linux-hardened/drivers/edac/i5000_edac.c
Aristeu Rozanski 8360e81b5d edac i5000: fix thermal issues
Make the Thermal messages (temperature got past Tmid) be displayed only
once because:

1) it's the BIOS job to configure and handle the memory throttling
2) if the BIOS is broken or is aware about the condition, flooding the
   system logs won't help anything.
3) According to the specification update for Intel 5000 MCHs, all the
   revisions of this MCH have problems on the thermal sensors, making
   not automatic (a.k.a. intelligent thermal throttling) impossible.

Signed-off-by: Aristeu Rozanski <aris@redhat.com>
Signed-off-by: Doug Thompson <dougthompson@xmission.com>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-16 11:21:48 -07:00

1571 lines
41 KiB
C

/*
* Intel 5000(P/V/X) class Memory Controllers kernel module
*
* This file may be distributed under the terms of the
* GNU General Public License.
*
* Written by Douglas Thompson Linux Networx (http://lnxi.com)
* norsk5@xmission.com
*
* This module is based on the following document:
*
* Intel 5000X Chipset Memory Controller Hub (MCH) - Datasheet
* http://developer.intel.com/design/chipsets/datashts/313070.htm
*
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
#include <linux/edac.h>
#include <asm/mmzone.h>
#include "edac_core.h"
/*
* Alter this version for the I5000 module when modifications are made
*/
#define I5000_REVISION " Ver: 2.0.12 " __DATE__
#define EDAC_MOD_STR "i5000_edac"
#define i5000_printk(level, fmt, arg...) \
edac_printk(level, "i5000", fmt, ##arg)
#define i5000_mc_printk(mci, level, fmt, arg...) \
edac_mc_chipset_printk(mci, level, "i5000", fmt, ##arg)
#ifndef PCI_DEVICE_ID_INTEL_FBD_0
#define PCI_DEVICE_ID_INTEL_FBD_0 0x25F5
#endif
#ifndef PCI_DEVICE_ID_INTEL_FBD_1
#define PCI_DEVICE_ID_INTEL_FBD_1 0x25F6
#endif
/* Device 16,
* Function 0: System Address
* Function 1: Memory Branch Map, Control, Errors Register
* Function 2: FSB Error Registers
*
* All 3 functions of Device 16 (0,1,2) share the SAME DID
*/
#define PCI_DEVICE_ID_INTEL_I5000_DEV16 0x25F0
/* OFFSETS for Function 0 */
/* OFFSETS for Function 1 */
#define AMBASE 0x48
#define MAXCH 0x56
#define MAXDIMMPERCH 0x57
#define TOLM 0x6C
#define REDMEMB 0x7C
#define RED_ECC_LOCATOR(x) ((x) & 0x3FFFF)
#define REC_ECC_LOCATOR_EVEN(x) ((x) & 0x001FF)
#define REC_ECC_LOCATOR_ODD(x) ((x) & 0x3FE00)
#define MIR0 0x80
#define MIR1 0x84
#define MIR2 0x88
#define AMIR0 0x8C
#define AMIR1 0x90
#define AMIR2 0x94
#define FERR_FAT_FBD 0x98
#define NERR_FAT_FBD 0x9C
#define EXTRACT_FBDCHAN_INDX(x) (((x)>>28) & 0x3)
#define FERR_FAT_FBDCHAN 0x30000000
#define FERR_FAT_M3ERR 0x00000004
#define FERR_FAT_M2ERR 0x00000002
#define FERR_FAT_M1ERR 0x00000001
#define FERR_FAT_MASK (FERR_FAT_M1ERR | \
FERR_FAT_M2ERR | \
FERR_FAT_M3ERR)
#define FERR_NF_FBD 0xA0
/* Thermal and SPD or BFD errors */
#define FERR_NF_M28ERR 0x01000000
#define FERR_NF_M27ERR 0x00800000
#define FERR_NF_M26ERR 0x00400000
#define FERR_NF_M25ERR 0x00200000
#define FERR_NF_M24ERR 0x00100000
#define FERR_NF_M23ERR 0x00080000
#define FERR_NF_M22ERR 0x00040000
#define FERR_NF_M21ERR 0x00020000
/* Correctable errors */
#define FERR_NF_M20ERR 0x00010000
#define FERR_NF_M19ERR 0x00008000
#define FERR_NF_M18ERR 0x00004000
#define FERR_NF_M17ERR 0x00002000
/* Non-Retry or redundant Retry errors */
#define FERR_NF_M16ERR 0x00001000
#define FERR_NF_M15ERR 0x00000800
#define FERR_NF_M14ERR 0x00000400
#define FERR_NF_M13ERR 0x00000200
/* Uncorrectable errors */
#define FERR_NF_M12ERR 0x00000100
#define FERR_NF_M11ERR 0x00000080
#define FERR_NF_M10ERR 0x00000040
#define FERR_NF_M9ERR 0x00000020
#define FERR_NF_M8ERR 0x00000010
#define FERR_NF_M7ERR 0x00000008
#define FERR_NF_M6ERR 0x00000004
#define FERR_NF_M5ERR 0x00000002
#define FERR_NF_M4ERR 0x00000001
#define FERR_NF_UNCORRECTABLE (FERR_NF_M12ERR | \
FERR_NF_M11ERR | \
FERR_NF_M10ERR | \
FERR_NF_M9ERR | \
FERR_NF_M8ERR | \
FERR_NF_M7ERR | \
FERR_NF_M6ERR | \
FERR_NF_M5ERR | \
FERR_NF_M4ERR)
#define FERR_NF_CORRECTABLE (FERR_NF_M20ERR | \
FERR_NF_M19ERR | \
FERR_NF_M18ERR | \
FERR_NF_M17ERR)
#define FERR_NF_DIMM_SPARE (FERR_NF_M27ERR | \
FERR_NF_M28ERR)
#define FERR_NF_THERMAL (FERR_NF_M26ERR | \
FERR_NF_M25ERR | \
FERR_NF_M24ERR | \
FERR_NF_M23ERR)
#define FERR_NF_SPD_PROTOCOL (FERR_NF_M22ERR)
#define FERR_NF_NORTH_CRC (FERR_NF_M21ERR)
#define FERR_NF_NON_RETRY (FERR_NF_M13ERR | \
FERR_NF_M14ERR | \
FERR_NF_M15ERR)
#define NERR_NF_FBD 0xA4
#define FERR_NF_MASK (FERR_NF_UNCORRECTABLE | \
FERR_NF_CORRECTABLE | \
FERR_NF_DIMM_SPARE | \
FERR_NF_THERMAL | \
FERR_NF_SPD_PROTOCOL | \
FERR_NF_NORTH_CRC | \
FERR_NF_NON_RETRY)
#define EMASK_FBD 0xA8
#define EMASK_FBD_M28ERR 0x08000000
#define EMASK_FBD_M27ERR 0x04000000
#define EMASK_FBD_M26ERR 0x02000000
#define EMASK_FBD_M25ERR 0x01000000
#define EMASK_FBD_M24ERR 0x00800000
#define EMASK_FBD_M23ERR 0x00400000
#define EMASK_FBD_M22ERR 0x00200000
#define EMASK_FBD_M21ERR 0x00100000
#define EMASK_FBD_M20ERR 0x00080000
