linux-hardened/arch/powerpc/kernel/rtas-proc.c
Segher Boessenkool 9a6b50703e [POWERPC] Fix ppc_rtas_progress_show()
Fixes the warning

	arch/powerpc/kernel/rtas-proc.c: In function 'ppc_rtas_progress_show':
	arch/powerpc/kernel/rtas-proc.c:382: warning: the address of
		'progress_led' will always evaluate as 'true'

by fixing the code to do what it presumably is meant to do.

Signed-off-by: Segher Boessenkool <segher@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2007-05-17 21:11:15 +10:00

807 lines
22 KiB
C

/*
* Copyright (C) 2000 Tilmann Bitterberg
* (tilmann@bitterberg.de)
*
* RTAS (Runtime Abstraction Services) stuff
* Intention is to provide a clean user interface
* to use the RTAS.
*
* TODO:
* Split off a header file and maybe move it to a different
* location. Write Documentation on what the /proc/rtas/ entries
* actually do.
*/
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/proc_fs.h>
#include <linux/stat.h>
#include <linux/ctype.h>
#include <linux/time.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/seq_file.h>
#include <linux/bitops.h>
#include <linux/rtc.h>
#include <asm/uaccess.h>
#include <asm/processor.h>
#include <asm/io.h>
#include <asm/prom.h>
#include <asm/rtas.h>
#include <asm/machdep.h> /* for ppc_md */
#include <asm/time.h>
/* Token for Sensors */
#define KEY_SWITCH 0x0001
#define ENCLOSURE_SWITCH 0x0002
#define THERMAL_SENSOR 0x0003
#define LID_STATUS 0x0004
#define POWER_SOURCE 0x0005
#define BATTERY_VOLTAGE 0x0006
#define BATTERY_REMAINING 0x0007
#define BATTERY_PERCENTAGE 0x0008
#define EPOW_SENSOR 0x0009
#define BATTERY_CYCLESTATE 0x000a
#define BATTERY_CHARGING 0x000b
/* IBM specific sensors */
#define IBM_SURVEILLANCE 0x2328 /* 9000 */
#define IBM_FANRPM 0x2329 /* 9001 */
#define IBM_VOLTAGE 0x232a /* 9002 */
#define IBM_DRCONNECTOR 0x232b /* 9003 */
#define IBM_POWERSUPPLY 0x232c /* 9004 */
/* Status return values */
#define SENSOR_CRITICAL_HIGH 13
#define SENSOR_WARNING_HIGH 12
#define SENSOR_NORMAL 11
#define SENSOR_WARNING_LOW 10
#define SENSOR_CRITICAL_LOW 9
#define SENSOR_SUCCESS 0
#define SENSOR_HW_ERROR -1
#define SENSOR_BUSY -2
#define SENSOR_NOT_EXIST -3
#define SENSOR_DR_ENTITY -9000
/* Location Codes */
#define LOC_SCSI_DEV_ADDR 'A'
#define LOC_SCSI_DEV_LOC 'B'
#define LOC_CPU 'C'
#define LOC_DISKETTE 'D'
#define LOC_ETHERNET 'E'
#define LOC_FAN 'F'
#define LOC_GRAPHICS 'G'
/* reserved / not used 'H' */
#define LOC_IO_ADAPTER 'I'
/* reserved / not used 'J' */
#define LOC_KEYBOARD 'K'
#define LOC_LCD 'L'
#define LOC_MEMORY 'M'
#define LOC_NV_MEMORY 'N'
#define LOC_MOUSE 'O'
#define LOC_PLANAR 'P'
#define LOC_OTHER_IO 'Q'
#define LOC_PARALLEL 'R'
#define LOC_SERIAL 'S'
#define LOC_DEAD_RING 'T'
#define LOC_RACKMOUNTED 'U' /* for _u_nit is rack mounted */
#define LOC_VOLTAGE 'V'
#define LOC_SWITCH_ADAPTER 'W'
#define LOC_OTHER 'X'
#define LOC_FIRMWARE 'Y'
#define LOC_SCSI 'Z'
/* Tokens for indicators */
#define TONE_FREQUENCY 0x0001 /* 0 - 1000 (HZ)*/
#define TONE_VOLUME 0x0002 /* 0 - 100 (%) */
#define SYSTEM_POWER_STATE 0x0003
#define WARNING_LIGHT 0x0004
#define DISK_ACTIVITY_LIGHT 0x0005
#define HEX_DISPLAY_UNIT 0x0006
#define BATTERY_WARNING_TIME 0x0007
#define CONDITION_CYCLE_REQUEST 0x0008
#define SURVEILLANCE_INDICATOR 0x2328 /* 9000 */
#define DR_ACTION 0x2329 /* 9001 */
#define DR_INDICATOR 0x232a /* 9002 */
/* 9003 - 9004: Vendor specific */
/* 9006 - 9999: Vendor specific */
/* other */
#define MAX_SENSORS 17 /* I only know of 17 sensors */
#define MAX_LINELENGTH 256
#define SENSOR_PREFIX "ibm,sensor-"
#define cel_to_fahr(x) ((x*9/5)+32)
/* Globals */
