
|
u64 start;
|
|
u64 end;
|
|
int ret;
|
|
|
|
if (fs_info->pinned_extents == &fs_info->freed_extents[0])
|
|
unpin = &fs_info->freed_extents[1];
|
|
else
|
|
unpin = &fs_info->freed_extents[0];
|
|
|
|
while (1) {
|
|
ret = find_first_extent_bit(unpin, 0, &start, &end,
|
|
EXTENT_DIRTY);
|
|
if (ret)
|
|
break;
|
|
|
|
if (btrfs_test_opt(root, DISCARD))
|
|
ret = btrfs_discard_extent(root, start,
|
|
end + 1 - start, NULL);
|
|
|
|
clear_extent_dirty(unpin, start, end, GFP_NOFS);
|
|
unpin_extent_range(root, start, end);
|
|
cond_resched();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 bytenr, u64 num_bytes, u64 parent,
|
|
u64 root_objectid, u64 owner_objectid,
|
|
u64 owner_offset, int refs_to_drop,
|
|
struct btrfs_delayed_extent_op *extent_op)
|
|
{
|
|
struct btrfs_key key;
|
|
struct btrfs_path *path;
|
|
struct btrfs_fs_info *info = root->fs_info;
|
|
struct btrfs_root *extent_root = info->extent_root;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_extent_item *ei;
|
|
struct btrfs_extent_inline_ref *iref;
|
|
int ret;
|
|
int is_data;
|
|
int extent_slot = 0;
|
|
int found_extent = 0;
|
|
int num_to_del = 1;
|
|
u32 item_size;
|
|
u64 refs;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
path->reada = 1;
|
|
path->leave_spinning = 1;
|
|
|
|
is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
|
|
BUG_ON(!is_data && refs_to_drop != 1);
|
|
|
|
ret = lookup_extent_backref(trans, extent_root, path, &iref,
|
|
bytenr, num_bytes, parent,
|
|
root_objectid, owner_objectid,
|
|
owner_offset);
|
|
if (ret == 0) {
|
|
extent_slot = path->slots[0];
|
|
while (extent_slot >= 0) {
|
|
btrfs_item_key_to_cpu(path->nodes[0], &key,
|
|
extent_slot);
|
|
if (key.objectid != bytenr)
|
|
break;
|
|
if (key.type == BTRFS_EXTENT_ITEM_KEY &&
|
|
key.offset == num_bytes) {
|
|
found_extent = 1;
|
|
break;
|
|
}
|
|
if (path->slots[0] - extent_slot > 5)
|
|
break;
|
|
extent_slot--;
|
|
}
|
|
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
|
|
item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
|
|
if (found_extent && item_size < sizeof(*ei))
|
|
found_extent = 0;
|
|
#endif
|
|
if (!found_extent) {
|
|
BUG_ON(iref);
|
|
ret = remove_extent_backref(trans, extent_root, path,
|
|
NULL, refs_to_drop,
|
|
is_data);
|
|
BUG_ON(ret);
|
|
btrfs_release_path(path);
|
|
path->leave_spinning = 1;
|
|
|
|
key.objectid = bytenr;
|
|
key.type = BTRFS_EXTENT_ITEM_KEY;
|
|
key.offset = num_bytes;
|
|
|
|
ret = btrfs_search_slot(trans, extent_root,
|
|
&key, path, -1, 1);
|
|
if (ret) {
|
|
printk(KERN_ERR "umm, got %d back from search"
|
|
", was looking for %llu\n", ret,
|
|
(unsigned long long)bytenr);
|
|
if (ret > 0)
|
|
btrfs_print_leaf(extent_root,
|
|
path->nodes[0]);
|
|
}
|
|
BUG_ON(ret);
|
|
extent_slot = path->slots[0];
|
|
}
|
|
} else {
|
|
btrfs_print_leaf(extent_root, path->nodes[0]);
|
|
WARN_ON(1);
|
|
printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
|
|
"parent %llu root %llu owner %llu offset %llu\n",
|
|
(unsigned long long)bytenr,
|
|
(unsigned long long)parent,
|
|
(unsigned long long)root_objectid,
|
|
(unsigned long long)owner_objectid,
|
|
(unsigned long long)owner_offset);
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
item_size = btrfs_item_size_nr(leaf, extent_slot);
|
|
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
|
|
if (item_size < sizeof(*ei)) {
|
|
BUG_ON(found_extent || extent_slot != path->slots[0]);
|
|
ret = convert_extent_item_v0(trans, extent_root, path,
|
|
owner_objectid, 0);
|
|
BUG_ON(ret < 0);
|
|
|
|
btrfs_release_path(path);
|
|
path->leave_spinning = 1;
|
|
|
|
key.objectid = bytenr;
|
|
key.type = BTRFS_EXTENT_ITEM_KEY;
|
|
key.offset = num_bytes;
|
|
|
|
ret = btrfs_search_slot(trans, extent_root, &key, path,
|
|
-1, 1);
|
|
if (ret) {
|
|
printk(KERN_ERR "umm, got %d back from search"
|
|
", was looking for %llu\n", ret,
|
|
(unsigned long long)bytenr);
|
|
btrfs_print_leaf(extent_root, path->nodes[0]);
|
|
}
|
|
BUG_ON(ret);
|
|
extent_slot = path->slots[0];
|
|
leaf = path->nodes[0];
|
|
item_size = btrfs_item_size_nr(leaf, extent_slot);
|
|
}
|
|
#endif
|
|
BUG_ON(item_size < sizeof(*ei));
|
|
ei = btrfs_item_ptr(leaf, extent_slot,
|
|
struct btrfs_extent_item);
|
|
if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
|
|
struct btrfs_tree_block_info *bi;
|
|
BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
|
|
bi = (struct btrfs_tree_block_info *)(ei + 1);
|
|
WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
|
|
}
|
|
|
|
refs = btrfs_extent_refs(leaf, ei);
|
|
BUG_ON(refs < refs_to_drop);
|
|
refs -= refs_to_drop;
|
|
|
|
if (refs > 0) {
|
|
if (extent_op)
|
|
__run_delayed_extent_op(extent_op, leaf, ei);
|
|
/*
|
|
* In the case of inline back ref, reference count will
|
|
* be updated by remove_extent_backref
|
|
*/
|
|
if (iref) {
|
|
BUG_ON(!found_extent);
|
|
} else {
|
|
btrfs_set_extent_refs(leaf, ei, refs);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
}
|
|
if (found_extent) {
|
|
ret = remove_extent_backref(trans, extent_root, path,
|
|
iref, refs_to_drop,
|
|
is_data);
|
|
BUG_ON(ret);
|
|
}
|
|
} else {
|
|
if (found_extent) {
|
|
BUG_ON(is_data && refs_to_drop !=
|
|
extent_data_ref_count(root, path, iref));
|
|
if (iref) {
|
|
BUG_ON(path->slots[0] != extent_slot);
|
|
} else {
|
|
BUG_ON(path->slots[0] != extent_slot + 1);
|
|
path->slots[0] = extent_slot;
|
|
num_to_del = 2;
|
|
}
|
|
}
|
|
|
|
ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
|
|
num_to_del);
|
|
BUG_ON(ret);
|
|
btrfs_release_path(path);
|
|
|
|
if (is_data) {
|
|
ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
|
|
BUG_ON(ret);
|
|
} else {
|
|
invalidate_mapping_pages(info->btree_inode->i_mapping,
|
|
bytenr >> PAGE_CACHE_SHIFT,
|
|
(bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
|
|
}
|
|
|
|
ret = update_block_group(trans, root, bytenr, num_bytes, 0);
|
|
BUG_ON(ret);
|
|
}
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* when we free an block, it is possible (and likely) that we free the last
|
|
* delayed ref for that extent as well. This searches the delayed ref tree for
|
|
* a given extent, and if there are no other delayed refs to be processed, it
|
|
* removes it from the tree.
|
|
*/
|
|
static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, u64 bytenr)
|
|
{
|
|
struct btrfs_delayed_ref_head *head;
|
|
struct btrfs_delayed_ref_root *delayed_refs;
|
|
struct btrfs_delayed_ref_node *ref;
|
|
struct rb_node *node;
|
|
int ret = 0;
|
|
|
|
delayed_refs = &trans->transaction->delayed_refs;
|
|
spin_lock(&delayed_refs->lock);
|
|
head = btrfs_find_delayed_ref_head(trans, bytenr);
|
|
if (!head)
|
|
goto out;
|
|
|
|
node = rb_prev(&head->node.rb_node);
|
|
if (!node)
|
|
goto out;
|
|
|
|
ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
|
|
|
|
/* there are still entries for this ref, we can't drop it */
|
|
if (ref->bytenr == bytenr)
|
|
goto out;
|
|
|
|
if (head->extent_op) {
|
|
if (!head->must_insert_reserved)
|
|
goto out;
|
|
kfree(head->extent_op);
|
|
head->extent_op = NULL;
|
|
}
|
|
|
|
/*
|
|
* waiting for the lock here would deadlock. If someone else has it
|
|
* locked they are already in the process of dropping it anyway
|
|
*/
|
|
if (!mutex_trylock(&head->mutex))
|
|
goto out;
|
|
|
|
/*
|
|
* at this point we have a head with no other entries. Go
|
|
* ahead and process it.
|
|
*/
|
|
head->node.in_tree = 0;
|
|
rb_erase(&head->node.rb_node, &delayed_refs->root);
|
|
|
|
delayed_refs->num_entries--;
|
|
|
|
/*
|
|
* we don't take a ref on the node because we're removing it from the
|
|
* tree, so we just steal the ref the tree was holding.
|
|
*/
|
|
delayed_refs->num_heads--;
|
|
if (list_empty(&head->cluster))
|
|
delayed_refs->num_heads_ready--;
|
|
|
|
list_del_init(&head->cluster);
|
|
spin_unlock(&delayed_refs->lock);
|
|
|
|
BUG_ON(head->extent_op);
|
|
if (head->must_insert_reserved)
|
|
ret = 1;
|
|
|
|
mutex_unlock(&head->mutex);
|
|
btrfs_put_delayed_ref(&head->node);
|
|
return ret;
|
|
out:
|
|
spin_unlock(&delayed_refs->lock);
|
|
return 0;
|
|
}
|
|
|
|
void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct extent_buffer *buf,
|
|
u64 parent, int last_ref)
|
|
{
|
|
struct btrfs_block_group_cache *cache = NULL;
|
|
int ret;
|
|
|
|
if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
|
|
ret = btrfs_add_delayed_tree_ref(trans, buf->start, buf->len,
|
|
parent, root->root_key.objectid,
|
|
btrfs_header_level(buf),
|
|
BTRFS_DROP_DELAYED_REF, NULL);
|
|
BUG_ON(ret);
|
|
}
|
|
|
|
if (!last_ref)
|
|
return;
|
|
|
|
cache = btrfs_lookup_block_group(root->fs_info, buf->start);
|
|
|
|
if (btrfs_header_generation(buf) == trans->transid) {
|
|
if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
|
|
ret = check_ref_cleanup(trans, root, buf->start);
|
|
if (!ret)
|
|
goto out;
|
|
}
|
|
|
|
if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
|
|
pin_down_extent(root, cache, buf->start, buf->len, 1);
|
|
goto out;
|
|
}
|
|
|
|
WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
|
|
|
|
btrfs_add_free_space(cache, buf->start, buf->len);
|
|
btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
|
|
}
|
|
out:
|
|
/*
|
|
* Deleting the buffer, clear the corrupt flag since it doesn't matter
|
|
* anymore.
|
|
*/
|
|
clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
|
|
btrfs_put_block_group(cache);
|
|
}
|
|
|
|
int btrfs_free_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 bytenr, u64 num_bytes, u64 parent,
|
|
u64 root_objectid, u64 owner, u64 offset)
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* tree log blocks never actually go into the extent allocation
|
|
* tree, just update pinning info and exit early.
|
|
*/
|
|
if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
|
|
WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
|
|
/* unlocks the pinned mutex */
|
|
btrfs_pin_extent(root, bytenr, num_bytes, 1);
|
|
ret = 0;
|
|
} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
|
|
ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
|
|
parent, root_objectid, (int)owner,
|
|
BTRFS_DROP_DELAYED_REF, NULL);
|
|
BUG_ON(ret);
|
|
} else {
|
|
ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
|
|
parent, root_objectid, owner,
|
|
offset, BTRFS_DROP_DELAYED_REF, NULL);
|
|
BUG_ON(ret);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static u64 stripe_align(struct btrfs_root *root, u64 val)
|
|
{
|
|
u64 mask = ((u64)root->stripesize - 1);
|
|
u64 ret = (val + mask) & ~mask;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* when we wait for progress in the block group caching, its because
|
|
* our allocation attempt failed at least once. So, we must sleep
|
|
* and let some progress happen before we try again.