#define EMASK_FBD_M19ERR 0x00040000
#define EMASK_FBD_M18ERR 0x00020000
#define EMASK_FBD_M17ERR 0x00010000
#define EMASK_FBD_M15ERR 0x00004000
#define EMASK_FBD_M14ERR 0x00002000
#define EMASK_FBD_M13ERR 0x00001000
#define EMASK_FBD_M12ERR 0x00000800
#define EMASK_FBD_M11ERR 0x00000400
#define EMASK_FBD_M10ERR 0x00000200
#define EMASK_FBD_M9ERR 0x00000100
#define EMASK_FBD_M8ERR 0x00000080
#define EMASK_FBD_M7ERR 0x00000040
#define EMASK_FBD_M6ERR 0x00000020
#define EMASK_FBD_M5ERR 0x00000010
#define EMASK_FBD_M4ERR 0x00000008
#define EMASK_FBD_M3ERR 0x00000004
#define EMASK_FBD_M2ERR 0x00000002
#define EMASK_FBD_M1ERR 0x00000001
#define ENABLE_EMASK_FBD_FATAL_ERRORS (EMASK_FBD_M1ERR | \
EMASK_FBD_M2ERR | \
EMASK_FBD_M3ERR)
#define ENABLE_EMASK_FBD_UNCORRECTABLE (EMASK_FBD_M4ERR | \
EMASK_FBD_M5ERR | \
EMASK_FBD_M6ERR | \
EMASK_FBD_M7ERR | \
EMASK_FBD_M8ERR | \
EMASK_FBD_M9ERR | \
EMASK_FBD_M10ERR | \
EMASK_FBD_M11ERR | \
EMASK_FBD_M12ERR)
#define ENABLE_EMASK_FBD_CORRECTABLE (EMASK_FBD_M17ERR | \
EMASK_FBD_M18ERR | \
EMASK_FBD_M19ERR | \
EMASK_FBD_M20ERR)
#define ENABLE_EMASK_FBD_DIMM_SPARE (EMASK_FBD_M27ERR | \
EMASK_FBD_M28ERR)
#define ENABLE_EMASK_FBD_THERMALS (EMASK_FBD_M26ERR | \
EMASK_FBD_M25ERR | \
EMASK_FBD_M24ERR | \
EMASK_FBD_M23ERR)
#define ENABLE_EMASK_FBD_SPD_PROTOCOL (EMASK_FBD_M22ERR)
#define ENABLE_EMASK_FBD_NORTH_CRC (EMASK_FBD_M21ERR)
#define ENABLE_EMASK_FBD_NON_RETRY (EMASK_FBD_M15ERR | \
EMASK_FBD_M14ERR | \
EMASK_FBD_M13ERR)
#define ENABLE_EMASK_ALL (ENABLE_EMASK_FBD_NON_RETRY | \
ENABLE_EMASK_FBD_NORTH_CRC | \
ENABLE_EMASK_FBD_SPD_PROTOCOL | \
ENABLE_EMASK_FBD_THERMALS | \
ENABLE_EMASK_FBD_DIMM_SPARE | \
ENABLE_EMASK_FBD_FATAL_ERRORS | \
ENABLE_EMASK_FBD_CORRECTABLE | \
ENABLE_EMASK_FBD_UNCORRECTABLE)
#define ERR0_FBD 0xAC
#define ERR1_FBD 0xB0
#define ERR2_FBD 0xB4
#define MCERR_FBD 0xB8
#define NRECMEMA 0xBE
#define NREC_BANK(x) (((x)>>12) & 0x7)
#define NREC_RDWR(x) (((x)>>11) & 1)
#define NREC_RANK(x) (((x)>>8) & 0x7)
#define NRECMEMB 0xC0
#define NREC_CAS(x) (((x)>>16) & 0xFFFFFF)
#define NREC_RAS(x) ((x) & 0x7FFF)
#define NRECFGLOG 0xC4
#define NREEECFBDA 0xC8
#define NREEECFBDB 0xCC
#define NREEECFBDC 0xD0
#define NREEECFBDD 0xD4
#define NREEECFBDE 0xD8
#define REDMEMA 0xDC
#define RECMEMA 0xE2
#define REC_BANK(x) (((x)>>12) & 0x7)
#define REC_RDWR(x) (((x)>>11) & 1)
#define REC_RANK(x) (((x)>>8) & 0x7)
#define RECMEMB 0xE4
#define REC_CAS(x) (((x)>>16) & 0xFFFFFF)
#define REC_RAS(x) ((x) & 0x7FFF)
#define RECFGLOG 0xE8
#define RECFBDA 0xEC
#define RECFBDB 0xF0
#define RECFBDC 0xF4
#define RECFBDD 0xF8
#define RECFBDE 0xFC
/* OFFSETS for Function 2 */
/*
* Device 21,
* Function 0: Memory Map Branch 0
*
* Device 22,
* Function 0: Memory Map Branch 1
*/
#define PCI_DEVICE_ID_I5000_BRANCH_0 0x25F5
#define PCI_DEVICE_ID_I5000_BRANCH_1 0x25F6
#define AMB_PRESENT_0 0x64
#define AMB_PRESENT_1 0x66
#define MTR0 0x80
#define MTR1 0x84
#define MTR2 0x88
#define MTR3 0x8C
#define NUM_MTRS 4
#define CHANNELS_PER_BRANCH (2)
/* Defines to extract the vaious fields from the
* MTRx - Memory Technology Registers
*/
#define MTR_DIMMS_PRESENT(mtr) ((mtr) & (0x1 << 8))
#define MTR_DRAM_WIDTH(mtr) ((((mtr) >> 6) & 0x1) ? 8 : 4)
#define MTR_DRAM_BANKS(mtr) ((((mtr) >> 5) & 0x1) ? 8 : 4)
#define MTR_DRAM_BANKS_ADDR_BITS(mtr) ((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
#define MTR_DIMM_RANK(mtr) (((mtr) >> 4) & 0x1)
#define MTR_DIMM_RANK_ADDR_BITS(mtr) (MTR_DIMM_RANK(mtr) ? 2 : 1)
#define MTR_DIMM_ROWS(mtr) (((mtr) >> 2) & 0x3)
#define MTR_DIMM_ROWS_ADDR_BITS(mtr) (MTR_DIMM_ROWS(mtr) + 13)
#define MTR_DIMM_COLS(mtr) ((mtr) & 0x3)
#define MTR_DIMM_COLS_ADDR_BITS(mtr) (MTR_DIMM_COLS(mtr) + 10)
#ifdef CONFIG_EDAC_DEBUG
static char *numrow_toString[] = {
"8,192 - 13 rows",
"16,384 - 14 rows",
"32,768 - 15 rows",
"reserved"
};
static char *numcol_toString[] = {
"1,024 - 10 columns",
"2,048 - 11 columns",
"4,096 - 12 columns",
"reserved"
};
#endif
/* enables the report of miscellaneous messages as CE errors - default off */
static int misc_messages;
/* Enumeration of supported devices */
enum i5000_chips {
I5000P = 0,
I5000V = 1, /* future */
I5000X = 2 /* future */
};
/* Device name and register DID (Device ID) */
struct i5000_dev_info {
const char *ctl_name; /* name for this device */
u16 fsb_mapping_errors; /* DID for the branchmap,control */
};
/* Table of devices attributes supported by this driver */
static const struct i5000_dev_info i5000_devs[] = {
[I5000P] = {
.ctl_name = "I5000",
.fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I5000_DEV16,
},
};
struct i5000_dimm_info {
int megabytes; /* size, 0 means not present */
int dual_rank;
};
#define MAX_CHANNELS 6 /* max possible channels */
#define MAX_CSROWS (8*2) /* max possible csrows per channel */
/* driver private data structure */
struct i5000_pvt {
struct pci_dev *system_address; /* 16.0 */
struct pci_dev *branchmap_werrors; /* 16.1 */
struct pci_dev *fsb_error_regs; /* 16.2 */
