linux-hardened/drivers/usb/host/xhci-mem.c
Sarah Sharp f88ba78d9a USB: xhci: Respect critical sections.
Narrow down time spent holding the xHCI spinlock so that it's only used to
protect the xHCI rings, not as mutual exclusion.  Stop allocating memory
while holding the spinlock and calling xhci_alloc_virt_device() and
xhci_endpoint_init().

The USB core should have locking in it to prevent device state to be
manipulated by more than one kernel thread.  E.g. you can't free a device
while you're in the middle of setting a new configuration.  So removing
the locks from the sections where xhci_alloc_dev() and
xhci_reset_bandwidth() touch xHCI's representation of the device should be
OK.

Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2009-06-15 21:44:51 -07:00

769 lines
23 KiB
C

/*
* xHCI host controller driver
*
* Copyright (C) 2008 Intel Corp.
*
* Author: Sarah Sharp
* Some code borrowed from the Linux EHCI driver.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/usb.h>
#include <linux/pci.h>
#include <linux/dmapool.h>
#include "xhci.h"
/*
* Allocates a generic ring segment from the ring pool, sets the dma address,
* initializes the segment to zero, and sets the private next pointer to NULL.
*
* Section 4.11.1.1:
* "All components of all Command and Transfer TRBs shall be initialized to '0'"
*/
static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
{
struct xhci_segment *seg;
dma_addr_t dma;
seg = kzalloc(sizeof *seg, flags);
if (!seg)
return 0;
xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
if (!seg->trbs) {
kfree(seg);
return 0;
}
xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
seg->trbs, (unsigned long long)dma);
memset(seg->trbs, 0, SEGMENT_SIZE);
seg->dma = dma;
seg->next = NULL;
return seg;
}
static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
{
if (!seg)
return;
if (seg->trbs) {
xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
seg->trbs, (unsigned long long)seg->dma);
dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
seg->trbs = NULL;
}
xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
kfree(seg);
}
/*
* Make the prev segment point to the next segment.
*
* Change the last TRB in the prev segment to be a Link TRB which points to the
* DMA address of the next segment. The caller needs to set any Link TRB
* related flags, such as End TRB, Toggle Cycle, and no snoop.
*/
static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
struct xhci_segment *next, bool link_trbs)
{
u32 val;
if (!prev || !next)
return;
prev->next = next;
if (link_trbs) {
prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr[0] = next->dma;
/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
val = prev->trbs[TRBS_PER_SEGMENT-1].link.control;
val &= ~TRB_TYPE_BITMASK;
val |= TRB_TYPE(TRB_LINK);
prev->trbs[TRBS_PER_SEGMENT-1].link.control = val;
}
xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
(unsigned long long)prev->dma,
(unsigned long long)next->dma);
}
/* XXX: Do we need the hcd structure in all these functions? */
void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
{
struct xhci_segment *seg;
struct xhci_segment *first_seg;
if (!ring || !ring->first_seg)
return;
first_seg = ring->first_seg;
seg = first_seg->next;
xhci_dbg(xhci, "Freeing ring at %p\n", ring);
while (seg != first_seg) {
struct xhci_segment *next = seg->next;
xhci_segment_free(xhci, seg);
seg = next;
}
xhci_segment_free(xhci, first_seg);
ring->first_seg = NULL;
kfree(ring);
}
/**
* Create a new ring with zero or more segments.
*
* Link each segment together into a ring.
* Set the end flag and the cycle toggle bit on the last segment.
* See section 4.9.1 and figures 15 and 16.