|
|
*
|
|
* This function will sleep at least once waiting for new free space to
|
|
* show up, and then it will check the block group free space numbers
|
|
* for our min num_bytes. Another option is to have it go ahead
|
|
* and look in the rbtree for a free extent of a given size, but this
|
|
* is a good start.
|
|
*/
|
|
static noinline int
|
|
wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
|
|
u64 num_bytes)
|
|
{
|
|
struct btrfs_caching_control *caching_ctl;
|
|
DEFINE_WAIT(wait);
|
|
|
|
caching_ctl = get_caching_control(cache);
|
|
if (!caching_ctl)
|
|
return 0;
|
|
|
|
wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
|
|
(cache->free_space_ctl->free_space >= num_bytes));
|
|
|
|
put_caching_control(caching_ctl);
|
|
return 0;
|
|
}
|
|
|
|
static noinline int
|
|
wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
|
|
{
|
|
struct btrfs_caching_control *caching_ctl;
|
|
DEFINE_WAIT(wait);
|
|
|
|
caching_ctl = get_caching_control(cache);
|
|
if (!caching_ctl)
|
|
return 0;
|
|
|
|
wait_event(caching_ctl->wait, block_group_cache_done(cache));
|
|
|
|
put_caching_control(caching_ctl);
|
|
return 0;
|
|
}
|
|
|
|
static int get_block_group_index(struct btrfs_block_group_cache *cache)
|
|
{
|
|
int index;
|
|
if (cache->flags & BTRFS_BLOCK_GROUP_RAID10)
|
|
index = 0;
|
|
else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1)
|
|
index = 1;
|
|
else if (cache->flags & BTRFS_BLOCK_GROUP_DUP)
|
|
index = 2;
|
|
else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0)
|
|
index = 3;
|
|
else
|
|
index = 4;
|
|
return index;
|
|
}
|
|
|
|
enum btrfs_loop_type {
|
|
LOOP_FIND_IDEAL = 0,
|
|
LOOP_CACHING_NOWAIT = 1,
|
|
LOOP_CACHING_WAIT = 2,
|
|
LOOP_ALLOC_CHUNK = 3,
|
|
LOOP_NO_EMPTY_SIZE = 4,
|
|
};
|
|
|
|
/*
|
|
* walks the btree of allocated extents and find a hole of a given size.
|
|
* The key ins is changed to record the hole:
|
|
* ins->objectid == block start
|
|
* ins->flags = BTRFS_EXTENT_ITEM_KEY
|
|
* ins->offset == number of blocks
|
|
* Any available blocks before search_start are skipped.
|
|
*/
|
|
static noinline int find_free_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *orig_root,
|
|
u64 num_bytes, u64 empty_size,
|
|
u64 search_start, u64 search_end,
|
|
u64 hint_byte, struct btrfs_key *ins,
|
|
u64 data)
|
|
{
|
|
int ret = 0;
|
|
struct btrfs_root *root = orig_root->fs_info->extent_root;
|
|
struct btrfs_free_cluster *last_ptr = NULL;
|
|
struct btrfs_block_group_cache *block_group = NULL;
|
|
int empty_cluster = 2 * 1024 * 1024;
|
|
int allowed_chunk_alloc = 0;
|
|
int done_chunk_alloc = 0;
|
|
struct btrfs_space_info *space_info;
|
|
int last_ptr_loop = 0;
|
|
int loop = 0;
|
|
int index = 0;
|
|
int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
|
|
RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
|
|
bool found_uncached_bg = false;
|
|
bool failed_cluster_refill = false;
|
|
bool failed_alloc = false;
|
|
bool use_cluster = true;
|
|
bool have_caching_bg = false;
|
|
u64 ideal_cache_percent = 0;
|
|
u64 ideal_cache_offset = 0;
|
|
|
|
WARN_ON(num_bytes < root->sectorsize);
|
|
btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
|
|
ins->objectid = 0;
|
|
ins->offset = 0;
|
|
|
|
space_info = __find_space_info(root->fs_info, data);
|
|
if (!space_info) {
|
|
printk(KERN_ERR "No space info for %llu\n", data);
|
|
return -ENOSPC;
|
|
}
|
|
|
|
/*
|
|
* If the space info is for both data and metadata it means we have a
|
|
* small filesystem and we can't use the clustering stuff.
|
|
*/
|
|
if (btrfs_mixed_space_info(space_info))
|
|
use_cluster = false;
|
|
|
|
if (orig_root->ref_cows || empty_size)
|
|
allowed_chunk_alloc = 1;
|
|
|
|
if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
|
|
last_ptr = &root->fs_info->meta_alloc_cluster;
|
|
if (!btrfs_test_opt(root, SSD))
|
|
empty_cluster = 64 * 1024;
|
|
}
|
|
|
|
if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
|
|
btrfs_test_opt(root, SSD)) {
|
|
last_ptr = &root->fs_info->data_alloc_cluster;
|
|
}
|
|
|
|
if (last_ptr) {
|
|
spin_lock(&last_ptr->lock);
|
|
if (last_ptr->block_group)
|
|
hint_byte = last_ptr->window_start;
|
|
spin_unlock(&last_ptr->lock);
|
|
}
|
|
|
|
search_start = max(search_start, first_logical_byte(root, 0));
|
|
search_start = max(search_start, hint_byte);
|
|
|
|
if (!last_ptr)
|
|
empty_cluster = 0;
|
|
|
|
if (search_start == hint_byte) {
|
|
ideal_cache:
|
|
block_group = btrfs_lookup_block_group(root->fs_info,
|
|
search_start);
|
|
/*
|
|
* we don't want to use the block group if it doesn't match our
|
|
* allocation bits, or if its not cached.
|
|
*
|
|
* However if we are re-searching with an ideal block group
|
|
* picked out then we don't care that the block group is cached.
|
|
*/
|
|
if (block_group && block_group_bits(block_group, data) &&
|
|
(block_group->cached != BTRFS_CACHE_NO ||
|
|
search_start == ideal_cache_offset)) {
|
|
down_read(&space_info->groups_sem);
|
|
if (list_empty(&block_group->list) ||
|
|
block_group->ro) {
|
|
/*
|
|
* someone is removing this block group,
|
|
* we can't jump into the have_block_group
|
|
* target because our list pointers are not
|
|
* valid
|
|
*/
|
|
btrfs_put_block_group(block_group);
|
|
up_read(&space_info->groups_sem);
|
|
} else {
|
|
index = get_block_group_index(block_group);
|
|
goto have_block_group;
|
|
}
|
|
} else if (block_group) {
|
|
btrfs_put_block_group(block_group);
|
|
}
|
|
}
|
|
search:
|
|
have_caching_bg = false;
|
|
down_read(&space_info->groups_sem);
|
|
list_for_each_entry(block_group, &space_info->block_groups[index],
|
|
list) {
|
|
u64 offset;
|
|
int cached;
|
|
|
|
btrfs_get_block_group(block_group);
|
|
search_start = block_group->key.objectid;
|
|
|
|
/*
|
|
* this can happen if we end up cycling through all the
|
|
* raid types, but we want to make sure we only allocate
|
|
* for the proper type.
|
|
*/
|
|
if (!block_group_bits(block_group, data)) {
|
|
u64 extra = BTRFS_BLOCK_GROUP_DUP |
|
|
BTRFS_BLOCK_GROUP_RAID1 |
|
|
BTRFS_BLOCK_GROUP_RAID10;
|
|
|
|
/*
|
|
* if they asked for extra copies and this block group
|
|
* doesn't provide them, bail. This does allow us to
|
|
* fill raid0 from raid1.
|
|
*/
|
|
if ((data & extra) && !(block_group->flags & extra))
|
|
goto loop;
|
|
}
|
|
|
|
have_block_group:
|
|
if (unlikely(block_group->cached == BTRFS_CACHE_NO)) {
|
|
u64 free_percent;
|
|
|
|
ret = cache_block_group(block_group, trans,
|
|
orig_root, 1);
|
|
if (block_group->cached == BTRFS_CACHE_FINISHED)
|
|
goto have_block_group;
|
|
|
|
free_percent = btrfs_block_group_used(&block_group->item);
|
|
free_percent *= 100;
|
|
free_percent = div64_u64(free_percent,
|
|
block_group->key.offset);
|
|
free_percent = 100 - free_percent;
|
|
if (free_percent > ideal_cache_percent &&
|
|
likely(!block_group->ro)) {
|
|
ideal_cache_offset = block_group->key.objectid;
|
|
ideal_cache_percent = free_percent;
|
|
}
|
|
|
|
/*
|
|
* The caching workers are limited to 2 threads, so we
|
|
* can queue as much work as we care to.
|
|
*/
|
|
if (loop > LOOP_FIND_IDEAL) {
|
|
ret = cache_block_group(block_group, trans,
|
|
orig_root, 0);
|
|
BUG_ON(ret);
|
|
}
|
|
found_uncached_bg = true;
|
|
|
|
/*
|
|
* If loop is set for cached only, try the next block
|
|
* group.
|
|
*/
|
|
if (loop == LOOP_FIND_IDEAL)
|
|
goto loop;
|
|
}
|
|
|
|
cached = block_group_cache_done(block_group);
|
|
if (unlikely(!cached))
|
|
found_uncached_bg = true;
|
|
|
|
if (unlikely(block_group->ro))
|
|
goto loop;
|
|
|
|
spin_lock(&block_group->free_space_ctl->tree_lock);
|
|
if (cached &&
|
|
block_group->free_space_ctl->free_space <
|
|
num_bytes + empty_size) {
|
|
spin_unlock(&block_group->free_space_ctl->tree_lock);
|
|
goto loop;
|
|
}
|
|
spin_unlock(&block_group->free_space_ctl->tree_lock);
|
|
|
|
/*
|
|
* Ok we want to try and use the cluster allocator, so lets look
|
|
* there, unless we are on LOOP_NO_EMPTY_SIZE, since we will
|
|
* have tried the cluster allocator plenty of times at this
|
|
* point and not have found anything, so we are likely way too
|
|
* fragmented for the clustering stuff to find anything, so lets
|
|
* just skip it and let the allocator find whatever block it can
|
|
* find
|
|
*/
|
|
if (last_ptr && loop < LOOP_NO_EMPTY_SIZE) {
|
|
/*
|
|
* the refill lock keeps out other
|
|
* people trying to start a new cluster
|
|
*/
|
|
spin_lock(&last_ptr->refill_lock);
|
|
if (last_ptr->block_group &&
|
|
(last_ptr->block_group->ro ||
|
|
!block_group_bits(last_ptr->block_group, data))) {
|
|
offset = 0;
|
|
goto refill_cluster;
|
|
}
|
|
|
|
offset = btrfs_alloc_from_cluster(block_group, last_ptr,
|
|
num_bytes, search_start);
|
|
if (offset) {
|
|
/* we have a block, we're done */
|
|
spin_unlock(&last_ptr->refill_lock);
|
|
goto checks;
|
|
}
|
|
|
|
spin_lock(&last_ptr->lock);
|
|
/*
|
|
* whoops, this cluster doesn't actually point to
|
|
* this block group. Get a ref on the block
|
|
* group is does point to and try again
|
|
*/
|
|
if (!last_ptr_loop && last_ptr->block_group &&
|
|
last_ptr->block_group != block_group &&
|
|
index <=
|
|
get_block_group_index(last_ptr->block_group)) {
|
|
|
|
btrfs_put_block_group(block_group);
|
|
block_group = last_ptr->block_group;
|
|
btrfs_get_block_group(block_group);
|
|
spin_unlock(&last_ptr->lock);
|
|
spin_unlock(&last_ptr->refill_lock);
|
|
|
|
last_ptr_loop = 1;
|
|
search_start = block_group->key.objectid;
|
|
/*
|
|
* we know this block group is properly
|
|
* in the list because
|
|
* btrfs_remove_block_group, drops the
|
|
* cluster before it removes the block
|
|
* group from the list
|
|
*/
|
|
goto have_block_group;
|
|
}
|
|
spin_unlock(&last_ptr->lock);
|
|
refill_cluster:
|
|
/*
|
|
* this cluster didn't work out, free it and
|
|
* start over
|
|
*/
|
|
btrfs_return_cluster_to_free_space(NULL, last_ptr);
|
|
|
|
last_ptr_loop = 0;
|
|
|
|
/* allocate a cluster in this block group */
|
|
ret = btrfs_find_space_cluster(trans, root,
|
|
block_group, last_ptr,
|
|
offset, num_bytes,
|
|
empty_cluster + empty_size);
|
|
if (ret == 0) {
|
|
/*
|
|
* now pull our allocation out of this
|
|
* cluster
|
|
*/
|
|
offset = btrfs_alloc_from_cluster(block_group,
|
|
last_ptr, num_bytes,
|
|
search_start);
|
|
if (offset) {
|
|
/* we found one, proceed */
|
|
spin_unlock(&last_ptr->refill_lock);
|
|
goto checks;
|
|
}
|
|
} else if (!cached && loop > LOOP_CACHING_NOWAIT
|
|
&& !failed_cluster_refill) {
|
|
spin_unlock(&last_ptr->refill_lock);
|
|
|
|
failed_cluster_refill = true;
|
|
wait_block_group_cache_progress(block_group,
|
|
num_bytes + empty_cluster + empty_size);
|
|
goto have_block_group;
|
|
}
|
|
|
|
/*
|
|
* at this point we either didn't find a cluster
|
|
* or we weren't able to allocate a block from our
|
|
* cluster. Free the cluster we've been trying
|
|
* to use, and go to the next block group
|
|
*/
|
|
btrfs_return_cluster_to_free_space(NULL, last_ptr);
|
|
spin_unlock(&last_ptr->refill_lock);
|
|
goto loop;
|
|
}
|
|
|
|
offset = btrfs_find_space_for_alloc(block_group, search_start,
|
|
num_bytes, empty_size);
|
|
/*
|
|
* If we didn't find a chunk, and we haven't failed on this
|
|
* block group before, and this block group is in the middle of
|
|
* caching and we are ok with waiting, then go ahead and wait
|
|
* for progress to be made, and set failed_alloc to true.