struct pci_dev *branch_0; /* 21.0 */
struct pci_dev *branch_1; /* 22.0 */
u16 tolm; /* top of low memory */
u64 ambase; /* AMB BAR */
u16 mir0, mir1, mir2;
u16 b0_mtr[NUM_MTRS]; /* Memory Technlogy Reg */
u16 b0_ambpresent0; /* Branch 0, Channel 0 */
u16 b0_ambpresent1; /* Brnach 0, Channel 1 */
u16 b1_mtr[NUM_MTRS]; /* Memory Technlogy Reg */
u16 b1_ambpresent0; /* Branch 1, Channel 8 */
u16 b1_ambpresent1; /* Branch 1, Channel 1 */
/* DIMM information matrix, allocating architecture maximums */
struct i5000_dimm_info dimm_info[MAX_CSROWS][MAX_CHANNELS];
/* Actual values for this controller */
int maxch; /* Max channels */
int maxdimmperch; /* Max DIMMs per channel */
};
/* I5000 MCH error information retrieved from Hardware */
struct i5000_error_info {
/* These registers are always read from the MC */
u32 ferr_fat_fbd; /* First Errors Fatal */
u32 nerr_fat_fbd; /* Next Errors Fatal */
u32 ferr_nf_fbd; /* First Errors Non-Fatal */
u32 nerr_nf_fbd; /* Next Errors Non-Fatal */
/* These registers are input ONLY if there was a Recoverable Error */
u32 redmemb; /* Recoverable Mem Data Error log B */
u16 recmema; /* Recoverable Mem Error log A */
u32 recmemb; /* Recoverable Mem Error log B */
/* These registers are input ONLY if there was a
* Non-Recoverable Error */
u16 nrecmema; /* Non-Recoverable Mem log A */
u16 nrecmemb; /* Non-Recoverable Mem log B */
};
static struct edac_pci_ctl_info *i5000_pci;
/*
* i5000_get_error_info Retrieve the hardware error information from
* the hardware and cache it in the 'info'
* structure
*/
static void i5000_get_error_info(struct mem_ctl_info *mci,
struct i5000_error_info *info)
{
struct i5000_pvt *pvt;
u32 value;
pvt = mci->pvt_info;
/* read in the 1st FATAL error register */
pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);
/* Mask only the bits that the doc says are valid
*/
value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);
/* If there is an error, then read in the */
/* NEXT FATAL error register and the Memory Error Log Register A */
if (value & FERR_FAT_MASK) {
info->ferr_fat_fbd = value;
/* harvest the various error data we need */
pci_read_config_dword(pvt->branchmap_werrors,
NERR_FAT_FBD, &info->nerr_fat_fbd);
pci_read_config_word(pvt->branchmap_werrors,
NRECMEMA, &info->nrecmema);
pci_read_config_word(pvt->branchmap_werrors,
NRECMEMB, &info->nrecmemb);
/* Clear the error bits, by writing them back */
pci_write_config_dword(pvt->branchmap_werrors,
FERR_FAT_FBD, value);
} else {
info->ferr_fat_fbd = 0;
info->nerr_fat_fbd = 0;
info->nrecmema = 0;
info->nrecmemb = 0;
}
/* read in the 1st NON-FATAL error register */
pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);
/* If there is an error, then read in the 1st NON-FATAL error
* register as well */
if (value & FERR_NF_MASK) {
info->ferr_nf_fbd = value;
/* harvest the various error data we need */
pci_read_config_dword(pvt->branchmap_werrors,
NERR_NF_FBD, &info->nerr_nf_fbd);
pci_read_config_word(pvt->branchmap_werrors,
RECMEMA, &info->recmema);
pci_read_config_dword(pvt->branchmap_werrors,
RECMEMB, &info->recmemb);
pci_read_config_dword(pvt->branchmap_werrors,
REDMEMB, &info->redmemb);
/* Clear the error bits, by writing them back */
pci_write_config_dword(pvt->branchmap_werrors,
FERR_NF_FBD, value);
} else {
info->ferr_nf_fbd = 0;
info->nerr_nf_fbd = 0;
info->recmema = 0;
info->recmemb = 0;
info->redmemb = 0;
}
}
/*
* i5000_process_fatal_error_info(struct mem_ctl_info *mci,
* struct i5000_error_info *info,
* int handle_errors);
*
* handle the Intel FATAL errors, if any
*/
static void i5000_process_fatal_error_info(struct mem_ctl_info *mci,
struct i5000_error_info *info,
int handle_errors)
{
char msg[EDAC_MC_LABEL_LEN + 1 + 160];
char *specific = NULL;
u32 allErrors;
int branch;
int channel;
int bank;
int rank;
int rdwr;
int ras, cas;
/* mask off the Error bits that are possible */
allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
if (!allErrors)
return; /* if no error, return now */
branch = EXTRACT_FBDCHAN_INDX(info->ferr_fat_fbd);
channel = branch;
/* Use the NON-Recoverable macros to extract data */
bank = NREC_BANK(info->nrecmema);
rank = NREC_RANK(info->nrecmema);
rdwr = NREC_RDWR(info->nrecmema);
ras = NREC_RAS(info->nrecmemb);
cas = NREC_CAS(info->nrecmemb);
debugf0("\t\tCSROW= %d Channels= %d,%d (Branch= %d "
"DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
rank, channel, channel + 1, branch >> 1, bank,
rdwr ? "Write" : "Read", ras, cas);
/* Only 1 bit will be on */
switch (allErrors) {
case FERR_FAT_M1ERR:
specific = "Alert on non-redundant retry or fast "
"reset timeout";
break;
case FERR_FAT_M2ERR:
specific = "Northbound CRC error on non-redundant "
"retry";
break;
case FERR_FAT_M3ERR:
{
static int done;
/*
* This error is generated to inform that the intelligent
* throttling is disabled and the temperature passed the
* specified middle point. Since this is something the BIOS
* should take care of, we'll warn only once to avoid
* worthlessly flooding the log.