*/
static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
unsigned int num_segs, bool link_trbs, gfp_t flags)
{
struct xhci_ring *ring;
struct xhci_segment *prev;
ring = kzalloc(sizeof *(ring), flags);
xhci_dbg(xhci, "Allocating ring at %p\n", ring);
if (!ring)
return 0;
INIT_LIST_HEAD(&ring->td_list);
INIT_LIST_HEAD(&ring->cancelled_td_list);
if (num_segs == 0)
return ring;
ring->first_seg = xhci_segment_alloc(xhci, flags);
if (!ring->first_seg)
goto fail;
num_segs--;
prev = ring->first_seg;
while (num_segs > 0) {
struct xhci_segment *next;
next = xhci_segment_alloc(xhci, flags);
if (!next)
goto fail;
xhci_link_segments(xhci, prev, next, link_trbs);
prev = next;
num_segs--;
}
xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
if (link_trbs) {
/* See section 4.9.2.1 and 6.4.4.1 */
prev->trbs[TRBS_PER_SEGMENT-1].link.control |= (LINK_TOGGLE);
xhci_dbg(xhci, "Wrote link toggle flag to"
" segment %p (virtual), 0x%llx (DMA)\n",
prev, (unsigned long long)prev->dma);
}
/* The ring is empty, so the enqueue pointer == dequeue pointer */
ring->enqueue = ring->first_seg->trbs;
ring->enq_seg = ring->first_seg;
ring->dequeue = ring->enqueue;
ring->deq_seg = ring->first_seg;
/* The ring is initialized to 0. The producer must write 1 to the cycle
* bit to handover ownership of the TRB, so PCS = 1. The consumer must
* compare CCS to the cycle bit to check ownership, so CCS = 1.
*/
ring->cycle_state = 1;
return ring;
fail:
xhci_ring_free(xhci, ring);
return 0;
}
/* All the xhci_tds in the ring's TD list should be freed at this point */
void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
{
struct xhci_virt_device *dev;
int i;
/* Slot ID 0 is reserved */
if (slot_id == 0 || !xhci->devs[slot_id])
return;
dev = xhci->devs[slot_id];
xhci->dcbaa->dev_context_ptrs[2*slot_id] = 0;
xhci->dcbaa->dev_context_ptrs[2*slot_id + 1] = 0;
if (!dev)
return;
for (i = 0; i < 31; ++i)
if (dev->ep_rings[i])
xhci_ring_free(xhci, dev->ep_rings[i]);
if (dev->in_ctx)
dma_pool_free(xhci->device_pool,
dev->in_ctx, dev->in_ctx_dma);
if (dev->out_ctx)
dma_pool_free(xhci->device_pool,
dev->out_ctx, dev->out_ctx_dma);
kfree(xhci->devs[slot_id]);
xhci->devs[slot_id] = 0;
}
int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
struct usb_device *udev, gfp_t flags)
{
dma_addr_t dma;
struct xhci_virt_device *dev;
/* Slot ID 0 is reserved */
if (slot_id == 0 || xhci->devs[slot_id]) {
xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
return 0;
}
xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
if (!xhci->devs[slot_id])
return 0;
dev = xhci->devs[slot_id];
/* Allocate the (output) device context that will be used in the HC */
dev->out_ctx = dma_pool_alloc(xhci->device_pool, flags, &dma);
if (!dev->out_ctx)
goto fail;
dev->out_ctx_dma = dma;
xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
(unsigned long long)dma);
memset(dev->out_ctx, 0, sizeof(*dev->out_ctx));
/* Allocate the (input) device context for address device command */
dev->in_ctx = dma_pool_alloc(xhci->device_pool, flags, &dma);
if (!dev->in_ctx)
goto fail;
dev->in_ctx_dma = dma;
xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
(unsigned long long)dma);
memset(dev->in_ctx, 0, sizeof(*dev->in_ctx));
/* Allocate endpoint 0 ring */
dev->ep_rings[0] = xhci_ring_alloc(xhci, 1, true, flags);
if (!dev->ep_rings[0])
goto fail;
init_completion(&dev->cmd_completion);
/*
* Point to output device context in dcbaa; skip the output control
* context, which is eight 32 bit fields (or 32 bytes long)
*/
xhci->dcbaa->dev_context_ptrs[2*slot_id] =
(u32) dev->out_ctx_dma + (32);
xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
slot_id,
&xhci->dcbaa->dev_context_ptrs[2*slot_id],
(unsigned long long)dev->out_ctx_dma);
xhci->dcbaa->dev_context_ptrs[2*slot_id + 1] = 0;
