linux-hardened/kernel/profile.c
David Howells 271a15eabe proc: Supply PDE attribute setting accessor functions
Supply accessor functions to set attributes in proc_dir_entry structs.

The following are supplied: proc_set_size() and proc_set_user().

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Mauro Carvalho Chehab <mchehab@redhat.com>
cc: linuxppc-dev@lists.ozlabs.org
cc: linux-media@vger.kernel.org
cc: netdev@vger.kernel.org
cc: linux-wireless@vger.kernel.org
cc: linux-pci@vger.kernel.org
cc: netfilter-devel@vger.kernel.org
cc: alsa-devel@alsa-project.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-05-01 17:29:18 -04:00

608 lines
16 KiB
C

/*
* linux/kernel/profile.c
* Simple profiling. Manages a direct-mapped profile hit count buffer,
* with configurable resolution, support for restricting the cpus on
* which profiling is done, and switching between cpu time and
* schedule() calls via kernel command line parameters passed at boot.
*
* Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
* Red Hat, July 2004
* Consolidation of architecture support code for profiling,
* Nadia Yvette Chambers, Oracle, July 2004
* Amortized hit count accounting via per-cpu open-addressed hashtables
* to resolve timer interrupt livelocks, Nadia Yvette Chambers,
* Oracle, 2004
*/
#include <linux/export.h>
#include <linux/profile.h>
#include <linux/bootmem.h>
#include <linux/notifier.h>
#include <linux/mm.h>
#include <linux/cpumask.h>
#include <linux/cpu.h>
#include <linux/highmem.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <asm/sections.h>
#include <asm/irq_regs.h>
#include <asm/ptrace.h>
struct profile_hit {
u32 pc, hits;
};
#define PROFILE_GRPSHIFT 3
#define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT)
#define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit))
#define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ)
static atomic_t *prof_buffer;
static unsigned long prof_len, prof_shift;
int prof_on __read_mostly;
EXPORT_SYMBOL_GPL(prof_on);
static cpumask_var_t prof_cpu_mask;
#ifdef CONFIG_SMP
static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
static DEFINE_PER_CPU(int, cpu_profile_flip);
static DEFINE_MUTEX(profile_flip_mutex);
#endif /* CONFIG_SMP */
int profile_setup(char *str)
{
static char schedstr[] = "schedule";
static char sleepstr[] = "sleep";
static char kvmstr[] = "kvm";
int par;
if (!strncmp(str, sleepstr, strlen(sleepstr))) {
#ifdef CONFIG_SCHEDSTATS
prof_on = SLEEP_PROFILING;
if (str[strlen(sleepstr)] == ',')
str += strlen(sleepstr) + 1;
if (get_option(&str, &par))
prof_shift = par;
printk(KERN_INFO
"kernel sleep profiling enabled (shift: %ld)\n",
prof_shift);
#else
printk(KERN_WARNING
"kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
#endif /* CONFIG_SCHEDSTATS */
} else if (!strncmp(str, schedstr, strlen(schedstr))) {
prof_on = SCHED_PROFILING;
if (str[strlen(schedstr)] == ',')
str += strlen(schedstr) + 1;
if (get_option(&str, &par))
prof_shift = par;
printk(KERN_INFO
"kernel schedule profiling enabled (shift: %ld)\n",
prof_shift);
} else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
prof_on = KVM_PROFILING;
if (str[strlen(kvmstr)] == ',')
str += strlen(kvmstr) + 1;
if (get_option(&str, &par))
prof_shift = par;
printk(KERN_INFO
"kernel KVM profiling enabled (shift: %ld)\n",
prof_shift);
} else if (get_option(&str, &par)) {
prof_shift = par;
prof_on = CPU_PROFILING;
printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n",
prof_shift);
}
return 1;
}
__setup("profile=", profile_setup);
int __ref profile_init(void)
{
int buffer_bytes;
if (!prof_on)
return 0;
/* only text is profiled */
prof_len = (_etext - _stext) >> prof_shift;