*/
if (done)
return;
done++;
specific = ">Tmid Thermal event with intelligent "
"throttling disabled";
}
break;
}
/* Form out message */
snprintf(msg, sizeof(msg),
"(Branch=%d DRAM-Bank=%d RDWR=%s RAS=%d CAS=%d "
"FATAL Err=0x%x (%s))",
branch >> 1, bank, rdwr ? "Write" : "Read", ras, cas,
allErrors, specific);
/* Call the helper to output message */
edac_mc_handle_fbd_ue(mci, rank, channel, channel + 1, msg);
}
/*
* i5000_process_fatal_error_info(struct mem_ctl_info *mci,
* struct i5000_error_info *info,
* int handle_errors);
*
* handle the Intel NON-FATAL errors, if any
*/
static void i5000_process_nonfatal_error_info(struct mem_ctl_info *mci,
struct i5000_error_info *info,
int handle_errors)
{
char msg[EDAC_MC_LABEL_LEN + 1 + 170];
char *specific = NULL;
u32 allErrors;
u32 ue_errors;
u32 ce_errors;
u32 misc_errors;
int branch;
int channel;
int bank;
int rank;
int rdwr;
int ras, cas;
/* mask off the Error bits that are possible */
allErrors = (info->ferr_nf_fbd & FERR_NF_MASK);
if (!allErrors)
return; /* if no error, return now */
/* ONLY ONE of the possible error bits will be set, as per the docs */
ue_errors = allErrors & FERR_NF_UNCORRECTABLE;
if (ue_errors) {
debugf0("\tUncorrected bits= 0x%x\n", ue_errors);
branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
channel = branch;
bank = NREC_BANK(info->nrecmema);
rank = NREC_RANK(info->nrecmema);
rdwr = NREC_RDWR(info->nrecmema);
ras = NREC_RAS(info->nrecmemb);
cas = NREC_CAS(info->nrecmemb);
debugf0
("\t\tCSROW= %d Channels= %d,%d (Branch= %d "
"DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
rank, channel, channel + 1, branch >> 1, bank,
rdwr ? "Write" : "Read", ras, cas);
switch (ue_errors) {
case FERR_NF_M12ERR:
specific = "Non-Aliased Uncorrectable Patrol Data ECC";
break;
case FERR_NF_M11ERR:
specific = "Non-Aliased Uncorrectable Spare-Copy "
"Data ECC";
break;
case FERR_NF_M10ERR:
specific = "Non-Aliased Uncorrectable Mirrored Demand "
"Data ECC";
break;
case FERR_NF_M9ERR:
specific = "Non-Aliased Uncorrectable Non-Mirrored "
"Demand Data ECC";
break;
case FERR_NF_M8ERR:
specific = "Aliased Uncorrectable Patrol Data ECC";
break;
case FERR_NF_M7ERR:
specific = "Aliased Uncorrectable Spare-Copy Data ECC";
break;
case FERR_NF_M6ERR:
specific = "Aliased Uncorrectable Mirrored Demand "
"Data ECC";
break;
case FERR_NF_M5ERR:
specific = "Aliased Uncorrectable Non-Mirrored Demand "
"Data ECC";
break;
case FERR_NF_M4ERR:
specific = "Uncorrectable Data ECC on Replay";
break;
}
/* Form out message */
snprintf(msg, sizeof(msg),
"(Branch=%d DRAM-Bank=%d RDWR=%s RAS=%d "
"CAS=%d, UE Err=0x%x (%s))",
branch >> 1, bank, rdwr ? "Write" : "Read", ras, cas,
ue_errors, specific);
/* Call the helper to output message */
edac_mc_handle_fbd_ue(mci, rank, channel, channel + 1, msg);
}
/* Check correctable errors */
ce_errors = allErrors & FERR_NF_CORRECTABLE;
if (ce_errors) {
debugf0("\tCorrected bits= 0x%x\n", ce_errors);
branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
channel = 0;
if (REC_ECC_LOCATOR_ODD(info->redmemb))
channel = 1;
/* Convert channel to be based from zero, instead of
* from branch base of 0 */
channel += branch;
bank = REC_BANK(info->recmema);
rank = REC_RANK(info->recmema);
rdwr = REC_RDWR(info->recmema);
ras = REC_RAS(info->recmemb);
cas = REC_CAS(info->recmemb);
debugf0("\t\tCSROW= %d Channel= %d (Branch %d "
"DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
rank, channel, branch >> 1, bank,
rdwr ? "Write" : "Read", ras, cas);
switch (ce_errors) {
case FERR_NF_M17ERR:
specific = "Correctable Non-Mirrored Demand Data ECC";
break;
case FERR_NF_M18ERR:
specific = "Correctable Mirrored Demand Data ECC";
break;
case FERR_NF_M19ERR:
specific = "Correctable Spare-Copy Data ECC";
break;
case FERR_NF_M20ERR:
specific = "Correctable Patrol Data ECC";
break;
}
/* Form out message */
snprintf(msg, sizeof(msg),
"(Branch=%d DRAM-Bank=%d RDWR=%s RAS=%d "
"CAS=%d, CE Err=0x%x (%s))", branch >> 1, bank,
rdwr ? "Write" : "Read", ras, cas, ce_errors,
specific);
/* Call the helper to output message */
edac_mc_handle_fbd_ce(mci, rank, channel, msg);
}
if (!misc_messages)
return;
misc_errors = allErrors & (FERR_NF_NON_RETRY | FERR_NF_NORTH_CRC |
FERR_NF_SPD_PROTOCOL | FERR_NF_DIMM_SPARE);
if (misc_errors) {
switch (misc_errors) {
case FERR_NF_M13ERR:
specific = "Non-Retry or Redundant Retry FBD Memory "
"Alert or Redundant Fast Reset Timeout";
break;
case FERR_NF_M14ERR:
specific = "Non-Retry or Redundant Retry FBD "
"Configuration Alert";
break;
case FERR_NF_M15ERR:
specific = "Non-Retry or Redundant Retry FBD "
"Northbound CRC error on read data";
break;
case FERR_NF_M21ERR:
specific = "FBD Northbound CRC error on "
"FBD Sync Status";
break;
case FERR_NF_M22ERR:
specific = "SPD protocol error";
break;
case FERR_NF_M27ERR:
specific = "DIMM-spare copy started";
break;
case FERR_NF_M28ERR:
specific = "DIMM-spare copy completed";
break;
}
branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
/* Form out message */
snprintf(msg, sizeof(msg),
"(Branch=%d Err=%#x (%s))", branch >> 1,
misc_errors, specific);
/* Call the helper to output message */
edac_mc_handle_fbd_ce(mci, 0, 0, msg);
}
}
/*
* i5000_process_error_info Process the error info that is
* in the 'info' structure, previously retrieved from hardware
*/
static void i5000_process_error_info(struct mem_ctl_info *mci,
struct i5000_error_info *info,
int handle_errors)
{
/* First handle any fatal errors that occurred */
i5000_process_fatal_error_info(mci, info, handle_errors);
/* now handle any non-fatal errors that occurred */
i5000_process_nonfatal_error_info(mci, info, handle_errors);
}
/*
* i5000_clear_error Retrieve any error from the hardware
* but do NOT process that error.
* Used for 'clearing' out of previous errors
* Called by the Core module.
*/
static void i5000_clear_error(struct mem_ctl_info *mci)
{
struct i5000_error_info info;
i5000_get_error_info(mci, &info);
}
/*
* i5000_check_error Retrieve and process errors reported by the
* hardware. Called by the Core module.
*/
static void i5000_check_error(struct mem_ctl_info *mci)
{
struct i5000_error_info info;
debugf4("MC%d: " __FILE__ ": %s()\n", mci->mc_idx, __func__);
i5000_get_error_info(mci, &info);
i5000_process_error_info(mci, &info, 1);
}
/*
* i5000_get_devices Find and perform 'get' operation on the MCH's
* device/functions we want to reference for this driver
*
* Need to 'get' device 16 func 1 and func 2
*/
static int i5000_get_devices(struct mem_ctl_info *mci, int dev_idx)
{
//const struct i5000_dev_info *i5000_dev = &i5000_devs[dev_idx];
struct i5000_pvt *pvt;
struct pci_dev *pdev;
pvt = mci->pvt_info;
/* Attempt to 'get' the MCH register we want */
pdev = NULL;
while (1) {
pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
/* End of list, leave */
if (pdev == NULL) {
i5000_printk(KERN_ERR,
"'system address,Process Bus' "
"device not found:"
"vendor 0x%x device 0x%x FUNC 1 "
"(broken BIOS?)\n",
PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_INTEL_I5000_DEV16);
return 1;
}
/* Scan for device 16 func 1 */
if (PCI_FUNC(pdev->devfn) == 1)
break;
}
pvt->branchmap_werrors = pdev;
/* Attempt to 'get' the MCH register we want */
pdev = NULL;
while (1) {
pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
if (pdev == NULL) {
i5000_printk(KERN_ERR,
"MC: 'branchmap,control,errors' "
"device not found:"
"vendor 0x%x device 0x%x Func 2 "
"(broken BIOS?)\n",
PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_INTEL_I5000_DEV16);
pci_dev_put(pvt->branchmap_werrors);
return 1;
}
/* Scan for device 16 func 1 */
if (PCI_FUNC(pdev->devfn) == 2)
break;
}
pvt->fsb_error_regs = pdev;
debugf1("System Address, processor bus- PCI Bus ID: %s %x:%x\n",
pci_name(pvt->system_address),
pvt->system_address->vendor, pvt->system_address->device);
debugf1("Branchmap, control and errors - PCI Bus ID: %s %x:%x\n",
pci_name(pvt->branchmap_werrors),
pvt->branchmap_werrors->vendor, pvt->branchmap_werrors->device);
debugf1("FSB Error Regs - PCI Bus ID: %s %x:%x\n",
pci_name(pvt->fsb_error_regs),
pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);
pdev = NULL;
pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_I5000_BRANCH_0, pdev);
if (pdev == NULL) {
i5000_printk(KERN_ERR,
"MC: 'BRANCH 0' device not found:"
"vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_I5000_BRANCH_0);
pci_dev_put(pvt->branchmap_werrors);
pci_dev_put(pvt->fsb_error_regs);
return 1;
}
pvt->branch_0 = pdev;
/* If this device claims to have more than 2 channels then
* fetch Branch 1's information
*/
if (pvt->maxch >= CHANNELS_PER_BRANCH) {
pdev = NULL;
pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_I5000_BRANCH_1, pdev);
if (pdev == NULL) {
i5000_printk(KERN_ERR,
"MC: 'BRANCH 1' device not found:"
"vendor 0x%x device 0x%x Func 0 "
"(broken BIOS?)\n",
PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_I5000_BRANCH_1);
pci_dev_put(pvt->branchmap_werrors);
pci_dev_put(pvt->fsb_error_regs);
pci_dev_put(pvt->branch_0);
return 1;
}
pvt->branch_1 = pdev;
}
return 0;
}
/*
* i5000_put_devices 'put' all the devices that we have
* reserved via 'get'
*/
static void i5000_put_devices(struct mem_ctl_info *mci)
{
struct i5000_pvt *pvt;
pvt = mci->pvt_info;
pci_dev_put(pvt->branchmap_werrors); /* FUNC 1 */
pci_dev_put(pvt->fsb_error_regs); /* FUNC 2 */
pci_dev_put(pvt->branch_0); /* DEV 21 */
/* Only if more than 2 channels do we release the second branch */
if (pvt->maxch >= CHANNELS_PER_BRANCH)
pci_dev_put(pvt->branch_1); /* DEV 22 */
}
/*
* determine_amb_resent
*
* the information is contained in NUM_MTRS different registers
* determineing which of the NUM_MTRS requires knowing
* which channel is in question
*
* 2 branches, each with 2 channels
* b0_ambpresent0 for channel '0'
* b0_ambpresent1 for channel '1'
* b1_ambpresent0 for channel '2'
* b1_ambpresent1 for channel '3'
