linux-hardened/drivers/ata/pata_cmd640.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

278 lines
6.5 KiB
C

/*
* pata_cmd640.c - CMD640 PCI PATA for new ATA layer
* (C) 2007 Red Hat Inc
*
* Based upon
* linux/drivers/ide/pci/cmd640.c Version 1.02 Sep 01, 1996
*
* Copyright (C) 1995-1996 Linus Torvalds & authors (see driver)
*
* This drives only the PCI version of the controller. If you have a
* VLB one then we have enough docs to support it but you can write
* your own code.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/gfp.h>
#include <scsi/scsi_host.h>
#include <linux/libata.h>
#define DRV_NAME "pata_cmd640"
#define DRV_VERSION "0.0.5"
struct cmd640_reg {
int last;
u8 reg58[ATA_MAX_DEVICES];
};
enum {
CFR = 0x50,
CNTRL = 0x51,
CMDTIM = 0x52,
ARTIM0 = 0x53,
DRWTIM0 = 0x54,
ARTIM23 = 0x57,
DRWTIM23 = 0x58,
BRST = 0x59
};
/**
* cmd640_set_piomode - set initial PIO mode data
* @ap: ATA port
* @adev: ATA device
*
* Called to do the PIO mode setup.
*/
static void cmd640_set_piomode(struct ata_port *ap, struct ata_device *adev)
{
struct cmd640_reg *timing = ap->private_data;
struct pci_dev *pdev = to_pci_dev(ap->host->dev);
struct ata_timing t;
const unsigned long T = 1000000 / 33;
const u8 setup_data[] = { 0x40, 0x40, 0x40, 0x80, 0x00 };
u8 reg;
int arttim = ARTIM0 + 2 * adev->devno;
struct ata_device *pair = ata_dev_pair(adev);
if (ata_timing_compute(adev, adev->pio_mode, &t, T, 0) < 0) {
printk(KERN_ERR DRV_NAME ": mode computation failed.\n");
return;
}
/* The second channel has shared timings and the setup timing is
messy to switch to merge it for worst case */
if (ap->port_no && pair) {
struct ata_timing p;
ata_timing_compute(pair, pair->pio_mode, &p, T, 1);
ata_timing_merge(&p, &t, &t, ATA_TIMING_SETUP);
}
/* Make the timings fit */
if (t.recover > 16) {
t.active += t.recover - 16;
t.recover = 16;
}
if (t.active > 16)
t.active = 16;
/* Now convert the clocks into values we can actually stuff into
the chip */
if (t.recover > 1)
t.recover--; /* 640B only */
else
t.recover = 15;
if (t.setup > 4)
t.setup = 0xC0;
else
t.setup = setup_data[t.setup];
if (ap->port_no == 0) {
t.active &= 0x0F; /* 0 = 16 */
/* Load setup timing */
pci_read_config_byte(pdev, arttim, &reg);
reg &= 0x3F;
reg |= t.setup;
pci_write_config_byte(pdev, arttim, reg);
/* Load active/recovery */
pci_write_config_byte(pdev, arttim + 1, (t.active << 4) | t.recover);
} else {
/* Save the shared timings for channel, they will be loaded
by qc_issue. Reloading the setup time is expensive so we
keep a merged one loaded */
pci_read_config_byte(pdev, ARTIM23, &reg);
reg &= 0x3F;
reg |= t.setup;
pci_write_config_byte(pdev, ARTIM23, reg);
timing->reg58[adev->devno] = (t.active << 4) | t.recover;
}
}
/**
* cmd640_qc_issue - command preparation hook
* @qc: Command to be issued
*
* Channel 1 has shared timings. We must reprogram the
* clock each drive 2/3 switch we do.
*/
static unsigned int cmd640_qc_issue(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct ata_device *adev = qc->dev;
struct pci_dev *pdev = to_pci_dev(ap->host->dev);
struct cmd640_reg *timing = ap->private_data;
if (ap->port_no != 0 && adev->devno != timing->last) {
pci_write_config_byte(pdev, DRWTIM23, timing->reg58[adev->devno]);
timing->last = adev->devno;
}
return ata_sff_qc_issue(qc);
}
/**
* cmd640_port_start - port setup
* @ap: ATA port being set up
*
* The CMD640 needs to maintain private data structures so we
* allocate space here.
