linux-hardened/drivers/net/a2065.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

806 lines
20 KiB
C

/*
* Amiga Linux/68k A2065 Ethernet Driver
*
* (C) Copyright 1995-2003 by Geert Uytterhoeven <geert@linux-m68k.org>
*
* Fixes and tips by:
* - Janos Farkas (CHEXUM@sparta.banki.hu)
* - Jes Degn Soerensen (jds@kom.auc.dk)
* - Matt Domsch (Matt_Domsch@dell.com)
*
* ----------------------------------------------------------------------------
*
* This program is based on
*
* ariadne.?: Amiga Linux/68k Ariadne Ethernet Driver
* (C) Copyright 1995 by Geert Uytterhoeven,
* Peter De Schrijver
*
* lance.c: An AMD LANCE ethernet driver for linux.
* Written 1993-94 by Donald Becker.
*
* Am79C960: PCnet(tm)-ISA Single-Chip Ethernet Controller
* Advanced Micro Devices
* Publication #16907, Rev. B, Amendment/0, May 1994
*
* ----------------------------------------------------------------------------
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of the Linux
* distribution for more details.
*
* ----------------------------------------------------------------------------
*
* The A2065 is a Zorro-II board made by Commodore/Ameristar. It contains:
*
* - an Am7990 Local Area Network Controller for Ethernet (LANCE) with
* both 10BASE-2 (thin coax) and AUI (DB-15) connectors
*/
#include <linux/errno.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/module.h>
#include <linux/stddef.h>
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/skbuff.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/crc32.h>
#include <linux/zorro.h>
#include <linux/bitops.h>
#include <asm/irq.h>
#include <asm/amigaints.h>
#include <asm/amigahw.h>
#include "a2065.h"
/*
* Transmit/Receive Ring Definitions
*/
#define LANCE_LOG_TX_BUFFERS (2)
#define LANCE_LOG_RX_BUFFERS (4)
#define TX_RING_SIZE (1<<LANCE_LOG_TX_BUFFERS)
#define RX_RING_SIZE (1<<LANCE_LOG_RX_BUFFERS)
#define TX_RING_MOD_MASK (TX_RING_SIZE-1)
#define RX_RING_MOD_MASK (RX_RING_SIZE-1)
#define PKT_BUF_SIZE (1544)
#define RX_BUFF_SIZE PKT_BUF_SIZE
#define TX_BUFF_SIZE PKT_BUF_SIZE
/*
* Layout of the Lance's RAM Buffer
*/
struct lance_init_block {
unsigned short mode; /* Pre-set mode (reg. 15) */
unsigned char phys_addr[6]; /* Physical ethernet address */
unsigned filter[2]; /* Multicast filter. */
/* Receive and transmit ring base, along with extra bits. */
unsigned short rx_ptr; /* receive descriptor addr */
unsigned short rx_len; /* receive len and high addr */
unsigned short tx_ptr; /* transmit descriptor addr */
unsigned short tx_len; /* transmit len and high addr */
/* The Tx and Rx ring entries must aligned on 8-byte boundaries. */
struct lance_rx_desc brx_ring[RX_RING_SIZE];
struct lance_tx_desc btx_ring[TX_RING_SIZE];
char rx_buf [RX_RING_SIZE][RX_BUFF_SIZE];
char tx_buf [TX_RING_SIZE][TX_BUFF_SIZE];
};
/*
* Private Device Data
*/
struct lance_private {
char *name;
volatile struct lance_regs *ll;
volatile struct lance_init_block *init_block; /* Hosts view */
volatile struct lance_init_block *lance_init_block; /* Lance view */
int rx_new, tx_new;
int rx_old, tx_old;
int lance_log_rx_bufs, lance_log_tx_bufs;
int rx_ring_mod_mask, tx_ring_mod_mask;
int tpe; /* cable-selection is TPE */
int auto_select; /* cable-selection by carrier */
unsigned short busmaster_regval;
#ifdef CONFIG_SUNLANCE
struct Linux_SBus_DMA *ledma; /* if set this points to ledma and arch=4m */
int burst_sizes; /* ledma SBus burst sizes */
#endif
struct timer_list multicast_timer;
};
#define TX_BUFFS_AVAIL ((lp->tx_old<=lp->tx_new)?\
lp->tx_old+lp->tx_ring_mod_mask-lp->tx_new:\
lp->tx_old - lp->tx_new-1)
#define LANCE_ADDR(x) ((int)(x) & ~0xff000000)
/* Load the CSR registers */
static void load_csrs (struct lance_private *lp)
{
volatile struct lance_regs *ll = lp->ll;
volatile struct lance_init_block *aib = lp->lance_init_block;
int leptr;
leptr = LANCE_ADDR (aib);
ll->rap = LE_CSR1;
ll->rdp = (leptr & 0xFFFF);
ll->rap = LE_CSR2;
ll->rdp = leptr >> 16;
ll->rap = LE_CSR3;
ll->rdp = lp->busmaster_regval;
/* Point back to csr0 */
ll->rap = LE_CSR0;
}
#define ZERO 0
/* Setup the Lance Rx and Tx rings */
static void lance_init_ring (struct net_device *dev)
{
struct lance_private *lp = netdev_priv(dev);
volatile struct lance_init_block *ib = lp->init_block;
volatile struct lance_init_block *aib; /* for LANCE_ADDR computations */
int leptr;
int i;
aib = lp->lance_init_block;
/* Lock out other processes while setting up hardware */
netif_stop_queue(dev);
lp->rx_new = lp->tx_new = 0;
lp->rx_old = lp->tx_old = 0;
ib->mode = 0;
/* Copy the ethernet address to the lance init block
* Note that on the sparc you need to swap the ethernet address.