buffer_bytes = prof_len*sizeof(atomic_t);
if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
return -ENOMEM;
cpumask_copy(prof_cpu_mask, cpu_possible_mask);
prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
if (prof_buffer)
return 0;
prof_buffer = alloc_pages_exact(buffer_bytes,
GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
if (prof_buffer)
return 0;
prof_buffer = vzalloc(buffer_bytes);
if (prof_buffer)
return 0;
free_cpumask_var(prof_cpu_mask);
return -ENOMEM;
}
/* Profile event notifications */
static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
void profile_task_exit(struct task_struct *task)
{
blocking_notifier_call_chain(&task_exit_notifier, 0, task);
}
int profile_handoff_task(struct task_struct *task)
{
int ret;
ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
return (ret == NOTIFY_OK) ? 1 : 0;
}
void profile_munmap(unsigned long addr)
{
blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
}
int task_handoff_register(struct notifier_block *n)
{
return atomic_notifier_chain_register(&task_free_notifier, n);
}
EXPORT_SYMBOL_GPL(task_handoff_register);
int task_handoff_unregister(struct notifier_block *n)
{
return atomic_notifier_chain_unregister(&task_free_notifier, n);
}
EXPORT_SYMBOL_GPL(task_handoff_unregister);
int profile_event_register(enum profile_type type, struct notifier_block *n)
{
int err = -EINVAL;
switch (type) {
case PROFILE_TASK_EXIT:
err = blocking_notifier_chain_register(
&task_exit_notifier, n);
break;
case PROFILE_MUNMAP:
err = blocking_notifier_chain_register(
&munmap_notifier, n);
break;
}
return err;
}
EXPORT_SYMBOL_GPL(profile_event_register);
int profile_event_unregister(enum profile_type type, struct notifier_block *n)
{
int err = -EINVAL;
switch (type) {
case PROFILE_TASK_EXIT:
err = blocking_notifier_chain_unregister(
&task_exit_notifier, n);
break;
case PROFILE_MUNMAP:
err = blocking_notifier_chain_unregister(
&munmap_notifier, n);
break;
}
return err;
}
EXPORT_SYMBOL_GPL(profile_event_unregister);
#ifdef CONFIG_SMP
/*
* Each cpu has a pair of open-addressed hashtables for pending
* profile hits. read_profile() IPI's all cpus to request them
* to flip buffers and flushes their contents to prof_buffer itself.
* Flip requests are serialized by the profile_flip_mutex. The sole
* use of having a second hashtable is for avoiding cacheline
* contention that would otherwise happen during flushes of pending
* profile hits required for the accuracy of reported profile hits
* and so resurrect the interrupt livelock issue.
*
* The open-addressed hashtables are indexed by profile buffer slot
* and hold the number of pending hits to that profile buffer slot on
* a cpu in an entry. When the hashtable overflows, all pending hits
* are accounted to their corresponding profile buffer slots with
* atomic_add() and the hashtable emptied. As numerous pending hits
* may be accounted to a profile buffer slot in a hashtable entry,
* this amortizes a number of atomic profile buffer increments likely
* to be far larger than the number of entries in the hashtable,
* particularly given that the number of distinct profile buffer
* positions to which hits are accounted during short intervals (e.g.
* several seconds) is usually very small. Exclusion from buffer
* flipping is provided by interrupt disablement (note that for
* SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
* process context).
* The hash function is meant to be lightweight as opposed to strong,
* and was vaguely inspired by ppc64 firmware-supported inverted
* pagetable hash functions, but uses a full hashtable full of finite
* collision chains, not just pairs of them.