*/
static int determine_amb_present_reg(struct i5000_pvt *pvt, int channel)
{
int amb_present;
if (channel < CHANNELS_PER_BRANCH) {
if (channel & 0x1)
amb_present = pvt->b0_ambpresent1;
else
amb_present = pvt->b0_ambpresent0;
} else {
if (channel & 0x1)
amb_present = pvt->b1_ambpresent1;
else
amb_present = pvt->b1_ambpresent0;
}
return amb_present;
}
/*
* determine_mtr(pvt, csrow, channel)
*
* return the proper MTR register as determine by the csrow and channel desired
*/
static int determine_mtr(struct i5000_pvt *pvt, int csrow, int channel)
{
int mtr;
if (channel < CHANNELS_PER_BRANCH)
mtr = pvt->b0_mtr[csrow >> 1];
else
mtr = pvt->b1_mtr[csrow >> 1];
return mtr;
}
/*
*/
static void decode_mtr(int slot_row, u16 mtr)
{
int ans;
ans = MTR_DIMMS_PRESENT(mtr);
debugf2("\tMTR%d=0x%x: DIMMs are %s\n", slot_row, mtr,
ans ? "Present" : "NOT Present");
if (!ans)
return;
debugf2("\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
debugf2("\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
debugf2("\t\tNUMRANK: %s\n", MTR_DIMM_RANK(mtr) ? "double" : "single");
debugf2("\t\tNUMROW: %s\n", numrow_toString[MTR_DIMM_ROWS(mtr)]);
debugf2("\t\tNUMCOL: %s\n", numcol_toString[MTR_DIMM_COLS(mtr)]);
}
static void handle_channel(struct i5000_pvt *pvt, int csrow, int channel,
struct i5000_dimm_info *dinfo)
{
int mtr;
int amb_present_reg;
int addrBits;
mtr = determine_mtr(pvt, csrow, channel);
if (MTR_DIMMS_PRESENT(mtr)) {
amb_present_reg = determine_amb_present_reg(pvt, channel);
/* Determine if there is a DIMM present in this DIMM slot */
if (amb_present_reg & (1 << (csrow >> 1))) {
dinfo->dual_rank = MTR_DIMM_RANK(mtr);
if (!((dinfo->dual_rank == 0) &&
((csrow & 0x1) == 0x1))) {
/* Start with the number of bits for a Bank
* on the DRAM */
addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
/* Add thenumber of ROW bits */
addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
/* add the number of COLUMN bits */
addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
addrBits += 6; /* add 64 bits per DIMM */
addrBits -= 20; /* divide by 2^^20 */
addrBits -= 3; /* 8 bits per bytes */
dinfo->megabytes = 1 << addrBits;
}
}
}
}
/*
* calculate_dimm_size
*
* also will output a DIMM matrix map, if debug is enabled, for viewing
* how the DIMMs are populated
*/
static void calculate_dimm_size(struct i5000_pvt *pvt)
{
struct i5000_dimm_info *dinfo;
int csrow, max_csrows;
char *p, *mem_buffer;
int space, n;
int channel;
/* ================= Generate some debug output ================= */
space = PAGE_SIZE;
mem_buffer = p = kmalloc(space, GFP_KERNEL);
if (p == NULL) {
i5000_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
__FILE__, __func__);
return;
}
n = snprintf(p, space, "\n");
p += n;
space -= n;
/* Scan all the actual CSROWS (which is # of DIMMS * 2)
* and calculate the information for each DIMM
* Start with the highest csrow first, to display it first
* and work toward the 0th csrow
*/
max_csrows = pvt->maxdimmperch * 2;
for (csrow = max_csrows - 1; csrow >= 0; csrow--) {
/* on an odd csrow, first output a 'boundary' marker,
* then reset the message buffer */
if (csrow & 0x1) {
n = snprintf(p, space, "---------------------------"
"--------------------------------");
p += n;
space -= n;
debugf2("%s\n", mem_buffer);
p = mem_buffer;
space = PAGE_SIZE;
}
n = snprintf(p, space, "csrow %2d ", csrow);
p += n;
space -= n;
for (channel = 0; channel < pvt->maxch; channel++) {
dinfo = &pvt->dimm_info[csrow][channel];
handle_channel(pvt, csrow, channel, dinfo);
n = snprintf(p, space, "%4d MB | ", dinfo->megabytes);
p += n;
space -= n;
}
n = snprintf(p, space, "\n");
p += n;
space -= n;
}
/* Output the last bottom 'boundary' marker */
n = snprintf(p, space, "---------------------------"
"--------------------------------\n");
p += n;
space -= n;
/* now output the 'channel' labels */
n = snprintf(p, space, " ");
p += n;
space -= n;
for (channel = 0; channel < pvt->maxch; channel++) {
n = snprintf(p, space, "channel %d | ", channel);
p += n;
space -= n;
}
n = snprintf(p, space, "\n");
p += n;
space -= n;
/* output the last message and free buffer */
debugf2("%s\n", mem_buffer);
kfree(mem_buffer);
}
/*
* i5000_get_mc_regs read in the necessary registers and
* cache locally
*
* Fills in the private data members
*/
static void i5000_get_mc_regs(struct mem_ctl_info *mci)
{
struct i5000_pvt *pvt;
u32 actual_tolm;
u16 limit;
int slot_row;
int maxch;
int maxdimmperch;
int way0, way1;
pvt = mci->pvt_info;
pci_read_config_dword(pvt->system_address, AMBASE,
(u32 *) & pvt->ambase);
pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
((u32 *) & pvt->ambase) + sizeof(u32));
maxdimmperch = pvt->maxdimmperch;
maxch = pvt->maxch;
debugf2("AMBASE= 0x%lx MAXCH= %d MAX-DIMM-Per-CH= %d\n",
(long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);
/* Get the Branch Map regs */
pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
pvt->tolm >>= 12;