*/
ib->phys_addr [0] = dev->dev_addr [1];
ib->phys_addr [1] = dev->dev_addr [0];
ib->phys_addr [2] = dev->dev_addr [3];
ib->phys_addr [3] = dev->dev_addr [2];
ib->phys_addr [4] = dev->dev_addr [5];
ib->phys_addr [5] = dev->dev_addr [4];
if (ZERO)
printk(KERN_DEBUG "TX rings:\n");
/* Setup the Tx ring entries */
for (i = 0; i <= (1<<lp->lance_log_tx_bufs); i++) {
leptr = LANCE_ADDR(&aib->tx_buf[i][0]);
ib->btx_ring [i].tmd0 = leptr;
ib->btx_ring [i].tmd1_hadr = leptr >> 16;
ib->btx_ring [i].tmd1_bits = 0;
ib->btx_ring [i].length = 0xf000; /* The ones required by tmd2 */
ib->btx_ring [i].misc = 0;
if (i < 3 && ZERO)
printk(KERN_DEBUG "%d: 0x%8.8x\n", i, leptr);
}
/* Setup the Rx ring entries */
if (ZERO)
printk(KERN_DEBUG "RX rings:\n");
for (i = 0; i < (1<<lp->lance_log_rx_bufs); i++) {
leptr = LANCE_ADDR(&aib->rx_buf[i][0]);
ib->brx_ring [i].rmd0 = leptr;
ib->brx_ring [i].rmd1_hadr = leptr >> 16;
ib->brx_ring [i].rmd1_bits = LE_R1_OWN;
ib->brx_ring [i].length = -RX_BUFF_SIZE | 0xf000;
ib->brx_ring [i].mblength = 0;
if (i < 3 && ZERO)
printk(KERN_DEBUG "%d: 0x%8.8x\n", i, leptr);
}
/* Setup the initialization block */
/* Setup rx descriptor pointer */
leptr = LANCE_ADDR(&aib->brx_ring);
ib->rx_len = (lp->lance_log_rx_bufs << 13) | (leptr >> 16);
ib->rx_ptr = leptr;
if (ZERO)
printk(KERN_DEBUG "RX ptr: %8.8x\n", leptr);
/* Setup tx descriptor pointer */
leptr = LANCE_ADDR(&aib->btx_ring);
ib->tx_len = (lp->lance_log_tx_bufs << 13) | (leptr >> 16);
ib->tx_ptr = leptr;
if (ZERO)
printk(KERN_DEBUG "TX ptr: %8.8x\n", leptr);
/* Clear the multicast filter */
ib->filter [0] = 0;
ib->filter [1] = 0;
}
static int init_restart_lance (struct lance_private *lp)
{
volatile struct lance_regs *ll = lp->ll;
int i;
ll->rap = LE_CSR0;
ll->rdp = LE_C0_INIT;
/* Wait for the lance to complete initialization */
for (i = 0; (i < 100) && !(ll->rdp & (LE_C0_ERR | LE_C0_IDON)); i++)
barrier();
if ((i == 100) || (ll->rdp & LE_C0_ERR)) {
printk(KERN_ERR "LANCE unopened after %d ticks, csr0=%4.4x.\n",
i, ll->rdp);
return -EIO;
}
/* Clear IDON by writing a "1", enable interrupts and start lance */
ll->rdp = LE_C0_IDON;
ll->rdp = LE_C0_INEA | LE_C0_STRT;
return 0;
}
static int lance_rx (struct net_device *dev)
{
struct lance_private *lp = netdev_priv(dev);
volatile struct lance_init_block *ib = lp->init_block;
volatile struct lance_regs *ll = lp->ll;
volatile struct lance_rx_desc *rd;
unsigned char bits;
#ifdef TEST_HITS
int i;
printk(KERN_DEBUG "[");
for (i = 0; i < RX_RING_SIZE; i++) {
if (i == lp->rx_new)
printk ("%s",
ib->brx_ring [i].rmd1_bits & LE_R1_OWN ? "_" : "X");
else
printk ("%s",
ib->brx_ring [i].rmd1_bits & LE_R1_OWN ? "." : "1");
}
printk ("]\n");
#endif
ll->rdp = LE_C0_RINT|LE_C0_INEA;
for (rd = &ib->brx_ring [lp->rx_new];