*
* -- nyc
*/
static void __profile_flip_buffers(void *unused)
{
int cpu = smp_processor_id();
per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
}
static void profile_flip_buffers(void)
{
int i, j, cpu;
mutex_lock(&profile_flip_mutex);
j = per_cpu(cpu_profile_flip, get_cpu());
put_cpu();
on_each_cpu(__profile_flip_buffers, NULL, 1);
for_each_online_cpu(cpu) {
struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
for (i = 0; i < NR_PROFILE_HIT; ++i) {
if (!hits[i].hits) {
if (hits[i].pc)
hits[i].pc = 0;
continue;
}
atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
hits[i].hits = hits[i].pc = 0;
}
}
mutex_unlock(&profile_flip_mutex);
}
static void profile_discard_flip_buffers(void)
{
int i, cpu;
mutex_lock(&profile_flip_mutex);
i = per_cpu(cpu_profile_flip, get_cpu());
put_cpu();
on_each_cpu(__profile_flip_buffers, NULL, 1);
for_each_online_cpu(cpu) {
struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
}
mutex_unlock(&profile_flip_mutex);
}
static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
{
unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
int i, j, cpu;
struct profile_hit *hits;
pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
cpu = get_cpu();
hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
if (!hits) {
put_cpu();
return;
}
/*
* We buffer the global profiler buffer into a per-CPU
* queue and thus reduce the number of global (and possibly
* NUMA-alien) accesses. The write-queue is self-coalescing:
*/
local_irq_save(flags);
do {
for (j = 0; j < PROFILE_GRPSZ; ++j) {
if (hits[i + j].pc == pc) {
hits[i + j].hits += nr_hits;
goto out;
} else if (!hits[i + j].hits) {
hits[i + j].pc = pc;
hits[i + j].hits = nr_hits;
goto out;
}
}
i = (i + secondary) & (NR_PROFILE_HIT - 1);
} while (i != primary);
/*
* Add the current hit(s) and flush the write-queue out
* to the global buffer:
*/
atomic_add(nr_hits, &prof_buffer[pc]);
for (i = 0; i < NR_PROFILE_HIT; ++i) {
atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
hits[i].pc = hits[i].hits = 0;
}
out:
local_irq_restore(flags);
put_cpu();
}
static int __cpuinit profile_cpu_callback(struct notifier_block *info,
unsigned long action, void *__cpu)
{
int node, cpu = (unsigned long)__cpu;
struct page *page;
switch (action) {
case CPU_UP_PREPARE:
case CPU_UP_PREPARE_FROZEN:
node = cpu_to_mem(cpu);
per_cpu(cpu_profile_flip, cpu) = 0;
if (!per_cpu(cpu_profile_hits, cpu)[1]) {
page = alloc_pages_exact_node(node,
GFP_KERNEL | __GFP_ZERO,
0);
if (!page)
return notifier_from_errno(-ENOMEM);
per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
}
if (!per_cpu(cpu_profile_hits, cpu)[0]) {
page = alloc_pages_exact_node(node,
GFP_KERNEL | __GFP_ZERO,
0);
if (!page)
goto out_free;
per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
}
break;
out_free:
page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
per_cpu(cpu_profile_hits, cpu)[1] = NULL;
__free_page(page);
return notifier_from_errno(-ENOMEM);
case CPU_ONLINE:
case CPU_ONLINE_FROZEN:
if (prof_cpu_mask != NULL)
cpumask_set_cpu(cpu, prof_cpu_mask);
break;
case CPU_UP_CANCELED:
case CPU_UP_CANCELED_FROZEN:
case CPU_DEAD:
case CPU_DEAD_FROZEN:
if (prof_cpu_mask != NULL)
cpumask_clear_cpu(cpu, prof_cpu_mask);
if (per_cpu(cpu_profile_hits, cpu)[0]) {
page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
per_cpu(cpu_profile_hits, cpu)[0] = NULL;
__free_page(page);
}
if (per_cpu(cpu_profile_hits, cpu)[1]) {
page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
per_cpu(cpu_profile_hits, cpu)[1] = NULL;
__free_page(page);
}
break;
}
return NOTIFY_OK;
}
#else /* !CONFIG_SMP */
#define profile_flip_buffers() do { } while (0)
#define profile_discard_flip_buffers() do { } while (0)
#define profile_cpu_callback NULL
static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
{
unsigned long pc;
pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
}
#endif /* !CONFIG_SMP */
void profile_hits(int type, void *__pc, unsigned int nr_hits)
{
if (prof_on != type || !prof_buffer)
return;
do_profile_hits(type, __pc, nr_hits);
}
EXPORT_SYMBOL_GPL(profile_hits);
void profile_tick(int type)
{
struct pt_regs *regs = get_irq_regs();
if (!user_mode(regs) && prof_cpu_mask != NULL &&
cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
profile_hit(type, (void *)profile_pc(regs));
}
#ifdef CONFIG_PROC_FS
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <asm/uaccess.h>
static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
{
seq_cpumask(m, prof_cpu_mask);
seq_putc(m, '\n');
return 0;
}
static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
{
return single_open(file, prof_cpu_mask_proc_show, NULL);
}
static ssize_t prof_cpu_mask_proc_write(struct file *file,
const char __user *buffer, size_t count, loff_t *pos)
{
cpumask_var_t new_value;
int err;
if (!alloc_cpumask_var(&new_value, GFP_KERNEL))
return -ENOMEM;
err = cpumask_parse_user(buffer, count, new_value);
if (!err) {
cpumask_copy(prof_cpu_mask, new_value);
err = count;
}
free_cpumask_var(new_value);
return err;
}
static const struct file_operations prof_cpu_mask_proc_fops = {
.open = prof_cpu_mask_proc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
.write = prof_cpu_mask_proc_write,
};
void create_prof_cpu_mask(void)
{
/* create /proc/irq/prof_cpu_mask */
proc_create("irq/prof_cpu_mask", 0600, NULL, &prof_cpu_mask_proc_fops);
}
/*
* This function accesses profiling information. The returned data is
* binary: the sampling step and the actual contents of the profile
* buffer. Use of the program readprofile is recommended in order to
* get meaningful info out of these data.