debugf2("\nTOLM (number of 256M regions) =%u (0x%x)\n", pvt->tolm,
pvt->tolm);
actual_tolm = pvt->tolm << 28;
debugf2("Actual TOLM byte addr=%u (0x%x)\n", actual_tolm, actual_tolm);
pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);
pci_read_config_word(pvt->branchmap_werrors, MIR2, &pvt->mir2);
/* Get the MIR[0-2] regs */
limit = (pvt->mir0 >> 4) & 0x0FFF;
way0 = pvt->mir0 & 0x1;
way1 = pvt->mir0 & 0x2;
debugf2("MIR0: limit= 0x%x WAY1= %u WAY0= %x\n", limit, way1, way0);
limit = (pvt->mir1 >> 4) & 0x0FFF;
way0 = pvt->mir1 & 0x1;
way1 = pvt->mir1 & 0x2;
debugf2("MIR1: limit= 0x%x WAY1= %u WAY0= %x\n", limit, way1, way0);
limit = (pvt->mir2 >> 4) & 0x0FFF;
way0 = pvt->mir2 & 0x1;
way1 = pvt->mir2 & 0x2;
debugf2("MIR2: limit= 0x%x WAY1= %u WAY0= %x\n", limit, way1, way0);
/* Get the MTR[0-3] regs */
for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
int where = MTR0 + (slot_row * sizeof(u32));
pci_read_config_word(pvt->branch_0, where,
&pvt->b0_mtr[slot_row]);
debugf2("MTR%d where=0x%x B0 value=0x%x\n", slot_row, where,
pvt->b0_mtr[slot_row]);
if (pvt->maxch >= CHANNELS_PER_BRANCH) {
pci_read_config_word(pvt->branch_1, where,
&pvt->b1_mtr[slot_row]);
debugf2("MTR%d where=0x%x B1 value=0x%x\n", slot_row,
where, pvt->b0_mtr[slot_row]);
} else {
pvt->b1_mtr[slot_row] = 0;
}
}
/* Read and dump branch 0's MTRs */
debugf2("\nMemory Technology Registers:\n");
debugf2(" Branch 0:\n");
for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
decode_mtr(slot_row, pvt->b0_mtr[slot_row]);
}
pci_read_config_word(pvt->branch_0, AMB_PRESENT_0,
&pvt->b0_ambpresent0);
debugf2("\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
pci_read_config_word(pvt->branch_0, AMB_PRESENT_1,
&pvt->b0_ambpresent1);
debugf2("\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);
/* Only if we have 2 branchs (4 channels) */
if (pvt->maxch < CHANNELS_PER_BRANCH) {
pvt->b1_ambpresent0 = 0;
pvt->b1_ambpresent1 = 0;
} else {
/* Read and dump branch 1's MTRs */
debugf2(" Branch 1:\n");
for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
decode_mtr(slot_row, pvt->b1_mtr[slot_row]);
}
pci_read_config_word(pvt->branch_1, AMB_PRESENT_0,
&pvt->b1_ambpresent0);
debugf2("\t\tAMB-Branch 1-present0 0x%x:\n",
pvt->b1_ambpresent0);
pci_read_config_word(pvt->branch_1, AMB_PRESENT_1,
&pvt->b1_ambpresent1);
debugf2("\t\tAMB-Branch 1-present1 0x%x:\n",
pvt->b1_ambpresent1);
}
/* Go and determine the size of each DIMM and place in an
* orderly matrix */
calculate_dimm_size(pvt);
}
/*
* i5000_init_csrows Initialize the 'csrows' table within
* the mci control structure with the
* addressing of memory.
*
* return:
* 0 success
* 1 no actual memory found on this MC
*/
static int i5000_init_csrows(struct mem_ctl_info *mci)
{
struct i5000_pvt *pvt;
struct csrow_info *p_csrow;
int empty, channel_count;
int max_csrows;
int mtr;
int csrow_megs;
int channel;
int csrow;
pvt = mci->pvt_info;
channel_count = pvt->maxch;
max_csrows = pvt->maxdimmperch * 2;
empty = 1; /* Assume NO memory */
for (csrow = 0; csrow < max_csrows; csrow++) {
p_csrow = &mci->csrows[csrow];
p_csrow->csrow_idx = csrow;
/* use branch 0 for the basis */
mtr = pvt->b0_mtr[csrow >> 1];
/* if no DIMMS on this row, continue */
if (!MTR_DIMMS_PRESENT(mtr))
continue;
/* FAKE OUT VALUES, FIXME */
p_csrow->first_page = 0 + csrow * 20;
p_csrow->last_page = 9 + csrow * 20;
p_csrow->page_mask = 0xFFF;
p_csrow->grain = 8;
csrow_megs = 0;
for (channel = 0; channel < pvt->maxch; channel++) {
csrow_megs += pvt->dimm_info[csrow][channel].megabytes;
}
p_csrow->nr_pages = csrow_megs << 8;
/* Assume DDR2 for now */
p_csrow->mtype = MEM_FB_DDR2;
/* ask what device type on this row */
if (MTR_DRAM_WIDTH(mtr))
p_csrow->dtype = DEV_X8;
else
p_csrow->dtype = DEV_X4;
p_csrow->edac_mode = EDAC_S8ECD8ED;
empty = 0;
}
return empty;
}
/*
* i5000_enable_error_reporting
* Turn on the memory reporting features of the hardware
*/
static void i5000_enable_error_reporting(struct mem_ctl_info *mci)
{
struct i5000_pvt *pvt;
u32 fbd_error_mask;
pvt = mci->pvt_info;
/* Read the FBD Error Mask Register */
pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
&fbd_error_mask);
/* Enable with a '0' */
fbd_error_mask &= ~(ENABLE_EMASK_ALL);
pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
fbd_error_mask);
}
/*
* i5000_get_dimm_and_channel_counts(pdev, &num_csrows, &num_channels)
*
* ask the device how many channels are present and how many CSROWS
* as well
*/
static void i5000_get_dimm_and_channel_counts(struct pci_dev *pdev,
int *num_dimms_per_channel,
int *num_channels)
{
u8 value;
/* Need to retrieve just how many channels and dimms per channel are
* supported on this memory controller
*/
pci_read_config_byte(pdev, MAXDIMMPERCH, &value);
*num_dimms_per_channel = (int)value *2;
pci_read_config_byte(pdev, MAXCH, &value);
*num_channels = (int)value;
}
/*
* i5000_probe1 Probe for ONE instance of device to see if it is
* present.