static struct rtas_sensors sensors;
static struct device_node *rtas_node = NULL;
static unsigned long power_on_time = 0; /* Save the time the user set */
static char progress_led[MAX_LINELENGTH];
static unsigned long rtas_tone_frequency = 1000;
static unsigned long rtas_tone_volume = 0;
/* ****************STRUCTS******************************************* */
struct individual_sensor {
unsigned int token;
unsigned int quant;
};
struct rtas_sensors {
struct individual_sensor sensor[MAX_SENSORS];
unsigned int quant;
};
/* ****************************************************************** */
/* Declarations */
static int ppc_rtas_sensors_show(struct seq_file *m, void *v);
static int ppc_rtas_clock_show(struct seq_file *m, void *v);
static ssize_t ppc_rtas_clock_write(struct file *file,
const char __user *buf, size_t count, loff_t *ppos);
static int ppc_rtas_progress_show(struct seq_file *m, void *v);
static ssize_t ppc_rtas_progress_write(struct file *file,
const char __user *buf, size_t count, loff_t *ppos);
static int ppc_rtas_poweron_show(struct seq_file *m, void *v);
static ssize_t ppc_rtas_poweron_write(struct file *file,
const char __user *buf, size_t count, loff_t *ppos);
static ssize_t ppc_rtas_tone_freq_write(struct file *file,
const char __user *buf, size_t count, loff_t *ppos);
static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v);
static ssize_t ppc_rtas_tone_volume_write(struct file *file,
const char __user *buf, size_t count, loff_t *ppos);
static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v);
static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v);
static int sensors_open(struct inode *inode, struct file *file)
{
return single_open(file, ppc_rtas_sensors_show, NULL);
}
const struct file_operations ppc_rtas_sensors_operations = {
.open = sensors_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int poweron_open(struct inode *inode, struct file *file)
{
return single_open(file, ppc_rtas_poweron_show, NULL);
}
const struct file_operations ppc_rtas_poweron_operations = {
.open = poweron_open,
.read = seq_read,
.llseek = seq_lseek,
.write = ppc_rtas_poweron_write,
.release = single_release,
};
static int progress_open(struct inode *inode, struct file *file)
{
return single_open(file, ppc_rtas_progress_show, NULL);
}
const struct file_operations ppc_rtas_progress_operations = {
.open = progress_open,
.read = seq_read,
.llseek = seq_lseek,
.write = ppc_rtas_progress_write,
.release = single_release,
};
static int clock_open(struct inode *inode, struct file *file)
{
return single_open(file, ppc_rtas_clock_show, NULL);
}
const struct file_operations ppc_rtas_clock_operations = {
.open = clock_open,
.read = seq_read,
.llseek = seq_lseek,
.write = ppc_rtas_clock_write,
.release = single_release,
};
static int tone_freq_open(struct inode *inode, struct file *file)
{
return single_open(file, ppc_rtas_tone_freq_show, NULL);
}
const struct file_operations ppc_rtas_tone_freq_operations = {
.open = tone_freq_open,
.read = seq_read,
.llseek = seq_lseek,
.write = ppc_rtas_tone_freq_write,
.release = single_release,
};
static int tone_volume_open(struct inode *inode, struct file *file)
{
return single_open(file, ppc_rtas_tone_volume_show, NULL);
}
const struct file_operations ppc_rtas_tone_volume_operations = {
.open = tone_volume_open,
.read = seq_read,
.llseek = seq_lseek,
.write = ppc_rtas_tone_volume_write,
.release = single_release,
};
static int rmo_buf_open(struct inode *inode, struct file *file)
{
return single_open(file, ppc_rtas_rmo_buf_show, NULL);
}
const struct file_operations ppc_rtas_rmo_buf_ops = {