*/
static ssize_t
read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
unsigned long p = *ppos;
ssize_t read;
char *pnt;
unsigned int sample_step = 1 << prof_shift;
profile_flip_buffers();
if (p >= (prof_len+1)*sizeof(unsigned int))
return 0;
if (count > (prof_len+1)*sizeof(unsigned int) - p)
count = (prof_len+1)*sizeof(unsigned int) - p;
read = 0;
while (p < sizeof(unsigned int) && count > 0) {
if (put_user(*((char *)(&sample_step)+p), buf))
return -EFAULT;
buf++; p++; count--; read++;
}
pnt = (char *)prof_buffer + p - sizeof(atomic_t);
if (copy_to_user(buf, (void *)pnt, count))
return -EFAULT;
read += count;
*ppos += read;
return read;
}
/*
* Writing to /proc/profile resets the counters
*
* Writing a 'profiling multiplier' value into it also re-sets the profiling
* interrupt frequency, on architectures that support this.
*/
static ssize_t write_profile(struct file *file, const char __user *buf,
size_t count, loff_t *ppos)
{
#ifdef CONFIG_SMP
extern int setup_profiling_timer(unsigned int multiplier);
if (count == sizeof(int)) {
unsigned int multiplier;
if (copy_from_user(&multiplier, buf, sizeof(int)))
return -EFAULT;
if (setup_profiling_timer(multiplier))
return -EINVAL;
}
#endif
profile_discard_flip_buffers();
memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
return count;
}
static const struct file_operations proc_profile_operations = {
.read = read_profile,
.write = write_profile,
.llseek = default_llseek,
};
#ifdef CONFIG_SMP
static void profile_nop(void *unused)
{
}
static int create_hash_tables(void)
{
int cpu;
for_each_online_cpu(cpu) {
int node = cpu_to_mem(cpu);
struct page *page;
page = alloc_pages_exact_node(node,
GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
0);
if (!page)
goto out_cleanup;
per_cpu(cpu_profile_hits, cpu)[1]
= (struct profile_hit *)page_address(page);
page = alloc_pages_exact_node(node,
GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
0);
if (!page)
goto out_cleanup;
per_cpu(cpu_profile_hits, cpu)[0]
= (struct profile_hit *)page_address(page);
}
return 0;
out_cleanup:
prof_on = 0;
smp_mb();
on_each_cpu(profile_nop, NULL, 1);
for_each_online_cpu(cpu) {
struct page *page;
if (per_cpu(cpu_profile_hits, cpu)[0]) {
page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
per_cpu(cpu_profile_hits, cpu)[0] = NULL;
__free_page(page);
}
if (per_cpu(cpu_profile_hits, cpu)[1]) {
page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
per_cpu(cpu_profile_hits, cpu)[1] = NULL;
__free_page(page);
}
}
return -1;
}
#else
#define create_hash_tables() ({ 0; })
#endif
int __ref create_proc_profile(void) /* false positive from hotcpu_notifier */
{
struct proc_dir_entry *entry;
if (!prof_on)
return 0;
if (create_hash_tables())
return -ENOMEM;
entry = proc_create("profile", S_IWUSR | S_IRUGO,
NULL, &proc_profile_operations);
if (!entry)
return 0;
proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t));
hotcpu_notifier(profile_cpu_callback, 0);
return 0;
}
module_init(create_proc_profile);
#endif /* CONFIG_PROC_FS */