!((bits = rd->rmd1_bits) & LE_R1_OWN);
rd = &ib->brx_ring [lp->rx_new]) {
/* We got an incomplete frame? */
if ((bits & LE_R1_POK) != LE_R1_POK) {
dev->stats.rx_over_errors++;
dev->stats.rx_errors++;
continue;
} else if (bits & LE_R1_ERR) {
/* Count only the end frame as a rx error,
* not the beginning
*/
if (bits & LE_R1_BUF) dev->stats.rx_fifo_errors++;
if (bits & LE_R1_CRC) dev->stats.rx_crc_errors++;
if (bits & LE_R1_OFL) dev->stats.rx_over_errors++;
if (bits & LE_R1_FRA) dev->stats.rx_frame_errors++;
if (bits & LE_R1_EOP) dev->stats.rx_errors++;
} else {
int len = (rd->mblength & 0xfff) - 4;
struct sk_buff *skb = dev_alloc_skb (len+2);
if (!skb) {
printk(KERN_WARNING "%s: Memory squeeze, "
"deferring packet.\n", dev->name);
dev->stats.rx_dropped++;
rd->mblength = 0;
rd->rmd1_bits = LE_R1_OWN;
lp->rx_new = (lp->rx_new + 1) & lp->rx_ring_mod_mask;
return 0;
}
skb_reserve (skb, 2); /* 16 byte align */
skb_put (skb, len); /* make room */
skb_copy_to_linear_data(skb,
(unsigned char *)&(ib->rx_buf [lp->rx_new][0]),
len);
skb->protocol = eth_type_trans (skb, dev);
netif_rx (skb);
dev->stats.rx_packets++;
dev->stats.rx_bytes += len;
}
/* Return the packet to the pool */
rd->mblength = 0;
rd->rmd1_bits = LE_R1_OWN;
lp->rx_new = (lp->rx_new + 1) & lp->rx_ring_mod_mask;
}
return 0;
}
static int lance_tx (struct net_device *dev)
{
struct lance_private *lp = netdev_priv(dev);
volatile struct lance_init_block *ib = lp->init_block;
volatile struct lance_regs *ll = lp->ll;
volatile struct lance_tx_desc *td;
int i, j;
int status;
/* csr0 is 2f3 */
ll->rdp = LE_C0_TINT | LE_C0_INEA;
/* csr0 is 73 */
j = lp->tx_old;
for (i = j; i != lp->tx_new; i = j) {
td = &ib->btx_ring [i];
/* If we hit a packet not owned by us, stop */
if (td->tmd1_bits & LE_T1_OWN)
break;
if (td->tmd1_bits & LE_T1_ERR) {
status = td->misc;
dev->stats.tx_errors++;
if (status & LE_T3_RTY) dev->stats.tx_aborted_errors++;
if (status & LE_T3_LCOL) dev->stats.tx_window_errors++;
if (status & LE_T3_CLOS) {
dev->stats.tx_carrier_errors++;
if (lp->auto_select) {
lp->tpe = 1 - lp->tpe;
printk(KERN_ERR "%s: Carrier Lost, "
"trying %s\n", dev->name,
lp->tpe?"TPE":"AUI");
/* Stop the lance */
ll->rap = LE_CSR0;
ll->rdp = LE_C0_STOP;
lance_init_ring (dev);
load_csrs (lp);
init_restart_lance (lp);
return 0;
}
}
/* buffer errors and underflows turn off the transmitter */
/* Restart the adapter */
if (status & (LE_T3_BUF|LE_T3_UFL)) {
dev->stats.tx_fifo_errors++;
printk(KERN_ERR "%s: Tx: ERR_BUF|ERR_UFL, "
"restarting\n", dev->name);
/* Stop the lance */
ll->rap = LE_CSR0;
ll->rdp = LE_C0_STOP;
lance_init_ring (dev);
load_csrs (lp);
init_restart_lance (lp);
return 0;
}
} else if ((td->tmd1_bits & LE_T1_POK) == LE_T1_POK) {
/*
* So we don't count the packet more than once.