|
|
*
|
|
* If failed_alloc is true then we've already waited on this
|
|
* block group once and should move on to the next block group.
|
|
*/
|
|
if (!offset && !failed_alloc && !cached &&
|
|
loop > LOOP_CACHING_NOWAIT) {
|
|
wait_block_group_cache_progress(block_group,
|
|
num_bytes + empty_size);
|
|
failed_alloc = true;
|
|
goto have_block_group;
|
|
} else if (!offset) {
|
|
if (!cached)
|
|
have_caching_bg = true;
|
|
goto loop;
|
|
}
|
|
checks:
|
|
search_start = stripe_align(root, offset);
|
|
/* move on to the next group */
|
|
if (search_start + num_bytes >= search_end) {
|
|
btrfs_add_free_space(block_group, offset, num_bytes);
|
|
goto loop;
|
|
}
|
|
|
|
/* move on to the next group */
|
|
if (search_start + num_bytes >
|
|
block_group->key.objectid + block_group->key.offset) {
|
|
btrfs_add_free_space(block_group, offset, num_bytes);
|
|
goto loop;
|
|
}
|
|
|
|
ins->objectid = search_start;
|
|
ins->offset = num_bytes;
|
|
|
|
if (offset < search_start)
|
|
btrfs_add_free_space(block_group, offset,
|
|
search_start - offset);
|
|
BUG_ON(offset > search_start);
|
|
|
|
ret = btrfs_update_reserved_bytes(block_group, num_bytes,
|
|
alloc_type);
|
|
if (ret == -EAGAIN) {
|
|
btrfs_add_free_space(block_group, offset, num_bytes);
|
|
goto loop;
|
|
}
|
|
|
|
/* we are all good, lets return */
|
|
ins->objectid = search_start;
|
|
ins->offset = num_bytes;
|
|
|
|
if (offset < search_start)
|
|
btrfs_add_free_space(block_group, offset,
|
|
search_start - offset);
|
|
BUG_ON(offset > search_start);
|
|
btrfs_put_block_group(block_group);
|
|
break;
|
|
loop:
|
|
failed_cluster_refill = false;
|
|
failed_alloc = false;
|
|
BUG_ON(index != get_block_group_index(block_group));
|
|
btrfs_put_block_group(block_group);
|
|
}
|
|
up_read(&space_info->groups_sem);
|
|
|
|
if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
|
|
goto search;
|
|
|
|
if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
|
|
goto search;
|
|
|
|
/* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
|
|
* for them to make caching progress. Also
|
|
* determine the best possible bg to cache
|
|
* LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
|
|
* caching kthreads as we move along
|
|
* LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
|
|
* LOOP_ALLOC_CHUNK, force a chunk allocation and try again
|
|
* LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
|
|
* again
|
|
*/
|
|
if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
|
|
index = 0;
|
|
if (loop == LOOP_FIND_IDEAL && found_uncached_bg) {
|
|
found_uncached_bg = false;
|
|
loop++;
|
|
if (!ideal_cache_percent)
|
|
goto search;
|
|
|
|
/*
|
|
* 1 of the following 2 things have happened so far
|
|
*
|
|
* 1) We found an ideal block group for caching that
|
|
* is mostly full and will cache quickly, so we might
|
|
* as well wait for it.
|
|
*
|
|
* 2) We searched for cached only and we didn't find
|
|
* anything, and we didn't start any caching kthreads
|
|
* either, so chances are we will loop through and
|
|
* start a couple caching kthreads, and then come back
|
|
* around and just wait for them. This will be slower
|
|
* because we will have 2 caching kthreads reading at
|
|
* the same time when we could have just started one
|
|
* and waited for it to get far enough to give us an
|
|
* allocation, so go ahead and go to the wait caching
|
|
* loop.
|
|
*/
|
|
loop = LOOP_CACHING_WAIT;
|
|
search_start = ideal_cache_offset;
|
|
ideal_cache_percent = 0;
|
|
goto ideal_cache;
|
|
} else if (loop == LOOP_FIND_IDEAL) {
|
|
/*
|
|
* Didn't find a uncached bg, wait on anything we find
|
|
* next.
|
|
*/
|
|
loop = LOOP_CACHING_WAIT;
|
|
goto search;
|
|
}
|
|
|
|
loop++;
|
|
|
|
if (loop == LOOP_ALLOC_CHUNK) {
|
|
if (allowed_chunk_alloc) {
|
|
ret = do_chunk_alloc(trans, root, num_bytes +
|
|
2 * 1024 * 1024, data,
|
|
CHUNK_ALLOC_LIMITED);
|
|
allowed_chunk_alloc = 0;
|
|
if (ret == 1)
|
|
done_chunk_alloc = 1;
|
|
} else if (!done_chunk_alloc &&
|
|
space_info->force_alloc ==
|
|
CHUNK_ALLOC_NO_FORCE) {
|
|
space_info->force_alloc = CHUNK_ALLOC_LIMITED;
|
|
}
|
|
|
|
/*
|
|
* We didn't allocate a chunk, go ahead and drop the
|
|
* empty size and loop again.
|
|
*/
|
|
if (!done_chunk_alloc)
|
|
loop = LOOP_NO_EMPTY_SIZE;
|
|
}
|
|
|
|
if (loop == LOOP_NO_EMPTY_SIZE) {
|
|
empty_size = 0;
|
|
empty_cluster = 0;
|
|
}
|
|
|
|
goto search;
|
|
} else if (!ins->objectid) {
|
|
ret = -ENOSPC;
|
|
} else if (ins->objectid) {
|
|
ret = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
|
|
int dump_block_groups)
|
|
{
|
|
struct btrfs_block_group_cache *cache;
|
|
int index = 0;
|
|
|
|
spin_lock(&info->lock);
|
|
printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
|
|
(unsigned long long)info->flags,
|
|
(unsigned long long)(info->total_bytes - info->bytes_used -
|
|
info->bytes_pinned - info->bytes_reserved -
|
|
info->bytes_readonly),
|
|
(info->full) ? "" : "not ");
|
|
printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
|
|
"reserved=%llu, may_use=%llu, readonly=%llu\n",
|
|
(unsigned long long)info->total_bytes,
|
|
(unsigned long long)info->bytes_used,
|
|
(unsigned long long)info->bytes_pinned,
|
|
(unsigned long long)info->bytes_reserved,
|
|
(unsigned long long)info->bytes_may_use,
|
|
(unsigned long long)info->bytes_readonly);
|
|
spin_unlock(&info->lock);
|
|
|
|
if (!dump_block_groups)
|
|
return;
|
|
|
|
down_read(&info->groups_sem);
|
|
again:
|
|
list_for_each_entry(cache, &info->block_groups[index], list) {
|
|
spin_lock(&cache->lock);
|
|
printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
|
|
"%llu pinned %llu reserved\n",
|
|
(unsigned long long)cache->key.objectid,
|
|
(unsigned long long)cache->key.offset,
|
|
(unsigned long long)btrfs_block_group_used(&cache->item),
|
|
(unsigned long long)cache->pinned,
|
|
(unsigned long long)cache->reserved);
|
|
btrfs_dump_free_space(cache, bytes);
|
|
spin_unlock(&cache->lock);
|
|
}
|
|
if (++index < BTRFS_NR_RAID_TYPES)
|
|
goto again;
|
|
up_read(&info->groups_sem);
|
|
}
|
|
|
|
int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 num_bytes, u64 min_alloc_size,
|
|
u64 empty_size, u64 hint_byte,
|
|
u64 search_end, struct btrfs_key *ins,
|
|
u64 data)
|
|
{
|
|
int ret;
|
|
u64 search_start = 0;
|
|
|
|
data = btrfs_get_alloc_profile(root, data);
|
|
again:
|
|
/*
|
|
* the only place that sets empty_size is btrfs_realloc_node, which
|
|
* is not called recursively on allocations
|
|
*/
|
|
if (empty_size || root->ref_cows)
|
|
ret = do_chunk_alloc(trans, root->fs_info->extent_root,
|
|
num_bytes + 2 * 1024 * 1024, data,
|
|
CHUNK_ALLOC_NO_FORCE);
|
|
|
|
WARN_ON(num_bytes < root->sectorsize);
|
|
ret = find_free_extent(trans, root, num_bytes, empty_size,
|
|
search_start, search_end, hint_byte,
|
|
ins, data);
|
|
|
|
if (ret == -ENOSPC && num_bytes > min_alloc_size) {
|
|
num_bytes = num_bytes >> 1;
|
|
num_bytes = num_bytes & ~(root->sectorsize - 1);
|
|
num_bytes = max(num_bytes, min_alloc_size);
|
|
do_chunk_alloc(trans, root->fs_info->extent_root,
|
|
num_bytes, data, CHUNK_ALLOC_FORCE);
|
|
goto again;
|
|
}
|
|
if (ret == -ENOSPC && btrfs_test_opt(root, ENOSPC_DEBUG)) {
|
|
struct btrfs_space_info *sinfo;
|
|
|
|
sinfo = __find_space_info(root->fs_info, data);
|
|
printk(KERN_ERR "btrfs allocation failed flags %llu, "
|
|
"wanted %llu\n", (unsigned long long)data,
|
|
(unsigned long long)num_bytes);
|
|
dump_space_info(sinfo, num_bytes, 1);
|
|
}
|
|
|
|
trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __btrfs_free_reserved_extent(struct btrfs_root *root,
|
|
u64 start, u64 len, int pin)
|
|
{
|
|
struct btrfs_block_group_cache *cache;
|
|
int ret = 0;
|
|
|
|
cache = btrfs_lookup_block_group(root->fs_info, start);
|
|
if (!cache) {
|
|
printk(KERN_ERR "Unable to find block group for %llu\n",
|
|
(unsigned long long)start);
|
|
return -ENOSPC;
|
|
}
|
|
|
|
if (btrfs_test_opt(root, DISCARD))
|
|
ret = btrfs_discard_extent(root, start, len, NULL);
|
|
|
|
if (pin)
|
|
pin_down_extent(root, cache, start, len, 1);
|
|
else {
|
|
btrfs_add_free_space(cache, start, len);
|
|
btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
|
|
}
|
|
btrfs_put_block_group(cache);
|
|
|
|
trace_btrfs_reserved_extent_free(root, start, len);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_free_reserved_extent(struct btrfs_root *root,
|
|
u64 start, u64 len)
|
|
{
|
|
return __btrfs_free_reserved_extent(root, start, len, 0);
|
|
}
|
|
|
|
int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
|
|
u64 start, u64 len)
|
|
{
|
|
return __btrfs_free_reserved_extent(root, start, len, 1);
|
|
}
|
|
|
|
static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 parent, u64 root_objectid,
|
|
u64 flags, u64 owner, u64 offset,
|
|
struct btrfs_key *ins, int ref_mod)
|
|
{
|
|
int ret;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_extent_item *extent_item;
|
|
struct btrfs_extent_inline_ref *iref;
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
int type;
|
|
u32 size;
|
|
|
|
if (parent > 0)
|
|
type = BTRFS_SHARED_DATA_REF_KEY;
|
|
else
|
|
type = BTRFS_EXTENT_DATA_REF_KEY;
|
|
|
|
size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
path->leave_spinning = 1;
|
|
ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
|
|
ins, size);
|
|
BUG_ON(ret);
|
|
|
|
leaf = path->nodes[0];
|
|
extent_item = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_extent_item);
|
|
btrfs_set_extent_refs(leaf, extent_item, ref_mod);
|
|
btrfs_set_extent_generation(leaf, extent_item, trans->transid);
|
|
btrfs_set_extent_flags(leaf, extent_item,
|
|
flags | BTRFS_EXTENT_FLAG_DATA);
|
|
|
|
iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
|
|
btrfs_set_extent_inline_ref_type(leaf, iref, type);
|
|
if (parent > 0) {
|
|
struct btrfs_shared_data_ref *ref;
|
|
ref = (struct btrfs_shared_data_ref *)(iref + 1);
|
|
btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
|
|
btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
|
|
} else {
|
|
struct btrfs_extent_data_ref *ref;
|
|
ref = (struct btrfs_extent_data_ref *)(&iref->offset);
|
|
btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
|
|
btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
|
|
btrfs_set_extent_data_ref_offset(leaf, ref, offset);
|
|
btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
|
|
}
|
|
|
|
btrfs_mark_buffer_dirty(path->nodes[0]);
|
|
btrfs_free_path(path);
|
|
|
|
ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
|
|
if (ret) {
|
|
printk(KERN_ERR "btrfs update block group failed for %llu "
|
|
"%llu\n", (unsigned long long)ins->objectid,
|
|
(unsigned long long)ins->offset);
|
|
BUG();
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 parent, u64 root_objectid,
|
|
u64 flags, struct btrfs_disk_key *key,
|
|
int level, struct btrfs_key *ins)
|
|
{
|
|