.open = rmo_buf_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int ppc_rtas_find_all_sensors(void);
static void ppc_rtas_process_sensor(struct seq_file *m,
struct individual_sensor *s, int state, int error, const char *loc);
static char *ppc_rtas_process_error(int error);
static void get_location_code(struct seq_file *m,
struct individual_sensor *s, const char *loc);
static void check_location_string(struct seq_file *m, const char *c);
static void check_location(struct seq_file *m, const char *c);
static int __init proc_rtas_init(void)
{
struct proc_dir_entry *entry;
if (!machine_is(pseries))
return -ENODEV;
rtas_node = of_find_node_by_name(NULL, "rtas");
if (rtas_node == NULL)
return -ENODEV;
entry = create_proc_entry("ppc64/rtas/progress", S_IRUGO|S_IWUSR, NULL);
if (entry)
entry->proc_fops = &ppc_rtas_progress_operations;
entry = create_proc_entry("ppc64/rtas/clock", S_IRUGO|S_IWUSR, NULL);
if (entry)
entry->proc_fops = &ppc_rtas_clock_operations;
entry = create_proc_entry("ppc64/rtas/poweron", S_IWUSR|S_IRUGO, NULL);
if (entry)
entry->proc_fops = &ppc_rtas_poweron_operations;
entry = create_proc_entry("ppc64/rtas/sensors", S_IRUGO, NULL);
if (entry)
entry->proc_fops = &ppc_rtas_sensors_operations;
entry = create_proc_entry("ppc64/rtas/frequency", S_IWUSR|S_IRUGO,
NULL);
if (entry)
entry->proc_fops = &ppc_rtas_tone_freq_operations;
entry = create_proc_entry("ppc64/rtas/volume", S_IWUSR|S_IRUGO, NULL);
if (entry)
entry->proc_fops = &ppc_rtas_tone_volume_operations;
entry = create_proc_entry("ppc64/rtas/rmo_buffer", S_IRUSR, NULL);
if (entry)
entry->proc_fops = &ppc_rtas_rmo_buf_ops;
return 0;
}
__initcall(proc_rtas_init);
static int parse_number(const char __user *p, size_t count, unsigned long *val)
{
char buf[40];
char *end;
if (count > 39)
return -EINVAL;
if (copy_from_user(buf, p, count))
return -EFAULT;
buf[count] = 0;
*val = simple_strtoul(buf, &end, 10);
if (*end && *end != '\n')
return -EINVAL;
return 0;
}
/* ****************************************************************** */
/* POWER-ON-TIME */
/* ****************************************************************** */
static ssize_t ppc_rtas_poweron_write(struct file *file,
const char __user *buf, size_t count, loff_t *ppos)
{
struct rtc_time tm;
unsigned long nowtime;
int error = parse_number(buf, count, &nowtime);
if (error)
return error;
power_on_time = nowtime; /* save the time */
to_tm(nowtime, &tm);
error = rtas_call(rtas_token("set-time-for-power-on"), 7, 1, NULL,
tm.tm_year, tm.tm_mon, tm.tm_mday,
tm.tm_hour, tm.tm_min, tm.tm_sec, 0 /* nano */);
if (error)
printk(KERN_WARNING "error: setting poweron time returned: %s\n",
ppc_rtas_process_error(error));
return count;
}
/* ****************************************************************** */
static int ppc_rtas_poweron_show(struct seq_file *m, void *v)
{
if (power_on_time == 0)
seq_printf(m, "Power on time not set\n");
else
seq_printf(m, "%lu\n",power_on_time);
return 0;
}
/* ****************************************************************** */
/* PROGRESS */
/* ****************************************************************** */
static ssize_t ppc_rtas_progress_write(struct file *file,
const char __user *buf, size_t count, loff_t *ppos)
{
unsigned long hex;
if (count >= MAX_LINELENGTH)
count = MAX_LINELENGTH -1;
if (copy_from_user(progress_led, buf, count)) { /* save the string */
return -EFAULT;
}
progress_led[count] = 0;
/* Lets see if the user passed hexdigits */
hex = simple_strtoul(progress_led, NULL, 10);
rtas_progress ((char *)progress_led, hex);
return count;
/* clear the line */
/* rtas_progress(" ", 0xffff);*/