* return:
* 0 for FOUND a device
* < 0 for error code
*/
static int i5000_probe1(struct pci_dev *pdev, int dev_idx)
{
struct mem_ctl_info *mci;
struct i5000_pvt *pvt;
int num_channels;
int num_dimms_per_channel;
int num_csrows;
debugf0("MC: " __FILE__ ": %s(), pdev bus %u dev=0x%x fn=0x%x\n",
__func__,
pdev->bus->number,
PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
/* We only are looking for func 0 of the set */
if (PCI_FUNC(pdev->devfn) != 0)
return -ENODEV;
/* Ask the devices for the number of CSROWS and CHANNELS so
* that we can calculate the memory resources, etc
*
* The Chipset will report what it can handle which will be greater
* or equal to what the motherboard manufacturer will implement.
*
* As we don't have a motherboard identification routine to determine
* actual number of slots/dimms per channel, we thus utilize the
* resource as specified by the chipset. Thus, we might have
* have more DIMMs per channel than actually on the mobo, but this
* allows the driver to support upto the chipset max, without
* some fancy mobo determination.
*/
i5000_get_dimm_and_channel_counts(pdev, &num_dimms_per_channel,
&num_channels);
num_csrows = num_dimms_per_channel * 2;
debugf0("MC: %s(): Number of - Channels= %d DIMMS= %d CSROWS= %d\n",
__func__, num_channels, num_dimms_per_channel, num_csrows);
/* allocate a new MC control structure */
mci = edac_mc_alloc(sizeof(*pvt), num_csrows, num_channels, 0);
if (mci == NULL)
return -ENOMEM;
debugf0("MC: " __FILE__ ": %s(): mci = %p\n", __func__, mci);
mci->dev = &pdev->dev; /* record ptr to the generic device */
pvt = mci->pvt_info;
pvt->system_address = pdev; /* Record this device in our private */
pvt->maxch = num_channels;
pvt->maxdimmperch = num_dimms_per_channel;
/* 'get' the pci devices we want to reserve for our use */
if (i5000_get_devices(mci, dev_idx))
goto fail0;
/* Time to get serious */
i5000_get_mc_regs(mci); /* retrieve the hardware registers */
mci->mc_idx = 0;
mci->mtype_cap = MEM_FLAG_FB_DDR2;
mci->edac_ctl_cap = EDAC_FLAG_NONE;
mci->edac_cap = EDAC_FLAG_NONE;
mci->mod_name = "i5000_edac.c";
mci->mod_ver = I5000_REVISION;
mci->ctl_name = i5000_devs[dev_idx].ctl_name;
mci->dev_name = pci_name(pdev);
mci->ctl_page_to_phys = NULL;
/* Set the function pointer to an actual operation function */
mci->edac_check = i5000_check_error;
/* initialize the MC control structure 'csrows' table
* with the mapping and control information */
if (i5000_init_csrows(mci)) {
debugf0("MC: Setting mci->edac_cap to EDAC_FLAG_NONE\n"
" because i5000_init_csrows() returned nonzero "
"value\n");
mci->edac_cap = EDAC_FLAG_NONE; /* no csrows found */
} else {
debugf1("MC: Enable error reporting now\n");
i5000_enable_error_reporting(mci);
}
/* add this new MC control structure to EDAC's list of MCs */
if (edac_mc_add_mc(mci)) {
debugf0("MC: " __FILE__
": %s(): failed edac_mc_add_mc()\n", __func__);
/* FIXME: perhaps some code should go here that disables error
* reporting if we just enabled it
*/
goto fail1;
}
i5000_clear_error(mci);
/* allocating generic PCI control info */
i5000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
if (!i5000_pci) {
printk(KERN_WARNING
"%s(): Unable to create PCI control\n",
__func__);
printk(KERN_WARNING
"%s(): PCI error report via EDAC not setup\n",
__func__);
}
return 0;
/* Error exit unwinding stack */
fail1:
i5000_put_devices(mci);
fail0:
edac_mc_free(mci);
return -ENODEV;
}
/*
* i5000_init_one constructor for one instance of device
*
* returns:
* negative on error
* count (>= 0)
*/
static int __devinit i5000_init_one(struct pci_dev *pdev,
const struct pci_device_id *id)
{
int rc;
debugf0("MC: " __FILE__ ": %s()\n", __func__);
/* wake up device */
rc = pci_enable_device(pdev);
if (rc == -EIO)
return rc;
/* now probe and enable the device */
return i5000_probe1(pdev, id->driver_data);
}
/*
* i5000_remove_one destructor for one instance of device
*
*/
static void __devexit i5000_remove_one(struct pci_dev *pdev)
{
struct mem_ctl_info *mci;
debugf0(__FILE__ ": %s()\n", __func__);
if (i5000_pci)
edac_pci_release_generic_ctl(i5000_pci);
if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL)
return;
/* retrieve references to resources, and free those resources */
i5000_put_devices(mci);
edac_mc_free(mci);
}
/*
* pci_device_id table for which devices we are looking for
*
* The "E500P" device is the first device supported.
*/
static const struct pci_device_id i5000_pci_tbl[] __devinitdata = {
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I5000_DEV16),
.driver_data = I5000P},
{0,} /* 0 terminated list. */
};
MODULE_DEVICE_TABLE(pci, i5000_pci_tbl);
/*
* i5000_driver pci_driver structure for this module
*
*/
static struct pci_driver i5000_driver = {
.name = KBUILD_BASENAME,
.probe = i5000_init_one,
.remove = __devexit_p(i5000_remove_one),
.id_table = i5000_pci_tbl,
};
/*
* i5000_init Module entry function
* Try to initialize this module for its devices
*/
static int __init i5000_init(void)
{
int pci_rc;
debugf2("MC: " __FILE__ ": %s()\n", __func__);
/* Ensure that the OPSTATE is set correctly for POLL or NMI */
opstate_init();
pci_rc = pci_register_driver(&i5000_driver);
return (pci_rc < 0) ? pci_rc : 0;
}
/*
* i5000_exit() Module exit function
* Unregister the driver
*/
static void __exit i5000_exit(void)
{
debugf2("MC: " __FILE__ ": %s()\n", __func__);
pci_unregister_driver(&i5000_driver);
}
module_init(i5000_init);
module_exit(i5000_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR
("Linux Networx (http://lnxi.com) Doug Thompson <norsk5@xmission.com>");
MODULE_DESCRIPTION("MC Driver for Intel I5000 memory controllers - "
I5000_REVISION);
module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
module_param(misc_messages, int, 0444);
MODULE_PARM_DESC(misc_messages, "Log miscellaneous non fatal messages");