*/
td->tmd1_bits &= ~(LE_T1_POK);
/* One collision before packet was sent. */
if (td->tmd1_bits & LE_T1_EONE)
dev->stats.collisions++;
/* More than one collision, be optimistic. */
if (td->tmd1_bits & LE_T1_EMORE)
dev->stats.collisions += 2;
dev->stats.tx_packets++;
}
j = (j + 1) & lp->tx_ring_mod_mask;
}
lp->tx_old = j;
ll->rdp = LE_C0_TINT | LE_C0_INEA;
return 0;
}
static irqreturn_t lance_interrupt (int irq, void *dev_id)
{
struct net_device *dev;
struct lance_private *lp;
volatile struct lance_regs *ll;
int csr0;
dev = (struct net_device *) dev_id;
lp = netdev_priv(dev);
ll = lp->ll;
ll->rap = LE_CSR0; /* LANCE Controller Status */
csr0 = ll->rdp;
if (!(csr0 & LE_C0_INTR)) /* Check if any interrupt has */
return IRQ_NONE; /* been generated by the Lance. */
/* Acknowledge all the interrupt sources ASAP */
ll->rdp = csr0 & ~(LE_C0_INEA|LE_C0_TDMD|LE_C0_STOP|LE_C0_STRT|
LE_C0_INIT);
if ((csr0 & LE_C0_ERR)) {
/* Clear the error condition */
ll->rdp = LE_C0_BABL|LE_C0_ERR|LE_C0_MISS|LE_C0_INEA;
}
if (csr0 & LE_C0_RINT)
lance_rx (dev);
if (csr0 & LE_C0_TINT)
lance_tx (dev);
/* Log misc errors. */
if (csr0 & LE_C0_BABL)
dev->stats.tx_errors++; /* Tx babble. */
if (csr0 & LE_C0_MISS)
dev->stats.rx_errors++; /* Missed a Rx frame. */
if (csr0 & LE_C0_MERR) {
printk(KERN_ERR "%s: Bus master arbitration failure, status "
"%4.4x.\n", dev->name, csr0);
/* Restart the chip. */
ll->rdp = LE_C0_STRT;
}
if (netif_queue_stopped(dev) && TX_BUFFS_AVAIL > 0)
netif_wake_queue(dev);
ll->rap = LE_CSR0;
ll->rdp = LE_C0_BABL|LE_C0_CERR|LE_C0_MISS|LE_C0_MERR|
LE_C0_IDON|LE_C0_INEA;
return IRQ_HANDLED;
}
static int lance_open (struct net_device *dev)
{
struct lance_private *lp = netdev_priv(dev);
volatile struct lance_regs *ll = lp->ll;
int ret;
/* Stop the Lance */
ll->rap = LE_CSR0;
ll->rdp = LE_C0_STOP;
/* Install the Interrupt handler */
ret = request_irq(IRQ_AMIGA_PORTS, lance_interrupt, IRQF_SHARED,
dev->name, dev);
if (ret) return ret;
load_csrs (lp);
lance_init_ring (dev);
netif_start_queue(dev);
return init_restart_lance (lp);
}
static int lance_close (struct net_device *dev)
{
struct lance_private *lp = netdev_priv(dev);
volatile struct lance_regs *ll = lp->ll;
netif_stop_queue(dev);
del_timer_sync(&lp->multicast_timer);
/* Stop the card */
ll->rap = LE_CSR0;
ll->rdp = LE_C0_STOP;
free_irq(IRQ_AMIGA_PORTS, dev);
return 0;
}
static inline int lance_reset (struct net_device *dev)
{
struct lance_private *lp = netdev_priv(dev);
volatile struct lance_regs *ll = lp->ll;
int status;
/* Stop the lance */
ll->rap = LE_CSR0;
ll->rdp = LE_C0_STOP;
load_csrs (lp);
lance_init_ring (dev);
dev->trans_start = jiffies;
netif_start_queue(dev);
status = init_restart_lance (lp);
#ifdef DEBUG_DRIVER
printk(KERN_DEBUG "Lance restart=%d\n", status);
#endif
return status;
}
static void lance_tx_timeout(struct net_device *dev)
{
struct lance_private *lp = netdev_priv(dev);
volatile struct lance_regs *ll = lp->ll;
printk(KERN_ERR "%s: transmit timed out, status %04x, reset\n",
dev->name, ll->rdp);
lance_reset(dev);
netif_wake_queue(dev);