}
/* ****************************************************************** */
static int ppc_rtas_progress_show(struct seq_file *m, void *v)
{
if (progress_led[0])
seq_printf(m, "%s\n", progress_led);
return 0;
}
/* ****************************************************************** */
/* CLOCK */
/* ****************************************************************** */
static ssize_t ppc_rtas_clock_write(struct file *file,
const char __user *buf, size_t count, loff_t *ppos)
{
struct rtc_time tm;
unsigned long nowtime;
int error = parse_number(buf, count, &nowtime);
if (error)
return error;
to_tm(nowtime, &tm);
error = rtas_call(rtas_token("set-time-of-day"), 7, 1, NULL,
tm.tm_year, tm.tm_mon, tm.tm_mday,
tm.tm_hour, tm.tm_min, tm.tm_sec, 0);
if (error)
printk(KERN_WARNING "error: setting the clock returned: %s\n",
ppc_rtas_process_error(error));
return count;
}
/* ****************************************************************** */
static int ppc_rtas_clock_show(struct seq_file *m, void *v)
{
int ret[8];
int error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret);
if (error) {
printk(KERN_WARNING "error: reading the clock returned: %s\n",
ppc_rtas_process_error(error));
seq_printf(m, "0");
} else {
unsigned int year, mon, day, hour, min, sec;
year = ret[0]; mon = ret[1]; day = ret[2];
hour = ret[3]; min = ret[4]; sec = ret[5];
seq_printf(m, "%lu\n",
mktime(year, mon, day, hour, min, sec));
}
return 0;
}
/* ****************************************************************** */
/* SENSOR STUFF */
/* ****************************************************************** */
static int ppc_rtas_sensors_show(struct seq_file *m, void *v)
{
int i,j;
int state, error;
int get_sensor_state = rtas_token("get-sensor-state");
seq_printf(m, "RTAS (RunTime Abstraction Services) Sensor Information\n");
seq_printf(m, "Sensor\t\tValue\t\tCondition\tLocation\n");
seq_printf(m, "********************************************************\n");
if (ppc_rtas_find_all_sensors() != 0) {
seq_printf(m, "\nNo sensors are available\n");
return 0;
}
for (i=0; i<sensors.quant; i++) {
struct individual_sensor *p = &sensors.sensor[i];
char rstr[64];
const char *loc;
int llen, offs;
sprintf (rstr, SENSOR_PREFIX"%04d", p->token);
loc = of_get_property(rtas_node, rstr, &llen);
/* A sensor may have multiple instances */
for (j = 0, offs = 0; j <= p->quant; j++) {
error = rtas_call(get_sensor_state, 2, 2, &state,
p->token, j);
ppc_rtas_process_sensor(m, p, state, error, loc);
seq_putc(m, '\n');
if (loc) {
offs += strlen(loc) + 1;
loc += strlen(loc) + 1;
if (offs >= llen)
loc = NULL;
}
}
}
return 0;
}
/* ****************************************************************** */
static int ppc_rtas_find_all_sensors(void)
{
const unsigned int *utmp;
int len, i;
utmp = of_get_property(rtas_node, "rtas-sensors", &len);
if (utmp == NULL) {
printk (KERN_ERR "error: could not get rtas-sensors\n");
return 1;
}
sensors.quant = len / 8; /* int + int */
for (i=0; i<sensors.quant; i++) {
sensors.sensor[i].token = *utmp++;
sensors.sensor[i].quant = *utmp++;
}
return 0;
}
/* ****************************************************************** */
/*
* Builds a string of what rtas returned
*/
static char *ppc_rtas_process_error(int error)
{
switch (error) {
case SENSOR_CRITICAL_HIGH:
return "(critical high)";
case SENSOR_WARNING_HIGH:
return "(warning high)";
case SENSOR_NORMAL:
return "(normal)";
case SENSOR_WARNING_LOW:
return "(warning low)";
case SENSOR_CRITICAL_LOW:
return "(critical low)";
case SENSOR_SUCCESS:
return "(read ok)";
case SENSOR_HW_ERROR:
return "(hardware error)";
case SENSOR_BUSY:
return "(busy)";
case SENSOR_NOT_EXIST:
return "(non existent)";
case SENSOR_DR_ENTITY:
return "(dr entity removed)";
default:
return "(UNKNOWN)";
}
}
/* ****************************************************************** */
/*
* Builds a string out of what the sensor said
*/
static void ppc_rtas_process_sensor(struct seq_file *m,
struct individual_sensor *s, int state, int error, const char *loc)
{
/* Defined return vales */
const char * key_switch[] = { "Off\t", "Normal\t", "Secure\t",
"Maintenance" };
const char * enclosure_switch[] = { "Closed", "Open" };
const char * lid_status[] = { " ", "Open", "Closed" };
const char * power_source[] = { "AC\t", "Battery",
"AC & Battery" };
const char * battery_remaining[] = { "Very Low", "Low", "Mid", "High" };
const char * epow_sensor[] = {
"EPOW Reset", "Cooling warning", "Power warning",
"System shutdown", "System halt", "EPOW main enclosure",
"EPOW power off" };
const char * battery_cyclestate[] = { "None", "In progress",
"Requested" };
const char * battery_charging[] = { "Charging", "Discharching",
"No current flow" };
const char * ibm_drconnector[] = { "Empty", "Present", "Unusable",
"Exchange" };
int have_strings = 0;
int num_states = 0;
int temperature = 0;
int unknown = 0;
/* What kind of sensor do we have here? */
switch (s->token) {
case KEY_SWITCH:
seq_printf(m, "Key switch:\t");
num_states = sizeof(key_switch) / sizeof(char *);
if (state < num_states) {
seq_printf(m, "%s\t", key_switch[state]);
have_strings = 1;
}
break;
case ENCLOSURE_SWITCH:
seq_printf(m, "Enclosure switch:\t");
num_states = sizeof(enclosure_switch) / sizeof(char *);
if (state < num_states) {
seq_printf(m, "%s\t",
enclosure_switch[state]);
have_strings = 1;
}
break;
case THERMAL_SENSOR:
seq_printf(m, "Temp. (C/F):\t");
temperature = 1;
break;
case LID_STATUS:
seq_printf(m, "Lid status:\t");
num_states = sizeof(lid_status) / sizeof(char *);
if (state < num_states) {
seq_printf(m, "%s\t", lid_status[state]);
have_strings = 1;
}
break;
case POWER_SOURCE:
seq_printf(m, "Power source:\t");
num_states = sizeof(power_source) / sizeof(char *);
if (state < num_states) {
seq_printf(m, "%s\t",
power_source[state]);
have_strings = 1;
}
break;
case BATTERY_VOLTAGE:
seq_printf(m, "Battery voltage:\t");
break;
case BATTERY_REMAINING:
seq_printf(m, "Battery remaining:\t");
num_states = sizeof(battery_remaining) / sizeof(char *);
if (state < num_states)
{
seq_printf(m, "%s\t",
battery_remaining[state]);
have_strings = 1;
}
break;
case BATTERY_PERCENTAGE:
seq_printf(m, "Battery percentage:\t");
break;
case EPOW_SENSOR:
seq_printf(m, "EPOW Sensor:\t");
num_states = sizeof(epow_sensor) / sizeof(char *);
if (state < num_states) {
seq_printf(m, "%s\t", epow_sensor[state]);
have_strings = 1;
}
break;
case BATTERY_CYCLESTATE:
seq_printf(m, "Battery cyclestate:\t");
num_states = sizeof(battery_cyclestate) /
sizeof(char *);
if (state < num_states) {
seq_printf(m, "%s\t",
battery_cyclestate[state]);
have_strings = 1;
}
break;
case BATTERY_CHARGING:
seq_printf(m, "Battery Charging:\t");
num_states = sizeof(battery_charging) / sizeof(char *);
if (state < num_states) {
seq_printf(m, "%s\t",
battery_charging[state]);
have_strings = 1;
}
break;
case IBM_SURVEILLANCE:
seq_printf(m, "Surveillance:\t");
break;
case IBM_FANRPM:
seq_printf(m, "Fan (rpm):\t");
break;
case IBM_VOLTAGE:
seq_printf(m, "Voltage (mv):\t");
break;
case IBM_DRCONNECTOR:
seq_printf(m, "DR connector:\t");
num_states = sizeof(ibm_drconnector) / sizeof(char *);
if (state < num_states) {
seq_printf(m, "%s\t",
ibm_drconnector[state]);
have_strings = 1;
}
break;