return 1;
fail:
xhci_free_virt_device(xhci, slot_id);
return 0;
}
/* Setup an xHCI virtual device for a Set Address command */
int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
{
struct xhci_virt_device *dev;
struct xhci_ep_ctx *ep0_ctx;
struct usb_device *top_dev;
dev = xhci->devs[udev->slot_id];
/* Slot ID 0 is reserved */
if (udev->slot_id == 0 || !dev) {
xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
udev->slot_id);
return -EINVAL;
}
ep0_ctx = &dev->in_ctx->ep[0];
/* 2) New slot context and endpoint 0 context are valid*/
dev->in_ctx->add_flags = SLOT_FLAG | EP0_FLAG;
/* 3) Only the control endpoint is valid - one endpoint context */
dev->in_ctx->slot.dev_info |= LAST_CTX(1);
switch (udev->speed) {
case USB_SPEED_SUPER:
dev->in_ctx->slot.dev_info |= (u32) udev->route;
dev->in_ctx->slot.dev_info |= (u32) SLOT_SPEED_SS;
break;
case USB_SPEED_HIGH:
dev->in_ctx->slot.dev_info |= (u32) SLOT_SPEED_HS;
break;
case USB_SPEED_FULL:
dev->in_ctx->slot.dev_info |= (u32) SLOT_SPEED_FS;
break;
case USB_SPEED_LOW:
dev->in_ctx->slot.dev_info |= (u32) SLOT_SPEED_LS;
break;
case USB_SPEED_VARIABLE:
xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
return -EINVAL;
break;
default:
/* Speed was set earlier, this shouldn't happen. */
BUG();
}
/* Find the root hub port this device is under */
for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
top_dev = top_dev->parent)
/* Found device below root hub */;
dev->in_ctx->slot.dev_info2 |= (u32) ROOT_HUB_PORT(top_dev->portnum);
xhci_dbg(xhci, "Set root hub portnum to %d\n", top_dev->portnum);
/* Is this a LS/FS device under a HS hub? */
/*
* FIXME: I don't think this is right, where does the TT info for the
* roothub or parent hub come from?
*/
if ((udev->speed == USB_SPEED_LOW || udev->speed == USB_SPEED_FULL) &&
udev->tt) {
dev->in_ctx->slot.tt_info = udev->tt->hub->slot_id;
dev->in_ctx->slot.tt_info |= udev->ttport << 8;
}
xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
/* Step 4 - ring already allocated */
/* Step 5 */
ep0_ctx->ep_info2 = EP_TYPE(CTRL_EP);
/*
* See section 4.3 bullet 6:
* The default Max Packet size for ep0 is "8 bytes for a USB2
* LS/FS/HS device or 512 bytes for a USB3 SS device"
* XXX: Not sure about wireless USB devices.
*/
if (udev->speed == USB_SPEED_SUPER)
ep0_ctx->ep_info2 |= MAX_PACKET(512);
else
ep0_ctx->ep_info2 |= MAX_PACKET(8);
/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
ep0_ctx->ep_info2 |= MAX_BURST(0);
ep0_ctx->ep_info2 |= ERROR_COUNT(3);
ep0_ctx->deq[0] =
dev->ep_rings[0]->first_seg->dma;
ep0_ctx->deq[0] |= dev->ep_rings[0]->cycle_state;
ep0_ctx->deq[1] = 0;
/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
return 0;
}
/* Return the polling or NAK interval.
*
* The polling interval is expressed in "microframes". If xHCI's Interval field
* is set to N, it will service the endpoint every 2^(Interval)*125us.
*
* The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
* is set to 0.
*/
static inline unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
struct usb_host_endpoint *ep)
{
unsigned int interval = 0;
switch (udev->speed) {
case USB_SPEED_HIGH:
/* Max NAK rate */
if (usb_endpoint_xfer_control(&ep->desc) ||
usb_endpoint_xfer_bulk(&ep->desc))
interval = ep->desc.bInterval;
/* Fall through - SS and HS isoc/int have same decoding */
case USB_SPEED_SUPER:
if (usb_endpoint_xfer_int(&ep->desc) ||
usb_endpoint_xfer_isoc(&ep->desc)) {
if (ep->desc.bInterval == 0)
interval = 0;
else
interval = ep->desc.bInterval - 1;
if (interval > 15)
interval = 15;
if (interval != ep->desc.bInterval + 1)
dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n",
ep->desc.bEndpointAddress, 1 << interval);
}
break;
/* Convert bInterval (in 1-255 frames) to microframes and round down to
* nearest power of 2.
