linux-hardened/drivers/spi/spi-adi-v3.c
Wolfram Sang 14ac00e033 spi: drop owner assignment from platform_drivers
A platform_driver does not need to set an owner, it will be populated by the
driver core.

Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
2014-10-20 16:21:36 +02:00

984 lines
25 KiB
C

/*
* Analog Devices SPI3 controller driver
*
* Copyright (c) 2014 Analog Devices Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/errno.h>
#include <linux/gpio.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spi/spi.h>
#include <linux/spi/adi_spi3.h>
#include <linux/types.h>
#include <asm/dma.h>
#include <asm/portmux.h>
enum adi_spi_state {
START_STATE,
RUNNING_STATE,
DONE_STATE,
ERROR_STATE
};
struct adi_spi_master;
struct adi_spi_transfer_ops {
void (*write) (struct adi_spi_master *);
void (*read) (struct adi_spi_master *);
void (*duplex) (struct adi_spi_master *);
};
/* runtime info for spi master */
struct adi_spi_master {
/* SPI framework hookup */
struct spi_master *master;
/* Regs base of SPI controller */
struct adi_spi_regs __iomem *regs;
/* Pin request list */
u16 *pin_req;
/* Message Transfer pump */
struct tasklet_struct pump_transfers;
/* Current message transfer state info */
struct spi_message *cur_msg;
struct spi_transfer *cur_transfer;
struct adi_spi_device *cur_chip;
unsigned transfer_len;
/* transfer buffer */
void *tx;
void *tx_end;
void *rx;
void *rx_end;
/* dma info */
unsigned int tx_dma;
unsigned int rx_dma;
dma_addr_t tx_dma_addr;
dma_addr_t rx_dma_addr;
unsigned long dummy_buffer; /* used in unidirectional transfer */
unsigned long tx_dma_size;
unsigned long rx_dma_size;
int tx_num;
int rx_num;
/* store register value for suspend/resume */
u32 control;
u32 ssel;
unsigned long sclk;
enum adi_spi_state state;
const struct adi_spi_transfer_ops *ops;
};
struct adi_spi_device {
u32 control;
u32 clock;
u32 ssel;
u8 cs;
u16 cs_chg_udelay; /* Some devices require > 255usec delay */
u32 cs_gpio;
u32 tx_dummy_val; /* tx value for rx only transfer */
bool enable_dma;
const struct adi_spi_transfer_ops *ops;
};
static void adi_spi_enable(struct adi_spi_master *drv_data)
{
u32 ctl;
ctl = ioread32(&drv_data->regs->control);
ctl |= SPI_CTL_EN;
iowrite32(ctl, &drv_data->regs->control);
}
static void adi_spi_disable(struct adi_spi_master *drv_data)
{
u32 ctl;
ctl = ioread32(&drv_data->regs->control);
ctl &= ~SPI_CTL_EN;
iowrite32(ctl, &drv_data->regs->control);
}
/* Caculate the SPI_CLOCK register value based on input HZ */
static u32 hz_to_spi_clock(u32 sclk, u32 speed_hz)
{
u32 spi_clock = sclk / speed_hz;
if (spi_clock)
spi_clock--;
return spi_clock;
}
static int adi_spi_flush(struct adi_spi_master *drv_data)
{
unsigned long limit = loops_per_jiffy << 1;
/* wait for stop and clear stat */
while (!(ioread32(&drv_data->regs->status) & SPI_STAT_SPIF) && --limit)
cpu_relax();
iowrite32(0xFFFFFFFF, &drv_data->regs->status);
return limit;
}
/* Chip select operation functions for cs_change flag */
static void adi_spi_cs_active(struct adi_spi_master *drv_data, struct adi_spi_device *chip)
{
if (likely(chip->cs < MAX_CTRL_CS)) {
u32 reg;
reg = ioread32(&drv_data->regs->ssel);
reg &= ~chip->ssel;
iowrite32(reg, &drv_data->regs->ssel);
} else {
gpio_set_value(chip->cs_gpio, 0);
}
}
static void adi_spi_cs_deactive(struct adi_spi_master *drv_data,
struct adi_spi_device *chip)
{
if (likely(chip->cs < MAX_CTRL_CS)) {
u32 reg;