case IBM_POWERSUPPLY:
seq_printf(m, "Powersupply:\t");
break;
default:
seq_printf(m, "Unknown sensor (type %d), ignoring it\n",
s->token);
unknown = 1;
have_strings = 1;
break;
}
if (have_strings == 0) {
if (temperature) {
seq_printf(m, "%4d /%4d\t", state, cel_to_fahr(state));
} else
seq_printf(m, "%10d\t", state);
}
if (unknown == 0) {
seq_printf(m, "%s\t", ppc_rtas_process_error(error));
get_location_code(m, s, loc);
}
}
/* ****************************************************************** */
static void check_location(struct seq_file *m, const char *c)
{
switch (c[0]) {
case LOC_PLANAR:
seq_printf(m, "Planar #%c", c[1]);
break;
case LOC_CPU:
seq_printf(m, "CPU #%c", c[1]);
break;
case LOC_FAN:
seq_printf(m, "Fan #%c", c[1]);
break;
case LOC_RACKMOUNTED:
seq_printf(m, "Rack #%c", c[1]);
break;
case LOC_VOLTAGE:
seq_printf(m, "Voltage #%c", c[1]);
break;
case LOC_LCD:
seq_printf(m, "LCD #%c", c[1]);
break;
case '.':
seq_printf(m, "- %c", c[1]);
break;
default:
seq_printf(m, "Unknown location");
break;
}
}
/* ****************************************************************** */
/*
* Format:
* ${LETTER}${NUMBER}[[-/]${LETTER}${NUMBER} [ ... ] ]
* the '.' may be an abbrevation
*/
static void check_location_string(struct seq_file *m, const char *c)
{
while (*c) {
if (isalpha(*c) || *c == '.')
check_location(m, c);
else if (*c == '/' || *c == '-')
seq_printf(m, " at ");
c++;
}
}
/* ****************************************************************** */
static void get_location_code(struct seq_file *m, struct individual_sensor *s,
const char *loc)
{
if (!loc || !*loc) {
seq_printf(m, "---");/* does not have a location */
} else {
check_location_string(m, loc);
}
seq_putc(m, ' ');
}
/* ****************************************************************** */
/* INDICATORS - Tone Frequency */
/* ****************************************************************** */
static ssize_t ppc_rtas_tone_freq_write(struct file *file,
const char __user *buf, size_t count, loff_t *ppos)
{
unsigned long freq;
int error = parse_number(buf, count, &freq);
if (error)
return error;
rtas_tone_frequency = freq; /* save it for later */
error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
TONE_FREQUENCY, 0, freq);
if (error)
printk(KERN_WARNING "error: setting tone frequency returned: %s\n",
ppc_rtas_process_error(error));
return count;
}
/* ****************************************************************** */
static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v)
{
seq_printf(m, "%lu\n", rtas_tone_frequency);
return 0;
}
/* ****************************************************************** */
/* INDICATORS - Tone Volume */
/* ****************************************************************** */
static ssize_t ppc_rtas_tone_volume_write(struct file *file,
const char __user *buf, size_t count, loff_t *ppos)
{
unsigned long volume;
int error = parse_number(buf, count, &volume);
if (error)
return error;
if (volume > 100)
volume = 100;
rtas_tone_volume = volume; /* save it for later */
error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
TONE_VOLUME, 0, volume);
if (error)
printk(KERN_WARNING "error: setting tone volume returned: %s\n",
ppc_rtas_process_error(error));
return count;
}
/* ****************************************************************** */
static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v)
{
seq_printf(m, "%lu\n", rtas_tone_volume);
return 0;
}
#define RMO_READ_BUF_MAX 30
/* RTAS Userspace access */
static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v)
{
seq_printf(m, "%016lx %x\n", rtas_rmo_buf, RTAS_RMOBUF_MAX);
return 0;
}