*/
case USB_SPEED_FULL:
case USB_SPEED_LOW:
if (usb_endpoint_xfer_int(&ep->desc) ||
usb_endpoint_xfer_isoc(&ep->desc)) {
interval = fls(8*ep->desc.bInterval) - 1;
if (interval > 10)
interval = 10;
if (interval < 3)
interval = 3;
if ((1 << interval) != 8*ep->desc.bInterval)
dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n",
ep->desc.bEndpointAddress, 1 << interval);
}
break;
default:
BUG();
}
return EP_INTERVAL(interval);
}
static inline u32 xhci_get_endpoint_type(struct usb_device *udev,
struct usb_host_endpoint *ep)
{
int in;
u32 type;
in = usb_endpoint_dir_in(&ep->desc);
if (usb_endpoint_xfer_control(&ep->desc)) {
type = EP_TYPE(CTRL_EP);
} else if (usb_endpoint_xfer_bulk(&ep->desc)) {
if (in)
type = EP_TYPE(BULK_IN_EP);
else
type = EP_TYPE(BULK_OUT_EP);
} else if (usb_endpoint_xfer_isoc(&ep->desc)) {
if (in)
type = EP_TYPE(ISOC_IN_EP);
else
type = EP_TYPE(ISOC_OUT_EP);
} else if (usb_endpoint_xfer_int(&ep->desc)) {
if (in)
type = EP_TYPE(INT_IN_EP);
else
type = EP_TYPE(INT_OUT_EP);
} else {
BUG();
}
return type;
}
int xhci_endpoint_init(struct xhci_hcd *xhci,
struct xhci_virt_device *virt_dev,
struct usb_device *udev,
struct usb_host_endpoint *ep,
gfp_t mem_flags)
{
unsigned int ep_index;
struct xhci_ep_ctx *ep_ctx;
struct xhci_ring *ep_ring;
unsigned int max_packet;
unsigned int max_burst;
ep_index = xhci_get_endpoint_index(&ep->desc);
ep_ctx = &virt_dev->in_ctx->ep[ep_index];
/* Set up the endpoint ring */
virt_dev->new_ep_rings[ep_index] = xhci_ring_alloc(xhci, 1, true, mem_flags);
if (!virt_dev->new_ep_rings[ep_index])
return -ENOMEM;
ep_ring = virt_dev->new_ep_rings[ep_index];
ep_ctx->deq[0] = ep_ring->first_seg->dma | ep_ring->cycle_state;
ep_ctx->deq[1] = 0;
ep_ctx->ep_info = xhci_get_endpoint_interval(udev, ep);
/* FIXME dig Mult and streams info out of ep companion desc */
/* Allow 3 retries for everything but isoc */
if (!usb_endpoint_xfer_isoc(&ep->desc))
ep_ctx->ep_info2 = ERROR_COUNT(3);
else
ep_ctx->ep_info2 = ERROR_COUNT(0);
ep_ctx->ep_info2 |= xhci_get_endpoint_type(udev, ep);
/* Set the max packet size and max burst */
switch (udev->speed) {
case USB_SPEED_SUPER:
max_packet = ep->desc.wMaxPacketSize;
ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
/* dig out max burst from ep companion desc */
max_packet = ep->ss_ep_comp->desc.bMaxBurst;
ep_ctx->ep_info2 |= MAX_BURST(max_packet);
break;
case USB_SPEED_HIGH:
/* bits 11:12 specify the number of additional transaction
* opportunities per microframe (USB 2.0, section 9.6.6)
*/
if (usb_endpoint_xfer_isoc(&ep->desc) ||
usb_endpoint_xfer_int(&ep->desc)) {
max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
ep_ctx->ep_info2 |= MAX_BURST(max_burst);
}
/* Fall through */
case USB_SPEED_FULL:
case USB_SPEED_LOW:
max_packet = ep->desc.wMaxPacketSize & 0x3ff;
ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
break;
default:
BUG();
}
/* FIXME Debug endpoint context */
return 0;
}
void xhci_endpoint_zero(struct xhci_hcd *xhci,
struct xhci_virt_device *virt_dev,
struct usb_host_endpoint *ep)
{
unsigned int ep_index;
struct xhci_ep_ctx *ep_ctx;
ep_index = xhci_get_endpoint_index(&ep->desc);
ep_ctx = &virt_dev->in_ctx->ep[ep_index];
ep_ctx->ep_info = 0;
ep_ctx->ep_info2 = 0;
ep_ctx->deq[0] = 0;
ep_ctx->deq[1] = 0;
ep_ctx->tx_info = 0;
/* Don't free the endpoint ring until the set interface or configuration
* request succeeds.