}
static netdev_tx_t lance_start_xmit (struct sk_buff *skb,
struct net_device *dev)
{
struct lance_private *lp = netdev_priv(dev);
volatile struct lance_regs *ll = lp->ll;
volatile struct lance_init_block *ib = lp->init_block;
int entry, skblen;
int status = NETDEV_TX_OK;
unsigned long flags;
if (skb_padto(skb, ETH_ZLEN))
return NETDEV_TX_OK;
skblen = max_t(unsigned, skb->len, ETH_ZLEN);
local_irq_save(flags);
if (!TX_BUFFS_AVAIL){
local_irq_restore(flags);
return NETDEV_TX_LOCKED;
}
#ifdef DEBUG_DRIVER
/* dump the packet */
print_hex_dump(KERN_DEBUG, "skb->data: ", DUMP_PREFIX_NONE,
16, 1, skb->data, 64, true);
#endif
entry = lp->tx_new & lp->tx_ring_mod_mask;
ib->btx_ring [entry].length = (-skblen) | 0xf000;
ib->btx_ring [entry].misc = 0;
skb_copy_from_linear_data(skb, (void *)&ib->tx_buf [entry][0], skblen);
/* Now, give the packet to the lance */
ib->btx_ring [entry].tmd1_bits = (LE_T1_POK|LE_T1_OWN);
lp->tx_new = (lp->tx_new+1) & lp->tx_ring_mod_mask;
dev->stats.tx_bytes += skblen;
if (TX_BUFFS_AVAIL <= 0)
netif_stop_queue(dev);
/* Kick the lance: transmit now */
ll->rdp = LE_C0_INEA | LE_C0_TDMD;
dev->trans_start = jiffies;
dev_kfree_skb (skb);
local_irq_restore(flags);
return status;
}
/* taken from the depca driver */
static void lance_load_multicast (struct net_device *dev)
{
struct lance_private *lp = netdev_priv(dev);
volatile struct lance_init_block *ib = lp->init_block;
volatile u16 *mcast_table = (u16 *)&ib->filter;
struct dev_mc_list *dmi;
char *addrs;
u32 crc;
/* set all multicast bits */
if (dev->flags & IFF_ALLMULTI){
ib->filter [0] = 0xffffffff;
ib->filter [1] = 0xffffffff;
return;
}
/* clear the multicast filter */
ib->filter [0] = 0;
ib->filter [1] = 0;
/* Add addresses */
netdev_for_each_mc_addr(dmi, dev) {
addrs = dmi->dmi_addr;
/* multicast address? */
if (!(*addrs & 1))
continue;
crc = ether_crc_le(6, addrs);
crc = crc >> 26;
mcast_table [crc >> 4] |= 1 << (crc & 0xf);
}
return;
}
static void lance_set_multicast (struct net_device *dev)
{
struct lance_private *lp = netdev_priv(dev);
volatile struct lance_init_block *ib = lp->init_block;
volatile struct lance_regs *ll = lp->ll;
if (!netif_running(dev))
return;
if (lp->tx_old != lp->tx_new) {
mod_timer(&lp->multicast_timer, jiffies + 4);
netif_wake_queue(dev);
return;
}
netif_stop_queue(dev);
ll->rap = LE_CSR0;
ll->rdp = LE_C0_STOP;
lance_init_ring (dev);
if (dev->flags & IFF_PROMISC) {
ib->mode |= LE_MO_PROM;
} else {
ib->mode &= ~LE_MO_PROM;
lance_load_multicast (dev);
}
load_csrs (lp);
init_restart_lance (lp);
netif_wake_queue(dev);
}
static int __devinit a2065_init_one(struct zorro_dev *z,
const struct zorro_device_id *ent);
static void __devexit a2065_remove_one(struct zorro_dev *z);
static struct zorro_device_id a2065_zorro_tbl[] __devinitdata = {
{ ZORRO_PROD_CBM_A2065_1 },
{ ZORRO_PROD_CBM_A2065_2 },
{ ZORRO_PROD_AMERISTAR_A2065 },
{ 0 }
};
static struct zorro_driver a2065_driver = {
.name = "a2065",
.id_table = a2065_zorro_tbl,
.probe = a2065_init_one,
.remove = __devexit_p(a2065_remove_one),
};