int ret;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_extent_item *extent_item;
|
|
struct btrfs_tree_block_info *block_info;
|
|
struct btrfs_extent_inline_ref *iref;
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
path->leave_spinning = 1;
|
|
ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
|
|
ins, size);
|
|
BUG_ON(ret);
|
|
|
|
leaf = path->nodes[0];
|
|
extent_item = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_extent_item);
|
|
btrfs_set_extent_refs(leaf, extent_item, 1);
|
|
btrfs_set_extent_generation(leaf, extent_item, trans->transid);
|
|
btrfs_set_extent_flags(leaf, extent_item,
|
|
flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
|
|
block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
|
|
|
|
btrfs_set_tree_block_key(leaf, block_info, key);
|
|
btrfs_set_tree_block_level(leaf, block_info, level);
|
|
|
|
iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
|
|
if (parent > 0) {
|
|
BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
|
|
btrfs_set_extent_inline_ref_type(leaf, iref,
|
|
BTRFS_SHARED_BLOCK_REF_KEY);
|
|
btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
|
|
} else {
|
|
btrfs_set_extent_inline_ref_type(leaf, iref,
|
|
BTRFS_TREE_BLOCK_REF_KEY);
|
|
btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
|
|
}
|
|
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
btrfs_free_path(path);
|
|
|
|
ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
|
|
if (ret) {
|
|
printk(KERN_ERR "btrfs update block group failed for %llu "
|
|
"%llu\n", (unsigned long long)ins->objectid,
|
|
(unsigned long long)ins->offset);
|
|
BUG();
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 root_objectid, u64 owner,
|
|
u64 offset, struct btrfs_key *ins)
|
|
{
|
|
int ret;
|
|
|
|
BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
|
|
|
|
ret = btrfs_add_delayed_data_ref(trans, ins->objectid, ins->offset,
|
|
0, root_objectid, owner, offset,
|
|
BTRFS_ADD_DELAYED_EXTENT, NULL);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* this is used by the tree logging recovery code. It records that
|
|
* an extent has been allocated and makes sure to clear the free
|
|
* space cache bits as well
|
|
*/
|
|
int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 root_objectid, u64 owner, u64 offset,
|
|
struct btrfs_key *ins)
|
|
{
|
|
int ret;
|
|
struct btrfs_block_group_cache *block_group;
|
|
struct btrfs_caching_control *caching_ctl;
|
|
u64 start = ins->objectid;
|
|
u64 num_bytes = ins->offset;
|
|
|
|
block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
|
|
cache_block_group(block_group, trans, NULL, 0);
|
|
caching_ctl = get_caching_control(block_group);
|
|
|
|
if (!caching_ctl) {
|
|
BUG_ON(!block_group_cache_done(block_group));
|
|
ret = btrfs_remove_free_space(block_group, start, num_bytes);
|
|
BUG_ON(ret);
|
|
} else {
|
|
mutex_lock(&caching_ctl->mutex);
|
|
|
|
if (start >= caching_ctl->progress) {
|
|
ret = add_excluded_extent(root, start, num_bytes);
|
|
BUG_ON(ret);
|
|
} else if (start + num_bytes <= caching_ctl->progress) {
|
|
ret = btrfs_remove_free_space(block_group,
|
|
start, num_bytes);
|
|
BUG_ON(ret);
|
|
} else {
|
|
num_bytes = caching_ctl->progress - start;
|
|
ret = btrfs_remove_free_space(block_group,
|
|
start, num_bytes);
|
|
BUG_ON(ret);
|
|
|
|
start = caching_ctl->progress;
|
|
num_bytes = ins->objectid + ins->offset -
|
|
caching_ctl->progress;
|
|
ret = add_excluded_extent(root, start, num_bytes);
|
|
BUG_ON(ret);
|
|
}
|
|
|
|
mutex_unlock(&caching_ctl->mutex);
|
|
put_caching_control(caching_ctl);
|
|
}
|
|
|
|
ret = btrfs_update_reserved_bytes(block_group, ins->offset,
|
|
RESERVE_ALLOC_NO_ACCOUNT);
|
|
BUG_ON(ret);
|
|
btrfs_put_block_group(block_group);
|
|
ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
|
|
0, owner, offset, ins, 1);
|
|
return ret;
|
|
}
|
|
|
|
struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 bytenr, u32 blocksize,
|
|
int level)
|
|
{
|
|
struct extent_buffer *buf;
|
|
|
|
buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
|
|
if (!buf)
|
|
return ERR_PTR(-ENOMEM);
|
|
btrfs_set_header_generation(buf, trans->transid);
|
|
btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
|
|
btrfs_tree_lock(buf);
|
|
clean_tree_block(trans, root, buf);
|
|
|
|
btrfs_set_lock_blocking(buf);
|
|
btrfs_set_buffer_uptodate(buf);
|
|
|
|
if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
|
|
/*
|
|
* we allow two log transactions at a time, use different
|
|
* EXENT bit to differentiate dirty pages.
|
|
*/
|
|
if (root->log_transid % 2 == 0)
|
|
set_extent_dirty(&root->dirty_log_pages, buf->start,
|
|
buf->start + buf->len - 1, GFP_NOFS);
|
|
else
|
|
set_extent_new(&root->dirty_log_pages, buf->start,
|
|
buf->start + buf->len - 1, GFP_NOFS);
|
|
} else {
|
|
set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
|
|
buf->start + buf->len - 1, GFP_NOFS);
|
|
}
|
|
trans->blocks_used++;
|
|
/* this returns a buffer locked for blocking */
|
|
return buf;
|
|
}
|
|
|
|
static struct btrfs_block_rsv *
|
|
use_block_rsv(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, u32 blocksize)
|
|
{
|
|
struct btrfs_block_rsv *block_rsv;
|
|
struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
|
|
int ret;
|
|
|
|
block_rsv = get_block_rsv(trans, root);
|
|
|
|
if (block_rsv->size == 0) {
|
|
ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
|
|
/*
|
|
* If we couldn't reserve metadata bytes try and use some from
|
|
* the global reserve.
|
|
*/
|
|
if (ret && block_rsv != global_rsv) {
|
|
ret = block_rsv_use_bytes(global_rsv, blocksize);
|
|
if (!ret)
|
|
return global_rsv;
|
|
return ERR_PTR(ret);
|
|
} else if (ret) {
|
|
return ERR_PTR(ret);
|
|
}
|
|
return block_rsv;
|
|
}
|
|
|
|
ret = block_rsv_use_bytes(block_rsv, blocksize);
|
|
if (!ret)
|
|
return block_rsv;
|
|
if (ret) {
|
|
static DEFINE_RATELIMIT_STATE(_rs,
|
|
DEFAULT_RATELIMIT_INTERVAL,
|
|
/*DEFAULT_RATELIMIT_BURST*/ 2);
|
|
if (__ratelimit(&_rs)) {
|
|
printk(KERN_DEBUG "btrfs: block rsv returned %d\n", ret);
|
|
WARN_ON(1);
|
|
}
|
|
ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
|
|
if (!ret) {
|
|
return block_rsv;
|
|
} else if (ret && block_rsv != global_rsv) {
|
|
ret = block_rsv_use_bytes(global_rsv, blocksize);
|
|
if (!ret)
|
|
return global_rsv;
|
|
}
|
|
}
|
|
|
|
return ERR_PTR(-ENOSPC);
|
|
}
|
|
|
|
static void unuse_block_rsv(struct btrfs_block_rsv *block_rsv, u32 blocksize)
|
|
{
|
|
block_rsv_add_bytes(block_rsv, blocksize, 0);
|
|
block_rsv_release_bytes(block_rsv, NULL, 0);
|
|
}
|
|
|
|
/*
|
|
* finds a free extent and does all the dirty work required for allocation
|
|
* returns the key for the extent through ins, and a tree buffer for
|
|
* the first block of the extent through buf.
|
|
*
|
|
* returns the tree buffer or NULL.
|
|
*/
|
|
struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, u32 blocksize,
|
|
u64 parent, u64 root_objectid,
|
|
struct btrfs_disk_key *key, int level,
|
|
u64 hint, u64 empty_size)
|
|
{
|
|
struct btrfs_key ins;
|
|
struct btrfs_block_rsv *block_rsv;
|
|
struct extent_buffer *buf;
|
|
u64 flags = 0;
|
|
int ret;
|
|
|
|
|
|
block_rsv = use_block_rsv(trans, root, blocksize);
|
|
if (IS_ERR(block_rsv))
|
|
return ERR_CAST(block_rsv);
|
|
|
|
ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
|
|
empty_size, hint, (u64)-1, &ins, 0);
|
|
if (ret) {
|
|
unuse_block_rsv(block_rsv, blocksize);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
buf = btrfs_init_new_buffer(trans, root, ins.objectid,
|
|
blocksize, level);
|
|
BUG_ON(IS_ERR(buf));
|
|
|
|
if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
|
|
if (parent == 0)
|
|
parent = ins.objectid;
|
|
flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
|
|
} else
|
|
BUG_ON(parent > 0);
|
|
|
|
if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
|
|
struct btrfs_delayed_extent_op *extent_op;
|
|
extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
|
|
BUG_ON(!extent_op);
|
|
if (key)
|
|
memcpy(&extent_op->key, key, sizeof(extent_op->key));
|
|
else
|
|
memset(&extent_op->key, 0, sizeof(extent_op->key));
|
|
extent_op->flags_to_set = flags;
|
|
extent_op->update_key = 1;
|
|
extent_op->update_flags = 1;
|
|
extent_op->is_data = 0;
|
|
|
|
ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
|
|
ins.offset, parent, root_objectid,
|
|
level, BTRFS_ADD_DELAYED_EXTENT,
|
|
extent_op);
|
|
BUG_ON(ret);
|
|
}
|
|
return buf;
|
|
}
|
|
|
|
struct walk_control {
|
|
u64 refs[BTRFS_MAX_LEVEL];
|
|
u64 flags[BTRFS_MAX_LEVEL];
|
|
struct btrfs_key update_progress;
|
|
int stage;
|
|
int level;
|
|
int shared_level;
|
|
int update_ref;
|
|
int keep_locks;
|
|
int reada_slot;
|
|
int reada_count;
|
|
};
|
|
|
|
#define DROP_REFERENCE 1
|
|
#define UPDATE_BACKREF 2
|
|
|
|
static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct walk_control *wc,
|
|
struct btrfs_path *path)
|
|
{
|
|
u64 bytenr;
|
|
u64 generation;
|
|
u64 refs;
|
|
u64 flags;
|
|
u32 nritems;
|
|
u32 blocksize;
|
|
struct btrfs_key key;
|
|
struct extent_buffer *eb;
|
|
int ret;
|
|
int slot;
|
|
int nread = 0;
|
|
|
|
if (path->slots[wc->level] < wc->reada_slot) {
|
|
wc->reada_count = wc->reada_count * 2 / 3;
|
|
wc->reada_count = max(wc->reada_count, 2);
|
|
} else {
|
|
wc->reada_count = wc->reada_count * 3 / 2;
|
|
wc->reada_count = min_t(int, wc->reada_count,
|
|
BTRFS_NODEPTRS_PER_BLOCK(root));
|
|
}
|
|
|
|
eb = path->nodes[wc->level];
|
|
nritems = btrfs_header_nritems(eb);
|
|
blocksize = btrfs_level_size(root, wc->level - 1);
|
|
|
|
for (slot = path->slots[wc->level]; slot < nritems; slot++) {
|
|
if (nread >= wc->reada_count)
|
|
break;
|
|
|
|
cond_resched();
|
|
bytenr = btrfs_node_blockptr(eb, slot);
|
|
generation = btrfs_node_ptr_generation(eb, slot);
|
|
|
|
if (slot == path->slots[wc->level])
|
|
goto reada;
|
|
|
|
if (wc->stage == UPDATE_BACKREF &&
|
|
generation <= root->root_key.offset)
|
|
continue;
|
|
|
|
/* We don't lock the tree block, it's OK to be racy here */
|
|
ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
|
|
&refs, &flags);
|
|
BUG_ON(ret);
|
|
BUG_ON(refs == 0);
|
|
|
|
if (wc->stage == DROP_REFERENCE) {
|
|
if (refs == 1)
|
|
goto reada;
|
|
|
|
if (wc->level == 1 &&
|
|
(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
|
|
continue;
|
|
if (!wc->update_ref ||
|
|
generation <= root->root_key.offset)
|
|
continue;
|
|
btrfs_node_key_to_cpu(eb, &key, slot);
|
|
ret = btrfs_comp_cpu_keys(&key,
|
|
&wc->update_progress);
|
|
if (ret < 0)
|
|
continue;
|
|
} else {
|
|
if (wc->level == 1 &&
|
|
(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
|
|
continue;
|
|
}
|
|
reada:
|
|
ret = readahead_tree_block(root, bytenr, blocksize,
|
|
generation);
|
|
if (ret)
|
|
break;
|
|
nread++;
|
|
}
|
|
wc->reada_slot = slot;
|
|
}
|
|
|
|
/*
|
|
* hepler to process tree block while walking down the tree.