*/
}
void xhci_mem_cleanup(struct xhci_hcd *xhci)
{
struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
int size;
int i;
/* Free the Event Ring Segment Table and the actual Event Ring */
xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
xhci_writel(xhci, 0, &xhci->ir_set->erst_base[0]);
xhci_writel(xhci, 0, &xhci->ir_set->erst_base[1]);
xhci_writel(xhci, 0, &xhci->ir_set->erst_dequeue[0]);
xhci_writel(xhci, 0, &xhci->ir_set->erst_dequeue[1]);
size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
if (xhci->erst.entries)
pci_free_consistent(pdev, size,
xhci->erst.entries, xhci->erst.erst_dma_addr);
xhci->erst.entries = NULL;
xhci_dbg(xhci, "Freed ERST\n");
if (xhci->event_ring)
xhci_ring_free(xhci, xhci->event_ring);
xhci->event_ring = NULL;
xhci_dbg(xhci, "Freed event ring\n");
xhci_writel(xhci, 0, &xhci->op_regs->cmd_ring[0]);
xhci_writel(xhci, 0, &xhci->op_regs->cmd_ring[1]);
if (xhci->cmd_ring)
xhci_ring_free(xhci, xhci->cmd_ring);
xhci->cmd_ring = NULL;
xhci_dbg(xhci, "Freed command ring\n");
for (i = 1; i < MAX_HC_SLOTS; ++i)
xhci_free_virt_device(xhci, i);
if (xhci->segment_pool)
dma_pool_destroy(xhci->segment_pool);
xhci->segment_pool = NULL;
xhci_dbg(xhci, "Freed segment pool\n");
if (xhci->device_pool)
dma_pool_destroy(xhci->device_pool);
xhci->device_pool = NULL;
xhci_dbg(xhci, "Freed device context pool\n");
xhci_writel(xhci, 0, &xhci->op_regs->dcbaa_ptr[0]);
xhci_writel(xhci, 0, &xhci->op_regs->dcbaa_ptr[1]);
if (xhci->dcbaa)
pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
xhci->dcbaa, xhci->dcbaa->dma);
xhci->dcbaa = NULL;
xhci->page_size = 0;
xhci->page_shift = 0;
}
int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
{
dma_addr_t dma;
struct device *dev = xhci_to_hcd(xhci)->self.controller;
unsigned int val, val2;
struct xhci_segment *seg;
u32 page_size;
int i;
page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
for (i = 0; i < 16; i++) {
if ((0x1 & page_size) != 0)
break;
page_size = page_size >> 1;
}
if (i < 16)
xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
else
xhci_warn(xhci, "WARN: no supported page size\n");
/* Use 4K pages, since that's common and the minimum the HC supports */
xhci->page_shift = 12;
xhci->page_size = 1 << xhci->page_shift;
xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
/*
* Program the Number of Device Slots Enabled field in the CONFIG
* register with the max value of slots the HC can handle.
*/
val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
(unsigned int) val);
val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
val |= (val2 & ~HCS_SLOTS_MASK);
xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
(unsigned int) val);
xhci_writel(xhci, val, &xhci->op_regs->config_reg);
/*
* Section 5.4.8 - doorbell array must be
* "physically contiguous and 64-byte (cache line) aligned".
*/
xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
sizeof(*xhci->dcbaa), &dma);
if (!xhci->dcbaa)
goto fail;
memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
xhci->dcbaa->dma = dma;
xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
xhci_writel(xhci, dma, &xhci->op_regs->dcbaa_ptr[0]);
xhci_writel(xhci, (u32) 0, &xhci->op_regs->dcbaa_ptr[1]);
/*
* Initialize the ring segment pool. The ring must be a contiguous
* structure comprised of TRBs. The TRBs must be 16 byte aligned,
* however, the command ring segment needs 64-byte aligned segments,
* so we pick the greater alignment need.