static const struct net_device_ops lance_netdev_ops = {
.ndo_open = lance_open,
.ndo_stop = lance_close,
.ndo_start_xmit = lance_start_xmit,
.ndo_tx_timeout = lance_tx_timeout,
.ndo_set_multicast_list = lance_set_multicast,
.ndo_validate_addr = eth_validate_addr,
.ndo_change_mtu = eth_change_mtu,
.ndo_set_mac_address = eth_mac_addr,
};
static int __devinit a2065_init_one(struct zorro_dev *z,
const struct zorro_device_id *ent)
{
struct net_device *dev;
struct lance_private *priv;
unsigned long board, base_addr, mem_start;
struct resource *r1, *r2;
int err;
board = z->resource.start;
base_addr = board+A2065_LANCE;
mem_start = board+A2065_RAM;
r1 = request_mem_region(base_addr, sizeof(struct lance_regs),
"Am7990");
if (!r1)
return -EBUSY;
r2 = request_mem_region(mem_start, A2065_RAM_SIZE, "RAM");
if (!r2) {
release_resource(r1);
return -EBUSY;
}
dev = alloc_etherdev(sizeof(struct lance_private));
if (dev == NULL) {
release_resource(r1);
release_resource(r2);
return -ENOMEM;
}
priv = netdev_priv(dev);
r1->name = dev->name;
r2->name = dev->name;
dev->dev_addr[0] = 0x00;
if (z->id != ZORRO_PROD_AMERISTAR_A2065) { /* Commodore */
dev->dev_addr[1] = 0x80;
dev->dev_addr[2] = 0x10;
} else { /* Ameristar */
dev->dev_addr[1] = 0x00;
dev->dev_addr[2] = 0x9f;
}
dev->dev_addr[3] = (z->rom.er_SerialNumber>>16) & 0xff;
dev->dev_addr[4] = (z->rom.er_SerialNumber>>8) & 0xff;
dev->dev_addr[5] = z->rom.er_SerialNumber & 0xff;
dev->base_addr = ZTWO_VADDR(base_addr);
dev->mem_start = ZTWO_VADDR(mem_start);
dev->mem_end = dev->mem_start+A2065_RAM_SIZE;
priv->ll = (volatile struct lance_regs *)dev->base_addr;
priv->init_block = (struct lance_init_block *)dev->mem_start;
priv->lance_init_block = (struct lance_init_block *)A2065_RAM;
priv->auto_select = 0;
priv->busmaster_regval = LE_C3_BSWP;
priv->lance_log_rx_bufs = LANCE_LOG_RX_BUFFERS;
priv->lance_log_tx_bufs = LANCE_LOG_TX_BUFFERS;
priv->rx_ring_mod_mask = RX_RING_MOD_MASK;
priv->tx_ring_mod_mask = TX_RING_MOD_MASK;
dev->netdev_ops = &lance_netdev_ops;
dev->watchdog_timeo = 5*HZ;
dev->dma = 0;
init_timer(&priv->multicast_timer);
priv->multicast_timer.data = (unsigned long) dev;
priv->multicast_timer.function =
(void (*)(unsigned long)) &lance_set_multicast;
err = register_netdev(dev);
if (err) {
release_resource(r1);
release_resource(r2);
free_netdev(dev);
return err;
}
zorro_set_drvdata(z, dev);
printk(KERN_INFO "%s: A2065 at 0x%08lx, Ethernet Address "
"%pM\n", dev->name, board, dev->dev_addr);
return 0;
}
static void __devexit a2065_remove_one(struct zorro_dev *z)
{
struct net_device *dev = zorro_get_drvdata(z);
unregister_netdev(dev);
release_mem_region(ZTWO_PADDR(dev->base_addr),
sizeof(struct lance_regs));
release_mem_region(ZTWO_PADDR(dev->mem_start), A2065_RAM_SIZE);
free_netdev(dev);
}
static int __init a2065_init_module(void)
{
return zorro_register_driver(&a2065_driver);
}
static void __exit a2065_cleanup_module(void)
{
zorro_unregister_driver(&a2065_driver);
}
module_init(a2065_init_module);
module_exit(a2065_cleanup_module);
MODULE_LICENSE("GPL");