|
|
*
|
|
* when wc->stage == UPDATE_BACKREF, this function updates
|
|
* back refs for pointers in the block.
|
|
*
|
|
* NOTE: return value 1 means we should stop walking down.
|
|
*/
|
|
static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct walk_control *wc, int lookup_info)
|
|
{
|
|
int level = wc->level;
|
|
struct extent_buffer *eb = path->nodes[level];
|
|
u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
|
|
int ret;
|
|
|
|
if (wc->stage == UPDATE_BACKREF &&
|
|
btrfs_header_owner(eb) != root->root_key.objectid)
|
|
return 1;
|
|
|
|
/*
|
|
* when reference count of tree block is 1, it won't increase
|
|
* again. once full backref flag is set, we never clear it.
|
|
*/
|
|
if (lookup_info &&
|
|
((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
|
|
(wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
|
|
BUG_ON(!path->locks[level]);
|
|
ret = btrfs_lookup_extent_info(trans, root,
|
|
eb->start, eb->len,
|
|
&wc->refs[level],
|
|
&wc->flags[level]);
|
|
BUG_ON(ret);
|
|
BUG_ON(wc->refs[level] == 0);
|
|
}
|
|
|
|
if (wc->stage == DROP_REFERENCE) {
|
|
if (wc->refs[level] > 1)
|
|
return 1;
|
|
|
|
if (path->locks[level] && !wc->keep_locks) {
|
|
btrfs_tree_unlock_rw(eb, path->locks[level]);
|
|
path->locks[level] = 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* wc->stage == UPDATE_BACKREF */
|
|
if (!(wc->flags[level] & flag)) {
|
|
BUG_ON(!path->locks[level]);
|
|
ret = btrfs_inc_ref(trans, root, eb, 1);
|
|
BUG_ON(ret);
|
|
ret = btrfs_dec_ref(trans, root, eb, 0);
|
|
BUG_ON(ret);
|
|
ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
|
|
eb->len, flag, 0);
|
|
BUG_ON(ret);
|
|
wc->flags[level] |= flag;
|
|
}
|
|
|
|
/*
|
|
* the block is shared by multiple trees, so it's not good to
|
|
* keep the tree lock
|
|
*/
|
|
if (path->locks[level] && level > 0) {
|
|
btrfs_tree_unlock_rw(eb, path->locks[level]);
|
|
path->locks[level] = 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* hepler to process tree block pointer.
|
|
*
|
|
* when wc->stage == DROP_REFERENCE, this function checks
|
|
* reference count of the block pointed to. if the block
|
|
* is shared and we need update back refs for the subtree
|
|
* rooted at the block, this function changes wc->stage to
|
|
* UPDATE_BACKREF. if the block is shared and there is no
|
|
* need to update back, this function drops the reference
|
|
* to the block.
|
|
*
|
|
* NOTE: return value 1 means we should stop walking down.
|
|
*/
|
|
static noinline int do_walk_down(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct walk_control *wc, int *lookup_info)
|
|
{
|
|
u64 bytenr;
|
|
u64 generation;
|
|
u64 parent;
|
|
u32 blocksize;
|
|
struct btrfs_key key;
|
|
struct extent_buffer *next;
|
|
int level = wc->level;
|
|
int reada = 0;
|
|
int ret = 0;
|
|
|
|
generation = btrfs_node_ptr_generation(path->nodes[level],
|
|
path->slots[level]);
|
|
/*
|
|
* if the lower level block was created before the snapshot
|
|
* was created, we know there is no need to update back refs
|
|
* for the subtree
|
|
*/
|
|
if (wc->stage == UPDATE_BACKREF &&
|
|
generation <= root->root_key.offset) {
|
|
*lookup_info = 1;
|
|
return 1;
|
|
}
|
|
|
|
bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
|
|
blocksize = btrfs_level_size(root, level - 1);
|
|
|
|
next = btrfs_find_tree_block(root, bytenr, blocksize);
|
|
if (!next) {
|
|
next = btrfs_find_create_tree_block(root, bytenr, blocksize);
|
|
if (!next)
|
|
return -ENOMEM;
|
|
reada = 1;
|
|
}
|
|
btrfs_tree_lock(next);
|
|
btrfs_set_lock_blocking(next);
|
|
|
|
ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
|
|
&wc->refs[level - 1],
|
|
&wc->flags[level - 1]);
|
|
BUG_ON(ret);
|
|
BUG_ON(wc->refs[level - 1] == 0);
|
|
*lookup_info = 0;
|
|
|
|
if (wc->stage == DROP_REFERENCE) {
|
|
if (wc->refs[level - 1] > 1) {
|
|
if (level == 1 &&
|
|
(wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
|
|
goto skip;
|
|
|
|
if (!wc->update_ref ||
|
|
generation <= root->root_key.offset)
|
|
goto skip;
|
|
|
|
btrfs_node_key_to_cpu(path->nodes[level], &key,
|
|
path->slots[level]);
|
|
ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
|
|
if (ret < 0)
|
|
goto skip;
|
|
|
|
wc->stage = UPDATE_BACKREF;
|
|
wc->shared_level = level - 1;
|
|
}
|
|
} else {
|
|
if (level == 1 &&
|
|
(wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
|
|
goto skip;
|
|
}
|
|
|
|
if (!btrfs_buffer_uptodate(next, generation)) {
|
|
btrfs_tree_unlock(next);
|
|
free_extent_buffer(next);
|
|
next = NULL;
|
|
*lookup_info = 1;
|
|
}
|
|
|
|
if (!next) {
|
|
if (reada && level == 1)
|
|
reada_walk_down(trans, root, wc, path);
|
|
next = read_tree_block(root, bytenr, blocksize, generation);
|
|
if (!next)
|
|
return -EIO;
|
|
btrfs_tree_lock(next);
|
|
btrfs_set_lock_blocking(next);
|
|
}
|
|
|
|
level--;
|
|
BUG_ON(level != btrfs_header_level(next));
|
|
path->nodes[level] = next;
|
|
path->slots[level] = 0;
|
|
path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
|
|
wc->level = level;
|
|
if (wc->level == 1)
|
|
wc->reada_slot = 0;
|
|
return 0;
|
|
skip:
|
|
wc->refs[level - 1] = 0;
|
|
wc->flags[level - 1] = 0;
|
|
if (wc->stage == DROP_REFERENCE) {
|
|
if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
|
|
parent = path->nodes[level]->start;
|
|
} else {
|
|
BUG_ON(root->root_key.objectid !=
|
|
btrfs_header_owner(path->nodes[level]));
|
|
parent = 0;
|
|
}
|
|
|
|
ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
|
|
root->root_key.objectid, level - 1, 0);
|
|
BUG_ON(ret);
|
|
}
|
|
btrfs_tree_unlock(next);
|
|
free_extent_buffer(next);
|
|
*lookup_info = 1;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* hepler to process tree block while walking up the tree.
|
|
*
|
|
* when wc->stage == DROP_REFERENCE, this function drops
|
|
* reference count on the block.
|
|
*
|
|
* when wc->stage == UPDATE_BACKREF, this function changes
|
|
* wc->stage back to DROP_REFERENCE if we changed wc->stage
|
|
* to UPDATE_BACKREF previously while processing the block.
|
|
*
|
|
* NOTE: return value 1 means we should stop walking up.
|
|
*/
|
|
static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct walk_control *wc)
|
|
{
|
|
int ret;
|
|
int level = wc->level;
|
|
struct extent_buffer *eb = path->nodes[level];
|
|
u64 parent = 0;
|
|
|
|
if (wc->stage == UPDATE_BACKREF) {
|
|
BUG_ON(wc->shared_level < level);
|
|
if (level < wc->shared_level)
|
|
goto out;
|
|
|
|
ret = find_next_key(path, level + 1, &wc->update_progress);
|
|
if (ret > 0)
|
|
wc->update_ref = 0;
|
|
|
|
wc->stage = DROP_REFERENCE;
|
|
wc->shared_level = -1;
|
|
path->slots[level] = 0;
|
|
|
|
/*
|
|
* check reference count again if the block isn't locked.
|
|
* we should start walking down the tree again if reference
|
|
* count is one.
|
|
*/
|
|
if (!path->locks[level]) {
|
|
BUG_ON(level == 0);
|
|
btrfs_tree_lock(eb);
|
|
btrfs_set_lock_blocking(eb);
|
|
path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
|
|
|
|
ret = btrfs_lookup_extent_info(trans, root,
|
|
eb->start, eb->len,
|
|
&wc->refs[level],
|
|
&wc->flags[level]);
|
|
BUG_ON(ret);
|
|
BUG_ON(wc->refs[level] == 0);
|
|
if (wc->refs[level] == 1) {
|
|
btrfs_tree_unlock_rw(eb, path->locks[level]);
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* wc->stage == DROP_REFERENCE */
|
|
BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
|
|
|
|
if (wc->refs[level] == 1) {
|
|
if (level == 0) {
|
|
if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
|
|
ret = btrfs_dec_ref(trans, root, eb, 1);
|
|
else
|
|
ret = btrfs_dec_ref(trans, root, eb, 0);
|
|
BUG_ON(ret);
|
|
}
|
|
/* make block locked assertion in clean_tree_block happy */
|
|
if (!path->locks[level] &&
|
|
btrfs_header_generation(eb) == trans->transid) {
|
|
btrfs_tree_lock(eb);
|
|
btrfs_set_lock_blocking(eb);
|
|
path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
|
|
}
|
|
clean_tree_block(trans, root, eb);
|
|
}
|
|
|
|
if (eb == root->node) {
|
|
if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
|
|
parent = eb->start;
|
|
else
|
|
BUG_ON(root->root_key.objectid !=
|
|
btrfs_header_owner(eb));
|
|
} else {
|
|
if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
|
|
parent = path->nodes[level + 1]->start;
|
|
else
|
|
BUG_ON(root->root_key.objectid !=
|
|
btrfs_header_owner(path->nodes[level + 1]));
|
|
}
|
|
|
|
btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
|
|
out:
|
|
wc->refs[level] = 0;
|
|
wc->flags[level] = 0;
|
|
return 0;
|
|
}
|
|
|
|
static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct walk_control *wc)
|
|
{
|
|
int level = wc->level;
|
|
int lookup_info = 1;
|
|
int ret;
|
|
|
|
while (level >= 0) {
|
|
ret = walk_down_proc(trans, root, path, wc, lookup_info);
|
|
if (ret > 0)
|
|
break;
|
|
|
|
if (level == 0)
|
|
break;
|
|
|
|
if (path->slots[level] >=
|
|
btrfs_header_nritems(path->nodes[level]))
|
|
break;
|
|
|
|
ret = do_walk_down(trans, root, path, wc, &lookup_info);
|
|
if (ret > 0) {
|
|
path->slots[level]++;
|
|
continue;
|
|
} else if (ret < 0)
|
|
return ret;
|
|
level = wc->level;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct walk_control *wc, int max_level)
|
|
{
|
|
int level = wc->level;
|
|
int ret;
|
|
|
|
path->slots[level] = btrfs_header_nritems(path->nodes[level]);
|
|
while (level < max_level && path->nodes[level]) {
|
|
wc->level = level;
|
|
if (path->slots[level] + 1 <
|
|
btrfs_header_nritems(path->nodes[level])) {
|
|
path->slots[level]++;
|
|
return 0;
|
|
} else {
|
|
ret = walk_up_proc(trans, root, path, wc);
|
|
if (ret > 0)
|
|
return 0;
|
|
|
|
if (path->locks[level]) {
|
|
btrfs_tree_unlock_rw(path->nodes[level],
|
|
path->locks[level]);
|
|
path->locks[level] = 0;
|
|
}
|
|
free_extent_buffer(path->nodes[level]);
|
|
path->nodes[level] = NULL;
|
|
level++;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* drop a subvolume tree.
