linux-hardened/include/asm-sh/dma-mapping.h
Paul Mundt 0d831770b1 [PATCH] sh: DMA updates
This extends the current SH DMA API somewhat to support a proper virtual
channel abstraction, and also works to represent this through the driver model
by giving each DMAC its own platform device.

There's also a few other minor changes to support a few new CPU subtypes, and
make TEI generation for the SH DMAC configurable.

Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-16 23:15:27 -08:00

180 lines
4.7 KiB
C

#ifndef __ASM_SH_DMA_MAPPING_H
#define __ASM_SH_DMA_MAPPING_H
#include <linux/config.h>
#include <linux/mm.h>
#include <asm/scatterlist.h>
#include <asm/cacheflush.h>
#include <asm/io.h>
extern struct bus_type pci_bus_type;
/* arch/sh/mm/consistent.c */
extern void *consistent_alloc(gfp_t gfp, size_t size, dma_addr_t *handle);
extern void consistent_free(void *vaddr, size_t size);
extern void consistent_sync(void *vaddr, size_t size, int direction);
#define dma_supported(dev, mask) (1)
static inline int dma_set_mask(struct device *dev, u64 mask)
{
if (!dev->dma_mask || !dma_supported(dev, mask))
return -EIO;
*dev->dma_mask = mask;
return 0;
}
static inline void *dma_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t flag)
{
if (sh_mv.mv_consistent_alloc) {
void *ret;
ret = sh_mv.mv_consistent_alloc(dev, size, dma_handle, flag);
if (ret != NULL)
return ret;
}
return consistent_alloc(flag, size, dma_handle);
}
static inline void dma_free_coherent(struct device *dev, size_t size,
void *vaddr, dma_addr_t dma_handle)
{
if (sh_mv.mv_consistent_free) {
int ret;
ret = sh_mv.mv_consistent_free(dev, size, vaddr, dma_handle);
if (ret == 0)
return;
}
consistent_free(vaddr, size);
}
static inline void dma_cache_sync(void *vaddr, size_t size,
enum dma_data_direction dir)
{
consistent_sync(vaddr, size, (int)dir);
}
static inline dma_addr_t dma_map_single(struct device *dev,
void *ptr, size_t size,
enum dma_data_direction dir)
{
#if defined(CONFIG_PCI) && !defined(CONFIG_SH_PCIDMA_NONCOHERENT)
if (dev->bus == &pci_bus_type)
return virt_to_bus(ptr);
#endif
dma_cache_sync(ptr, size, dir);
return virt_to_bus(ptr);
}
#define dma_unmap_single(dev, addr, size, dir) do { } while (0)
static inline int dma_map_sg(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction dir)
{
int i;
for (i = 0; i < nents; i++) {
#if !defined(CONFIG_PCI) || defined(CONFIG_SH_PCIDMA_NONCOHERENT)
dma_cache_sync(page_address(sg[i].page) + sg[i].offset,
sg[i].length, dir);
#endif
sg[i].dma_address = page_to_phys(sg[i].page) + sg[i].offset;
}
return nents;
}
#define dma_unmap_sg(dev, sg, nents, dir) do { } while (0)
static inline dma_addr_t dma_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction dir)
{
return dma_map_single(dev, page_address(page) + offset, size, dir);
}
static inline void dma_unmap_page(struct device *dev, dma_addr_t dma_address,
size_t size, enum dma_data_direction dir)
{
dma_unmap_single(dev, dma_address, size, dir);
}
static inline void dma_sync_single(struct device *dev, dma_addr_t dma_handle,
size_t size, enum dma_data_direction dir)
{
#if defined(CONFIG_PCI) && !defined(CONFIG_SH_PCIDMA_NONCOHERENT)
if (dev->bus == &pci_bus_type)
return;
#endif
dma_cache_sync(bus_to_virt(dma_handle), size, dir);
}
static inline void dma_sync_single_range(struct device *dev,
dma_addr_t dma_handle,
unsigned long offset, size_t size,
enum dma_data_direction dir)
{
#if defined(CONFIG_PCI) && !defined(CONFIG_SH_PCIDMA_NONCOHERENT)
if (dev->bus == &pci_bus_type)
return;
#endif
dma_cache_sync(bus_to_virt(dma_handle) + offset, size, dir);
}
static inline void dma_sync_sg(struct device *dev, struct scatterlist *sg,
int nelems, enum dma_data_direction dir)
{
int i;
for (i = 0; i < nelems; i++) {
#if !defined(CONFIG_PCI) || defined(CONFIG_SH_PCIDMA_NONCOHERENT)
dma_cache_sync(page_address(sg[i].page) + sg[i].offset,
sg[i].length, dir);
#endif
sg[i].dma_address = page_to_phys(sg[i].page) + sg[i].offset;
}
}
static void dma_sync_single_for_cpu(struct device *dev,
dma_addr_t dma_handle, size_t size,
enum dma_data_direction dir)
__attribute__ ((alias("dma_sync_single")));
static void dma_sync_single_for_device(struct device *dev,
dma_addr_t dma_handle, size_t size,
enum dma_data_direction dir)
__attribute__ ((alias("dma_sync_single")));
static void dma_sync_sg_for_cpu(struct device *dev,
struct scatterlist *sg, int nelems,
enum dma_data_direction dir)
__attribute__ ((alias("dma_sync_sg")));
static void dma_sync_sg_for_device(struct device *dev,
struct scatterlist *sg, int nelems,
enum dma_data_direction dir)
__attribute__ ((alias("dma_sync_sg")));
static inline int dma_get_cache_alignment(void)
{
/*
* Each processor family will define its own L1_CACHE_SHIFT,
* L1_CACHE_BYTES wraps to this, so this is always safe.
*/
return L1_CACHE_BYTES;
}
static inline int dma_mapping_error(dma_addr_t dma_addr)
{
return dma_addr == 0;
}
#endif /* __ASM_SH_DMA_MAPPING_H */