*/
static int cmd640_port_start(struct ata_port *ap)
{
struct pci_dev *pdev = to_pci_dev(ap->host->dev);
struct cmd640_reg *timing;
int ret = ata_sff_port_start(ap);
if (ret < 0)
return ret;
timing = devm_kzalloc(&pdev->dev, sizeof(struct cmd640_reg), GFP_KERNEL);
if (timing == NULL)
return -ENOMEM;
timing->last = -1; /* Force a load */
ap->private_data = timing;
return ret;
}
static struct scsi_host_template cmd640_sht = {
ATA_BMDMA_SHT(DRV_NAME),
};
static struct ata_port_operations cmd640_port_ops = {
.inherits = &ata_bmdma_port_ops,
/* In theory xfer_noirq is not needed once we kill the prefetcher */
.sff_data_xfer = ata_sff_data_xfer_noirq,
.qc_issue = cmd640_qc_issue,
.cable_detect = ata_cable_40wire,
.set_piomode = cmd640_set_piomode,
.port_start = cmd640_port_start,
};
static void cmd640_hardware_init(struct pci_dev *pdev)
{
u8 r;
u8 ctrl;
/* CMD640 detected, commiserations */
pci_write_config_byte(pdev, 0x5B, 0x00);
/* Get version info */
pci_read_config_byte(pdev, CFR, &r);
/* PIO0 command cycles */
pci_write_config_byte(pdev, CMDTIM, 0);
/* 512 byte bursts (sector) */
pci_write_config_byte(pdev, BRST, 0x40);
/*
* A reporter a long time ago
* Had problems with the data fifo
* So don't run the risk
* Of putting crap on the disk
* For its better just to go slow
*/
/* Do channel 0 */
pci_read_config_byte(pdev, CNTRL, &ctrl);
pci_write_config_byte(pdev, CNTRL, ctrl | 0xC0);
/* Ditto for channel 1 */
pci_read_config_byte(pdev, ARTIM23, &ctrl);
ctrl |= 0x0C;
pci_write_config_byte(pdev, ARTIM23, ctrl);
}
static int cmd640_init_one(struct pci_dev *pdev, const struct pci_device_id *id)
{
static const struct ata_port_info info = {
.flags = ATA_FLAG_SLAVE_POSS,
.pio_mask = ATA_PIO4,
.port_ops = &cmd640_port_ops
};
const struct ata_port_info *ppi[] = { &info, NULL };
int rc;
rc = pcim_enable_device(pdev);
if (rc)
return rc;
cmd640_hardware_init(pdev);
return ata_pci_sff_init_one(pdev, ppi, &cmd640_sht, NULL, 0);
}
#ifdef CONFIG_PM
static int cmd640_reinit_one(struct pci_dev *pdev)
{
struct ata_host *host = dev_get_drvdata(&pdev->dev);
int rc;
rc = ata_pci_device_do_resume(pdev);
if (rc)
return rc;
cmd640_hardware_init(pdev);
ata_host_resume(host);
return 0;
}
#endif
static const struct pci_device_id cmd640[] = {
{ PCI_VDEVICE(CMD, 0x640), 0 },
{ },
};
static struct pci_driver cmd640_pci_driver = {
.name = DRV_NAME,
.id_table = cmd640,
.probe = cmd640_init_one,
.remove = ata_pci_remove_one,
#ifdef CONFIG_PM
.suspend = ata_pci_device_suspend,
.resume = cmd640_reinit_one,
#endif
};
static int __init cmd640_init(void)
{
return pci_register_driver(&cmd640_pci_driver);
}
static void __exit cmd640_exit(void)
{
pci_unregister_driver(&cmd640_pci_driver);
}
MODULE_AUTHOR("Alan Cox");
MODULE_DESCRIPTION("low-level driver for CMD640 PATA controllers");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, cmd640);
MODULE_VERSION(DRV_VERSION);
module_init(cmd640_init);
module_exit(cmd640_exit);