|
|
*
|
|
* this function traverses the tree freeing any blocks that only
|
|
* referenced by the tree.
|
|
*
|
|
* when a shared tree block is found. this function decreases its
|
|
* reference count by one. if update_ref is true, this function
|
|
* also make sure backrefs for the shared block and all lower level
|
|
* blocks are properly updated.
|
|
*/
|
|
void btrfs_drop_snapshot(struct btrfs_root *root,
|
|
struct btrfs_block_rsv *block_rsv, int update_ref)
|
|
{
|
|
struct btrfs_path *path;
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_root *tree_root = root->fs_info->tree_root;
|
|
struct btrfs_root_item *root_item = &root->root_item;
|
|
struct walk_control *wc;
|
|
struct btrfs_key key;
|
|
int err = 0;
|
|
int ret;
|
|
int level;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
wc = kzalloc(sizeof(*wc), GFP_NOFS);
|
|
if (!wc) {
|
|
btrfs_free_path(path);
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
trans = btrfs_start_transaction(tree_root, 0);
|
|
BUG_ON(IS_ERR(trans));
|
|
|
|
if (block_rsv)
|
|
trans->block_rsv = block_rsv;
|
|
|
|
if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
|
|
level = btrfs_header_level(root->node);
|
|
path->nodes[level] = btrfs_lock_root_node(root);
|
|
btrfs_set_lock_blocking(path->nodes[level]);
|
|
path->slots[level] = 0;
|
|
path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
|
|
memset(&wc->update_progress, 0,
|
|
sizeof(wc->update_progress));
|
|
} else {
|
|
btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
|
|
memcpy(&wc->update_progress, &key,
|
|
sizeof(wc->update_progress));
|
|
|
|
level = root_item->drop_level;
|
|
BUG_ON(level == 0);
|
|
path->lowest_level = level;
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
path->lowest_level = 0;
|
|
if (ret < 0) {
|
|
err = ret;
|
|
goto out_free;
|
|
}
|
|
WARN_ON(ret > 0);
|
|
|
|
/*
|
|
* unlock our path, this is safe because only this
|
|
* function is allowed to delete this snapshot
|
|
*/
|
|
btrfs_unlock_up_safe(path, 0);
|
|
|
|
level = btrfs_header_level(root->node);
|
|
while (1) {
|
|
btrfs_tree_lock(path->nodes[level]);
|
|
btrfs_set_lock_blocking(path->nodes[level]);
|
|
|
|
ret = btrfs_lookup_extent_info(trans, root,
|
|
path->nodes[level]->start,
|
|
path->nodes[level]->len,
|
|
&wc->refs[level],
|
|
&wc->flags[level]);
|
|
BUG_ON(ret);
|
|
BUG_ON(wc->refs[level] == 0);
|
|
|
|
if (level == root_item->drop_level)
|
|
break;
|
|
|
|
btrfs_tree_unlock(path->nodes[level]);
|
|
WARN_ON(wc->refs[level] != 1);
|
|
level--;
|
|
}
|
|
}
|
|
|
|
wc->level = level;
|
|
wc->shared_level = -1;
|
|
wc->stage = DROP_REFERENCE;
|
|
wc->update_ref = update_ref;
|
|
wc->keep_locks = 0;
|
|
wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
|
|
|
|
while (1) {
|
|
ret = walk_down_tree(trans, root, path, wc);
|
|
if (ret < 0) {
|
|
err = ret;
|
|
break;
|
|
}
|
|
|
|
ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
|
|
if (ret < 0) {
|
|
err = ret;
|
|
break;
|
|
}
|
|
|
|
if (ret > 0) {
|
|
BUG_ON(wc->stage != DROP_REFERENCE);
|
|
break;
|
|
}
|
|
|
|
if (wc->stage == DROP_REFERENCE) {
|
|
level = wc->level;
|
|
btrfs_node_key(path->nodes[level],
|
|
&root_item->drop_progress,
|
|
path->slots[level]);
|
|
root_item->drop_level = level;
|
|
}
|
|
|
|
BUG_ON(wc->level == 0);
|
|
if (btrfs_should_end_transaction(trans, tree_root)) {
|
|
ret = btrfs_update_root(trans, tree_root,
|
|
&root->root_key,
|
|
root_item);
|
|
BUG_ON(ret);
|
|
|
|
btrfs_end_transaction_throttle(trans, tree_root);
|
|
trans = btrfs_start_transaction(tree_root, 0);
|
|
BUG_ON(IS_ERR(trans));
|
|
if (block_rsv)
|
|
trans->block_rsv = block_rsv;
|
|
}
|
|
}
|
|
btrfs_release_path(path);
|
|
BUG_ON(err);
|
|
|
|
ret = btrfs_del_root(trans, tree_root, &root->root_key);
|
|
BUG_ON(ret);
|
|
|
|
if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
|
|
ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
|
|
NULL, NULL);
|
|
BUG_ON(ret < 0);
|
|
if (ret > 0) {
|
|
/* if we fail to delete the orphan item this time
|
|
* around, it'll get picked up the next time.
|
|
*
|
|
* The most common failure here is just -ENOENT.
|
|
*/
|
|
btrfs_del_orphan_item(trans, tree_root,
|
|
root->root_key.objectid);
|
|
}
|
|
}
|
|
|
|
if (root->in_radix) {
|
|
btrfs_free_fs_root(tree_root->fs_info, root);
|
|
} else {
|
|
free_extent_buffer(root->node);
|
|
free_extent_buffer(root->commit_root);
|
|
kfree(root);
|
|
}
|
|
out_free:
|
|
btrfs_end_transaction_throttle(trans, tree_root);
|
|
kfree(wc);
|
|
btrfs_free_path(path);
|
|
out:
|
|
if (err)
|
|
btrfs_std_error(root->fs_info, err);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* drop subtree rooted at tree block 'node'.
|
|
*
|
|
* NOTE: this function will unlock and release tree block 'node'
|
|
*/
|
|
int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct extent_buffer *node,
|
|
struct extent_buffer *parent)
|
|
{
|
|
struct btrfs_path *path;
|
|
struct walk_control *wc;
|
|
int level;
|
|
int parent_level;
|
|
int ret = 0;
|
|
int wret;
|
|
|
|
BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
wc = kzalloc(sizeof(*wc), GFP_NOFS);
|
|
if (!wc) {
|
|
btrfs_free_path(path);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
btrfs_assert_tree_locked(parent);
|
|
parent_level = btrfs_header_level(parent);
|
|
extent_buffer_get(parent);
|
|
path->nodes[parent_level] = parent;
|
|
path->slots[parent_level] = btrfs_header_nritems(parent);
|
|
|
|
btrfs_assert_tree_locked(node);
|
|
level = btrfs_header_level(node);
|
|
path->nodes[level] = node;
|
|
path->slots[level] = 0;
|
|
path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
|
|
|
|
wc->refs[parent_level] = 1;
|
|
wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
|
|
wc->level = level;
|
|
wc->shared_level = -1;
|
|
wc->stage = DROP_REFERENCE;
|
|
wc->update_ref = 0;
|
|
wc->keep_locks = 1;
|
|
wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
|
|
|
|
while (1) {
|
|
wret = walk_down_tree(trans, root, path, wc);
|
|
if (wret < 0) {
|
|
ret = wret;
|
|
break;
|
|
}
|
|
|
|
wret = walk_up_tree(trans, root, path, wc, parent_level);
|
|
if (wret < 0)
|
|
ret = wret;
|
|
if (wret != 0)
|
|
break;
|
|
}
|
|
|
|
kfree(wc);
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
|
|
{
|
|
u64 num_devices;
|
|
u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
|
|
BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
|
|
|
|
/*
|
|
* we add in the count of missing devices because we want
|
|
* to make sure that any RAID levels on a degraded FS
|
|
* continue to be honored.
|
|
*/
|
|
num_devices = root->fs_info->fs_devices->rw_devices +
|
|
root->fs_info->fs_devices->missing_devices;
|
|
|
|
if (num_devices == 1) {
|
|
stripped |= BTRFS_BLOCK_GROUP_DUP;
|
|
stripped = flags & ~stripped;
|
|
|
|
/* turn raid0 into single device chunks */
|
|
if (flags & BTRFS_BLOCK_GROUP_RAID0)
|
|
return stripped;
|
|
|
|
/* turn mirroring into duplication */
|
|
if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
|
|
BTRFS_BLOCK_GROUP_RAID10))
|
|
return stripped | BTRFS_BLOCK_GROUP_DUP;
|
|
return flags;
|
|
} else {
|
|
/* they already had raid on here, just return */
|
|
if (flags & stripped)
|
|
return flags;
|
|
|
|
stripped |= BTRFS_BLOCK_GROUP_DUP;
|
|
stripped = flags & ~stripped;
|
|
|
|
/* switch duplicated blocks with raid1 */
|
|
if (flags & BTRFS_BLOCK_GROUP_DUP)
|
|
return stripped | BTRFS_BLOCK_GROUP_RAID1;
|
|
|
|
/* turn single device chunks into raid0 */
|
|
return stripped | BTRFS_BLOCK_GROUP_RAID0;
|
|
}
|
|
return flags;
|
|
}
|
|
|
|
static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
|
|
{
|
|
struct btrfs_space_info *sinfo = cache->space_info;
|
|
u64 num_bytes;
|
|
u64 min_allocable_bytes;
|
|
int ret = -ENOSPC;
|
|
|
|
|
|
/*
|
|
* We need some metadata space and system metadata space for
|
|
* allocating chunks in some corner cases until we force to set
|
|
* it to be readonly.
|
|
*/
|
|
if ((sinfo->flags &
|
|
(BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
|
|
!force)
|
|
min_allocable_bytes = 1 * 1024 * 1024;
|
|
else
|
|
min_allocable_bytes = 0;
|
|
|
|
spin_lock(&sinfo->lock);
|
|
spin_lock(&cache->lock);
|
|
|
|
if (cache->ro) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
num_bytes = cache->key.offset - cache->reserved - cache->pinned -
|
|
cache->bytes_super - btrfs_block_group_used(&cache->item);
|
|
|
|
if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
|
|
sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
|
|
min_allocable_bytes <= sinfo->total_bytes) {
|
|
sinfo->bytes_readonly += num_bytes;
|
|
cache->ro = 1;
|
|
ret = 0;
|
|
}
|
|
out:
|
|
spin_unlock(&cache->lock);
|
|
spin_unlock(&sinfo->lock);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_set_block_group_ro(struct btrfs_root *root,
|
|
struct btrfs_block_group_cache *cache)
|
|
|
|
{
|
|
struct btrfs_trans_handle *trans;
|
|
u64 alloc_flags;
|
|
int ret;
|
|
|
|
BUG_ON(cache->ro);
|
|
|
|
trans = btrfs_join_transaction(root);
|
|
BUG_ON(IS_ERR(trans));
|
|
|
|
alloc_flags = update_block_group_flags(root, cache->flags);
|
|
if (alloc_flags != cache->flags)
|
|
do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
|
|
CHUNK_ALLOC_FORCE);
|
|
|
|
ret = set_block_group_ro(cache, 0);
|
|
if (!ret)
|
|
goto out;
|
|
alloc_flags = get_alloc_profile(root, cache->space_info->flags);
|
|
ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
|
|
CHUNK_ALLOC_FORCE);
|
|
if (ret < 0)
|
|
goto out;
|
|
ret = set_block_group_ro(cache, 0);
|
|
out:
|
|
btrfs_end_transaction(trans, root);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, u64 type)
|
|
{
|
|
u64 alloc_flags = get_alloc_profile(root, type);
|
|
return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
|
|
CHUNK_ALLOC_FORCE);
|
|
}
|
|
|
|
/*
|
|
* helper to account the unused space of all the readonly block group in the
|
|
* list. takes mirrors into account.