*/
xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
SEGMENT_SIZE, 64, xhci->page_size);
/* See Table 46 and Note on Figure 55 */
/* FIXME support 64-byte contexts */
xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
sizeof(struct xhci_device_control),
64, xhci->page_size);
if (!xhci->segment_pool || !xhci->device_pool)
goto fail;
/* Set up the command ring to have one segments for now. */
xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
if (!xhci->cmd_ring)
goto fail;
xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
(unsigned long long)xhci->cmd_ring->first_seg->dma);
/* Set the address in the Command Ring Control register */
val = xhci_readl(xhci, &xhci->op_regs->cmd_ring[0]);
val = (val & ~CMD_RING_ADDR_MASK) |
(xhci->cmd_ring->first_seg->dma & CMD_RING_ADDR_MASK) |
xhci->cmd_ring->cycle_state;
xhci_dbg(xhci, "// Setting command ring address low bits to 0x%x\n", val);
xhci_writel(xhci, val, &xhci->op_regs->cmd_ring[0]);
xhci_dbg(xhci, "// Setting command ring address high bits to 0x0\n");
xhci_writel(xhci, (u32) 0, &xhci->op_regs->cmd_ring[1]);
xhci_dbg_cmd_ptrs(xhci);
val = xhci_readl(xhci, &xhci->cap_regs->db_off);
val &= DBOFF_MASK;
xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
" from cap regs base addr\n", val);
xhci->dba = (void *) xhci->cap_regs + val;
xhci_dbg_regs(xhci);
xhci_print_run_regs(xhci);
/* Set ir_set to interrupt register set 0 */
xhci->ir_set = (void *) xhci->run_regs->ir_set;
/*
* Event ring setup: Allocate a normal ring, but also setup
* the event ring segment table (ERST). Section 4.9.3.
*/
xhci_dbg(xhci, "// Allocating event ring\n");
xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
if (!xhci->event_ring)
goto fail;
xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
if (!xhci->erst.entries)
goto fail;
xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
(unsigned long long)dma);
memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
xhci->erst.num_entries = ERST_NUM_SEGS;
xhci->erst.erst_dma_addr = dma;
xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
xhci->erst.num_entries,
xhci->erst.entries,
(unsigned long long)xhci->erst.erst_dma_addr);
/* set ring base address and size for each segment table entry */
for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
struct xhci_erst_entry *entry = &xhci->erst.entries[val];
entry->seg_addr[0] = seg->dma;
entry->seg_addr[1] = 0;
entry->seg_size = TRBS_PER_SEGMENT;
entry->rsvd = 0;
seg = seg->next;
}
/* set ERST count with the number of entries in the segment table */
val = xhci_readl(xhci, &xhci->ir_set->erst_size);
val &= ERST_SIZE_MASK;
val |= ERST_NUM_SEGS;
xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
val);
xhci_writel(xhci, val, &xhci->ir_set->erst_size);
xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
/* set the segment table base address */
xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
(unsigned long long)xhci->erst.erst_dma_addr);
val = xhci_readl(xhci, &xhci->ir_set->erst_base[0]);
val &= ERST_PTR_MASK;
val |= (xhci->erst.erst_dma_addr & ~ERST_PTR_MASK);
xhci_writel(xhci, val, &xhci->ir_set->erst_base[0]);
xhci_writel(xhci, 0, &xhci->ir_set->erst_base[1]);
/* Set the event ring dequeue address */
xhci_set_hc_event_deq(xhci);
xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
xhci_print_ir_set(xhci, xhci->ir_set, 0);
/*
* XXX: Might need to set the Interrupter Moderation Register to
* something other than the default (~1ms minimum between interrupts).
* See section 5.5.1.2.
*/
init_completion(&xhci->addr_dev);
for (i = 0; i < MAX_HC_SLOTS; ++i)
xhci->devs[i] = 0;
return 0;
fail:
xhci_warn(xhci, "Couldn't initialize memory\n");
xhci_mem_cleanup(xhci);
return -ENOMEM;
}