|
|
*/
|
|
static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
|
|
{
|
|
struct btrfs_block_group_cache *block_group;
|
|
u64 free_bytes = 0;
|
|
int factor;
|
|
|
|
list_for_each_entry(block_group, groups_list, list) {
|
|
spin_lock(&block_group->lock);
|
|
|
|
if (!block_group->ro) {
|
|
spin_unlock(&block_group->lock);
|
|
continue;
|
|
}
|
|
|
|
if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
|
|
BTRFS_BLOCK_GROUP_RAID10 |
|
|
BTRFS_BLOCK_GROUP_DUP))
|
|
factor = 2;
|
|
else
|
|
factor = 1;
|
|
|
|
free_bytes += (block_group->key.offset -
|
|
btrfs_block_group_used(&block_group->item)) *
|
|
factor;
|
|
|
|
spin_unlock(&block_group->lock);
|
|
}
|
|
|
|
return free_bytes;
|
|
}
|
|
|
|
/*
|
|
* helper to account the unused space of all the readonly block group in the
|
|
* space_info. takes mirrors into account.
|
|
*/
|
|
u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
|
|
{
|
|
int i;
|
|
u64 free_bytes = 0;
|
|
|
|
spin_lock(&sinfo->lock);
|
|
|
|
for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
|
|
if (!list_empty(&sinfo->block_groups[i]))
|
|
free_bytes += __btrfs_get_ro_block_group_free_space(
|
|
&sinfo->block_groups[i]);
|
|
|
|
spin_unlock(&sinfo->lock);
|
|
|
|
return free_bytes;
|
|
}
|
|
|
|
int btrfs_set_block_group_rw(struct btrfs_root *root,
|
|
struct btrfs_block_group_cache *cache)
|
|
{
|
|
struct btrfs_space_info *sinfo = cache->space_info;
|
|
u64 num_bytes;
|
|
|
|
BUG_ON(!cache->ro);
|
|
|
|
spin_lock(&sinfo->lock);
|
|
spin_lock(&cache->lock);
|
|
num_bytes = cache->key.offset - cache->reserved - cache->pinned -
|
|
cache->bytes_super - btrfs_block_group_used(&cache->item);
|
|
sinfo->bytes_readonly -= num_bytes;
|
|
cache->ro = 0;
|
|
spin_unlock(&cache->lock);
|
|
spin_unlock(&sinfo->lock);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* checks to see if its even possible to relocate this block group.
|
|
*
|
|
* @return - -1 if it's not a good idea to relocate this block group, 0 if its
|
|
* ok to go ahead and try.
|
|
*/
|
|
int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
|
|
{
|
|
struct btrfs_block_group_cache *block_group;
|
|
struct btrfs_space_info *space_info;
|
|
struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
|
|
struct btrfs_device *device;
|
|
u64 min_free;
|
|
u64 dev_min = 1;
|
|
u64 dev_nr = 0;
|
|
int index;
|
|
int full = 0;
|
|
int ret = 0;
|
|
|
|
block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
|
|
|
|
/* odd, couldn't find the block group, leave it alone */
|
|
if (!block_group)
|
|
return -1;
|
|
|
|
min_free = btrfs_block_group_used(&block_group->item);
|
|
|
|
/* no bytes used, we're good */
|
|
if (!min_free)
|
|
goto out;
|
|
|
|
space_info = block_group->space_info;
|
|
spin_lock(&space_info->lock);
|
|
|
|
full = space_info->full;
|
|
|
|
/*
|
|
* if this is the last block group we have in this space, we can't
|
|
* relocate it unless we're able to allocate a new chunk below.
|
|
*
|
|
* Otherwise, we need to make sure we have room in the space to handle
|
|
* all of the extents from this block group. If we can, we're good
|
|
*/
|
|
if ((space_info->total_bytes != block_group->key.offset) &&
|
|
(space_info->bytes_used + space_info->bytes_reserved +
|
|
space_info->bytes_pinned + space_info->bytes_readonly +
|
|
min_free < space_info->total_bytes)) {
|
|
spin_unlock(&space_info->lock);
|
|
goto out;
|
|
}
|
|
spin_unlock(&space_info->lock);
|
|
|
|
/*
|
|
* ok we don't have enough space, but maybe we have free space on our
|
|
* devices to allocate new chunks for relocation, so loop through our
|
|
* alloc devices and guess if we have enough space. However, if we
|
|
* were marked as full, then we know there aren't enough chunks, and we
|
|
* can just return.
|
|
*/
|
|
ret = -1;
|
|
if (full)
|
|
goto out;
|
|
|
|
/*
|
|
* index:
|
|
* 0: raid10
|
|
* 1: raid1
|
|
* 2: dup
|
|
* 3: raid0
|
|
* 4: single
|
|
*/
|
|
index = get_block_group_index(block_group);
|
|
if (index == 0) {
|
|
dev_min = 4;
|
|
/* Divide by 2 */
|
|
min_free >>= 1;
|
|
} else if (index == 1) {
|
|
dev_min = 2;
|
|
} else if (index == 2) {
|
|
/* Multiply by 2 */
|
|
min_free <<= 1;
|
|
} else if (index == 3) {
|
|
dev_min = fs_devices->rw_devices;
|
|
do_div(min_free, dev_min);
|
|
}
|
|
|
|
mutex_lock(&root->fs_info->chunk_mutex);
|
|
list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
|
|
u64 dev_offset;
|
|
|
|
/*
|
|
* check to make sure we can actually find a chunk with enough
|
|
* space to fit our block group in.
|
|
*/
|
|
if (device->total_bytes > device->bytes_used + min_free) {
|
|
ret = find_free_dev_extent(NULL, device, min_free,
|
|
&dev_offset, NULL);
|
|
if (!ret)
|
|
dev_nr++;
|
|
|
|
if (dev_nr >= dev_min)
|
|
break;
|
|
|
|
ret = -1;
|
|
}
|
|
}
|
|
mutex_unlock(&root->fs_info->chunk_mutex);
|
|
out:
|
|
btrfs_put_block_group(block_group);
|
|
return ret;
|
|
}
|
|
|
|
static int find_first_block_group(struct btrfs_root *root,
|
|
struct btrfs_path *path, struct btrfs_key *key)
|
|
{
|
|
int ret = 0;
|
|
struct btrfs_key found_key;
|
|
struct extent_buffer *leaf;
|
|
int slot;
|
|
|
|
ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
while (1) {
|
|
slot = path->slots[0];
|
|
leaf = path->nodes[0];
|
|
if (slot >= btrfs_header_nritems(leaf)) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret == 0)
|
|
continue;
|
|
if (ret < 0)
|
|
goto out;
|
|
break;
|
|
}
|
|
btrfs_item_key_to_cpu(leaf, &found_key, slot);
|
|
|
|
if (found_key.objectid >= key->objectid &&
|
|
found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
path->slots[0]++;
|
|
}
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
|
|
{
|
|
struct btrfs_block_group_cache *block_group;
|
|
u64 last = 0;
|
|
|
|
while (1) {
|
|
struct inode *inode;
|
|
|
|
block_group = btrfs_lookup_first_block_group(info, last);
|
|
while (block_group) {
|
|
spin_lock(&block_group->lock);
|
|
if (block_group->iref)
|
|
break;
|
|
spin_unlock(&block_group->lock);
|
|
block_group = next_block_group(info->tree_root,
|
|
block_group);
|
|
}
|
|
if (!block_group) {
|
|
if (last == 0)
|
|
break;
|
|
last = 0;
|
|
continue;
|
|
}
|
|
|
|
inode = block_group->inode;
|
|
block_group->iref = 0;
|
|
block_group->inode = NULL;
|
|
spin_unlock(&block_group->lock);
|
|
iput(inode);
|
|
last = block_group->key.objectid + block_group->key.offset;
|
|
btrfs_put_block_group(block_group);
|
|
}
|
|
}
|
|
|
|
int btrfs_free_block_groups(struct btrfs_fs_info *info)
|
|
{
|
|
struct btrfs_block_group_cache *block_group;
|
|
struct btrfs_space_info *space_info;
|
|
struct btrfs_caching_control *caching_ctl;
|
|
struct rb_node *n;
|
|
|
|
down_write(&info->extent_commit_sem);
|
|
while (!list_empty(&info->caching_block_groups)) {
|
|
caching_ctl = list_entry(info->caching_block_groups.next,
|
|
struct btrfs_caching_control, list);
|
|
list_del(&caching_ctl->list);
|
|
put_caching_control(caching_ctl);
|
|
}
|
|
up_write(&info->extent_commit_sem);
|
|
|
|
spin_lock(&info->block_group_cache_lock);
|
|
while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
|
|
block_group = rb_entry(n, struct btrfs_block_group_cache,
|
|
cache_node);
|
|
rb_erase(&block_group->cache_node,
|
|
&info->block_group_cache_tree);
|
|
spin_unlock(&info->block_group_cache_lock);
|
|
|
|
down_write(&block_group->space_info->groups_sem);
|
|
list_del(&block_group->list);
|
|
up_write(&block_group->space_info->groups_sem);
|
|
|
|
if (block_group->cached == BTRFS_CACHE_STARTED)
|
|
wait_block_group_cache_done(block_group);
|
|
|
|
/*
|
|
* We haven't cached this block group, which means we could
|
|
* possibly have excluded extents on this block group.
|
|
*/
|
|
if (block_group->cached == BTRFS_CACHE_NO)
|
|
free_excluded_extents(info->extent_root, block_group);
|
|
|
|
btrfs_remove_free_space_cache(block_group);
|
|
btrfs_put_block_group(block_group);
|
|
|
|
spin_lock(&info->block_group_cache_lock);
|
|
}
|
|
spin_unlock(&info->block_group_cache_lock);
|
|
|
|
/* now that all the block groups are freed, go through and
|
|
* free all the space_info structs. This is only called during
|
|
* the final stages of unmount, and so we know nobody is
|
|
* using them. We call synchronize_rcu() once before we start,
|
|
* just to be on the safe side.
|
|
*/
|
|
synchronize_rcu();
|
|
|
|
release_global_block_rsv(info);
|
|
|
|
while(!list_empty(&info->space_info)) {
|
|
space_info = list_entry(info->space_info.next,
|
|
struct btrfs_space_info,
|
|
list);
|
|
if (space_info->bytes_pinned > 0 ||
|
|
space_info->bytes_reserved > 0 ||
|
|
space_info->bytes_may_use > 0) {
|
|
WARN_ON(1);
|
|
dump_space_info(space_info, 0, 0);
|
|
}
|
|
list_del(&space_info->list);
|
|
kfree(space_info);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void __link_block_group(struct btrfs_space_info *space_info,
|
|
struct btrfs_block_group_cache *cache)
|
|
{
|
|
int index = get_block_group_index(cache);
|
|
|
|
down_write(&space_info->groups_sem);
|
|
list_add_tail(&cache->list, &space_info->block_groups[index]);
|
|
up_write(&space_info->groups_sem);
|
|
}
|
|
|
|
int btrfs_read_block_groups(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_path *path;
|
|
int ret;
|
|
struct btrfs_block_group_cache *cache;
|
|
struct btrfs_fs_info *info = root->fs_info;
|
|
struct btrfs_space_info *space_info;
|
|
struct btrfs_key key;
|
|
struct btrfs_key found_key;
|
|
struct extent_buffer *leaf;
|
|
int need_clear = 0;
|
|
u64 cache_gen;
|
|
|
|
root = info->extent_root;
|
|
key.objectid = 0;
|
|
key.offset = 0;
|
|
btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
path->reada = 1;
|
|
|
|
cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
|
|
if (btrfs_test_opt(root, SPACE_CACHE) &&
|
|
btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
|
|
need_clear = 1;
|
|
if (btrfs_test_opt(root, CLEAR_CACHE))
|
|
need_clear = 1;
|
|
|
|
while (1) {
|
|
ret = find_first_block_group(root, path, &key);
|
|
if (ret > 0)
|
|
break;
|
|
if (ret != 0)
|
|
goto error;
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
|
|
cache = kzalloc(sizeof(*cache), GFP_NOFS);
|
|
if (!cache) {
|
|
ret = -ENOMEM;
|
|
goto error;
|
|
}
|
|
cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
|
|
GFP_NOFS);
|
|
if (!cache->free_space_ctl) {
|
|
kfree(cache);
|
|
ret = -ENOMEM;
|
|
goto error;
|
|
}
|
|
|
|
atomic_set(&cache->count, 1);
|
|
spin_lock_init(&cache->lock);
|
|
cache->fs_info = info;
|
|
INIT_LIST_HEAD(&cache->list);
|
|
INIT_LIST_HEAD(&cache->cluster_list);
|
|
|
|
if (need_clear)
|
|
cache->disk_cache_state = BTRFS_DC_CLEAR;
|
|
|
|
read_extent_buffer(leaf, &cache->item,
|
|
btrfs_item_ptr_offset(leaf, path->slots[0]),
|
|
sizeof(cache->item));
|
|
memcpy(&cache->key, &found_key, sizeof(found_key));
|
|
|
|
key.objectid = found_key.objectid + found_key.offset;
|
|
btrfs_release_path(path);
|
|
cache->flags = btrfs_block_group_flags(&cache->item);
|
|
cache->sectorsize = root->sectorsize;
|
|
|
|
btrfs_init_free_space_ctl(cache);
|
|
|
|
/*
|
|
* We need to exclude the super stripes now so that the space
|
|
* info has super bytes accounted for, otherwise we'll think
|
|
* we have more space than we actually do.
|
|
*/
|
|
exclude_super_stripes(root, cache);
|
|
|
|
/*
|
|
* check for two cases, either we are full, and therefore
|
|
* don't need to bother with the caching work since we won't
|
|
* find any space, or we are empty, and we can just add all
|
|
* the space in and be done with it. This saves us _alot_ of
|
|
* time, particularly in the full case.
|
|
*/
|
|
if (found_key.offset == btrfs_block_group_used(&cache->item)) {
|
|
cache->last_byte_to_unpin = (u64)-1;
|
|
cache->cached = BTRFS_CACHE_FINISHED;
|
|
free_excluded_extents(root, cache);
|
|
} else if (btrfs_block_group_used(&cache->item) == 0) {
|
|
cache->last_byte_to_unpin = (u64)-1;
|
|
cache->cached = BTRFS_CACHE_FINISHED;
|
|
add_new_free_space(cache, root->fs_info,
|
|
found_key.objectid,
|
|
found_key.objectid +
|
|
found_key.offset);
|
|
free_excluded_extents(root, cache);
|
|
}
|
|
|
|
ret = update_space_info(info, cache->flags, found_key.offset,
|
|
btrfs_block_group_used(&cache->item),
|
|
&space_info);
|
|
BUG_ON(ret);
|
|
cache->space_info = space_info;
|
|
spin_lock(&cache->space_info->lock);
|
|
cache->space_info->bytes_readonly += cache->bytes_super;
|
|
spin_unlock(&cache->space_info->lock);
|
|
|
|
__link_block_group(space_info, cache);
|
|
|
|
ret = btrfs_add_block_group_cache(root->fs_info, cache);
|
|
BUG_ON(ret);
|
|
|
|
set_avail_alloc_bits(root->fs_info, cache->flags);
|
|
if (btrfs_chunk_readonly(root, cache->key.objectid))
|
|
set_block_group_ro(cache, 1);
|
|
}
|
|
|
|
list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
|
|
if (!(get_alloc_profile(root, space_info->flags) &
|
|
(BTRFS_BLOCK_GROUP_RAID10 |
|
|
BTRFS_BLOCK_GROUP_RAID1 |
|
|
BTRFS_BLOCK_GROUP_DUP)))
|
|
continue;
|
|
/*
|
|
* avoid allocating from un-mirrored block group if there are
|
|
* mirrored block groups.
|
|
*/
|
|
list_for_each_entry(cache, &space_info->block_groups[3], list)
|
|
set_block_group_ro(cache, 1);
|
|
list_for_each_entry(cache, &space_info->block_groups[4], list)
|
|
set_block_group_ro(cache, 1);
|
|
}
|
|
|
|
init_global_block_rsv(info);
|
|
ret = 0;
|
|
error:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_make_block_group(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, u64 bytes_used,
|
|
u64 type, u64 chunk_objectid, u64 chunk_offset,
|
|
u64 size)
|
|
{
|
|
int ret;
|
|
struct btrfs_root *extent_root;
|
|
struct btrfs_block_group_cache *cache;
|
|
|
|
extent_root = root->fs_info->extent_root;
|
|
|
|
root->fs_info->last_trans_log_full_commit = trans->transid;
|
|
|
|
cache = kzalloc(sizeof(*cache), GFP_NOFS);
|
|
if (!cache)
|
|
return -ENOMEM;
|
|
cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
|
|
GFP_NOFS);
|
|
if (!cache->free_space_ctl) {
|
|
kfree(cache);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
cache->key.objectid = chunk_offset;
|
|
cache->key.offset = size;
|
|
cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
|
|
cache->sectorsize = root->sectorsize;
|
|
cache->fs_info = root->fs_info;
|
|
|
|
atomic_set(&cache->count, 1);
|
|
spin_lock_init(&cache->lock);
|
|
INIT_LIST_HEAD(&cache->list);
|
|
INIT_LIST_HEAD(&cache->cluster_list);
|
|
|
|
btrfs_init_free_space_ctl(cache);
|
|
|
|
btrfs_set_block_group_used(&cache->item, bytes_used);
|
|
btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
|
|
cache->flags = type;
|
|
btrfs_set_block_group_flags(&cache->item, type);
|
|
|
|
cache->last_byte_to_unpin = (u64)-1;
|
|
cache->cached = BTRFS_CACHE_FINISHED;
|
|
exclude_super_stripes(root, cache);
|
|
|
|
add_new_free_space(cache, root->fs_info, chunk_offset,
|
|
chunk_offset + size);
|
|
|
|
free_excluded_extents(root, cache);
|
|
|
|
ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
|
|
&cache->space_info);
|
|
BUG_ON(ret);
|
|
|
|
spin_lock(&cache->space_info->lock);
|
|
cache->space_info->bytes_readonly += cache->bytes_super;
|
|
spin_unlock(&cache->space_info->lock);
|
|
|
|
__link_block_group(cache->space_info, cache);
|
|
|
|
ret = btrfs_add_block_group_cache(root->fs_info, cache);
|
|
BUG_ON(ret);
|
|
|
|
ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
|
|
sizeof(cache->item));
|
|
BUG_ON(ret);
|
|
|
|
set_avail_alloc_bits(extent_root->fs_info, type);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, u64 group_start)
|
|
{
|
|
struct btrfs_path *path;
|
|
struct btrfs_block_group_cache *block_group;
|
|
struct btrfs_free_cluster *cluster;
|
|
struct btrfs_root *tree_root = root->fs_info->tree_root;
|
|
struct btrfs_key key;
|
|
struct inode *inode;
|
|
int ret;
|
|
int factor;
|
|
|
|
root = root->fs_info->extent_root;
|
|
|
|
block_group = btrfs_lookup_block_group(root->fs_info, group_start);
|
|
BUG_ON(!block_group);
|
|
BUG_ON(!block_group->ro);
|
|
|
|
/*
|
|
* Free the reserved super bytes from this block group before
|
|
* remove it.
|
|
*/
|
|
free_excluded_extents(root, block_group);
|
|
|
|
memcpy(&key, &block_group->key, sizeof(key));
|
|
if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
|
|
BTRFS_BLOCK_GROUP_RAID1 |
|
|
BTRFS_BLOCK_GROUP_RAID10))
|
|
factor = 2;
|
|
else
|
|
factor = 1;
|
|
|
|
/* make sure this block group isn't part of an allocation cluster */
|
|
cluster = &root->fs_info->data_alloc_cluster;
|
|
spin_lock(&cluster->refill_lock);
|
|
btrfs_return_cluster_to_free_space(block_group, cluster);
|
|
spin_unlock(&cluster->refill_lock);
|
|
|
|
/*
|
|
* make sure this block group isn't part of a metadata
|
|
* allocation cluster
|
|
*/
|
|
cluster = &root->fs_info->meta_alloc_cluster;
|
|
spin_lock(&cluster->refill_lock);
|
|
btrfs_return_cluster_to_free_space(block_group, cluster);
|
|
spin_unlock(&cluster->refill_lock);
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
inode = lookup_free_space_inode(tree_root, block_group, path);
|
|
if (!IS_ERR(inode)) {
|
|
ret = btrfs_orphan_add(trans, inode);
|
|
BUG_ON(ret);
|
|
clear_nlink(inode);
|
|
/* One for the block groups ref */
|
|
spin_lock(&block_group->lock);
|
|
if (block_group->iref) {
|
|
block_group->iref = 0;
|
|
block_group->inode = NULL;
|
|
spin_unlock(&block_group->lock);
|
|
iput(inode);
|
|
} else {
|
|
spin_unlock(&block_group->lock);
|
|
}
|
|
/* One for our lookup ref */
|
|
btrfs_add_delayed_iput(inode);
|
|
}
|
|
|
|
key.objectid = BTRFS_FREE_SPACE_OBJECTID;
|
|
key.offset = block_group->key.objectid;
|
|
key.type = 0;
|
|
|
|
ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
|
|
if (ret < 0)
|
|
goto out;
|
|
if (ret > 0)
|
|
btrfs_release_path(path);
|
|
if (ret == 0) {
|
|
ret = btrfs_del_item(trans, tree_root, path);
|
|
if (ret)
|
|
goto out;
|
|
btrfs_release_path(path);
|
|
}
|
|
|
|
spin_lock(&root->fs_info->block_group_cache_lock);
|
|
rb_erase(&block_group->cache_node,
|
|
&root->fs_info->block_group_cache_tree);
|
|
spin_unlock(&root->fs_info->block_group_cache_lock);
|
|
|
|
down_write(&block_group->space_info->groups_sem);
|
|
/*
|
|
* we must use list_del_init so people can check to see if they
|
|
* are still on the list after taking the semaphore
|
|
*/
|
|
list_del_init(&block_group->list);
|
|
up_write(&block_group->space_info->groups_sem);
|
|
|
|
if (block_group->cached == BTRFS_CACHE_STARTED)
|
|
wait_block_group_cache_done(block_group);
|
|
|
|
btrfs_remove_free_space_cache(block_group);
|
|
|
|
spin_lock(&block_group->space_info->lock);
|
|
block_group->space_info->total_bytes -= block_group->key.offset;
|
|
block_group->space_info->bytes_readonly -= block_group->key.offset;
|
|
block_group->space_info->disk_total -= block_group->key.offset * factor;
|
|
spin_unlock(&block_group->space_info->lock);
|
|
|
|
memcpy(&key, &block_group->key, sizeof(key));
|
|
|
|
btrfs_clear_space_info_full(root->fs_info);
|
|
|
|
btrfs_put_block_group(block_group);
|
|
btrfs_put_block_group(block_group);
|
|
|
|
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
|
|
if (ret > 0)
|
|
ret = -EIO;
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
ret = btrfs_del_item(trans, root, path);
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_space_info *space_info;
|
|
struct btrfs_super_block *disk_super;
|
|
u64 features;
|
|
u64 flags;
|
|
int mixed = 0;
|
|
int ret;
|
|
|
|
disk_super = fs_info->super_copy;
|
|
if (!btrfs_super_root(disk_super))
|
|
return 1;
|
|
|
|
features = btrfs_super_incompat_flags(disk_super);
|
|
if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
|
|
mixed = 1;
|
|
|
|
flags = BTRFS_BLOCK_GROUP_SYSTEM;
|
|
ret = update_space_info(fs_info, flags, 0, 0, &space_info);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (mixed) {
|
|
flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
|
|
ret = update_space_info(fs_info, flags, 0, 0, &space_info);
|
|
} else {
|
|
flags = BTRFS_BLOCK_GROUP_METADATA;
|
|
ret = update_space_info(fs_info, flags, 0, 0, &space_info);
|
|
if (ret)
|
|
goto out;
|
|
|
|
flags = BTRFS_BLOCK_GROUP_DATA;
|
|
ret = update_space_info(fs_info, flags, 0, 0, &space_info);
|
|
}
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
|
|
{
|
|
return unpin_extent_range(root, start, end);
|
|
}
|
|
|
|
int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
|
|
u64 num_bytes, u64 *actual_bytes)
|
|
{
|
|
return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
|
|
}
|
|
|
|
int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_block_group_cache *cache = NULL;
|
|
u64 group_trimmed;
|
|
u64 start;
|
|
u64 end;
|
|
u64 trimmed = 0;
|
|
int ret = 0;
|
|
|
|
cache = btrfs_lookup_block_group(fs_info, range->start);
|
|
|
|
while (cache) {
|
|
if (cache->key.objectid >= (range->start + range->len)) {
|
|
btrfs_put_block_group(cache);
|
|
break;
|
|
}
|
|
|
|
start = max(range->start, cache->key.objectid);
|
|
end = min(range->start + range->len,
|
|
cache->key.objectid + cache->key.offset);
|
|
|
|
if (end - start >= range->minlen) {
|
|
if (!block_group_cache_done(cache)) {
|
|
ret = cache_block_group(cache, NULL, root, 0);
|
|
if (!ret)
|
|
wait_block_group_cache_done(cache);
|
|
}
|
|
ret = btrfs_trim_block_group(cache,
|
|
&group_trimmed,
|
|
start,
|
|
end,
|
|
range->minlen);
|
|
|
|
trimmed += group_trimmed;
|
|
if (ret) {
|
|
btrfs_put_block_group(cache);
|
|
break;
|
|
}
|
|
}
|
|
|
|
cache = next_block_group(fs_info->tree_root, cache);
|
|
}
|
|
|
|
range->len = trimmed;
|
|
return ret;
|
|
}
|