reg = ioread32(&drv_data->regs->ssel);
reg |= chip->ssel;
iowrite32(reg, &drv_data->regs->ssel);
} else {
gpio_set_value(chip->cs_gpio, 1);
}
/* Move delay here for consistency */
if (chip->cs_chg_udelay)
udelay(chip->cs_chg_udelay);
}
/* enable or disable the pin muxed by GPIO and SPI CS to work as SPI CS */
static inline void adi_spi_cs_enable(struct adi_spi_master *drv_data,
struct adi_spi_device *chip)
{
if (chip->cs < MAX_CTRL_CS) {
u32 reg;
reg = ioread32(&drv_data->regs->ssel);
reg |= chip->ssel >> 8;
iowrite32(reg, &drv_data->regs->ssel);
}
}
static inline void adi_spi_cs_disable(struct adi_spi_master *drv_data,
struct adi_spi_device *chip)
{
if (chip->cs < MAX_CTRL_CS) {
u32 reg;
reg = ioread32(&drv_data->regs->ssel);
reg &= ~(chip->ssel >> 8);
iowrite32(reg, &drv_data->regs->ssel);
}
}
/* stop controller and re-config current chip*/
static void adi_spi_restore_state(struct adi_spi_master *drv_data)
{
struct adi_spi_device *chip = drv_data->cur_chip;
/* Clear status and disable clock */
iowrite32(0xFFFFFFFF, &drv_data->regs->status);
iowrite32(0x0, &drv_data->regs->rx_control);
iowrite32(0x0, &drv_data->regs->tx_control);
adi_spi_disable(drv_data);
/* Load the registers */
iowrite32(chip->control, &drv_data->regs->control);
iowrite32(chip->clock, &drv_data->regs->clock);
adi_spi_enable(drv_data);
drv_data->tx_num = drv_data->rx_num = 0;
/* we always choose tx transfer initiate */
iowrite32(SPI_RXCTL_REN, &drv_data->regs->rx_control);
iowrite32(SPI_TXCTL_TEN | SPI_TXCTL_TTI, &drv_data->regs->tx_control);
adi_spi_cs_active(drv_data, chip);
}
/* discard invalid rx data and empty rfifo */
static inline void dummy_read(struct adi_spi_master *drv_data)
{
while (!(ioread32(&drv_data->regs->status) & SPI_STAT_RFE))
ioread32(&drv_data->regs->rfifo);
}
static void adi_spi_u8_write(struct adi_spi_master *drv_data)
{
dummy_read(drv_data);
while (drv_data->tx < drv_data->tx_end) {
iowrite32(*(u8 *)(drv_data->tx++), &drv_data->regs->tfifo);
while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
cpu_relax();
ioread32(&drv_data->regs->rfifo);
}
}
static void adi_spi_u8_read(struct adi_spi_master *drv_data)
{
u32 tx_val = drv_data->cur_chip->tx_dummy_val;
dummy_read(drv_data);
while (drv_data->rx < drv_data->rx_end) {
iowrite32(tx_val, &drv_data->regs->tfifo);
while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
cpu_relax();
*(u8 *)(drv_data->rx++) = ioread32(&drv_data->regs->rfifo);
}
}
static void adi_spi_u8_duplex(struct adi_spi_master *drv_data)
{
dummy_read(drv_data);
while (drv_data->rx < drv_data->rx_end) {
iowrite32(*(u8 *)(drv_data->tx++), &drv_data->regs->tfifo);
while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
cpu_relax();
*(u8 *)(drv_data->rx++) = ioread32(&drv_data->regs->rfifo);
}
}
static const struct adi_spi_transfer_ops adi_spi_transfer_ops_u8 = {
.write = adi_spi_u8_write,
.read = adi_spi_u8_read,
.duplex = adi_spi_u8_duplex,
};
static void adi_spi_u16_write(struct adi_spi_master *drv_data)
{
dummy_read(drv_data);
while (drv_data->tx < drv_data->tx_end) {
iowrite32(*(u16 *)drv_data->tx, &drv_data->regs->tfifo);
drv_data->tx += 2;
while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
cpu_relax();
ioread32(&drv_data->regs->rfifo);
}
}
static void adi_spi_u16_read(struct adi_spi_master *drv_data)
{
u32 tx_val = drv_data->cur_chip->tx_dummy_val;
dummy_read(drv_data);
while (drv_data->rx < drv_data->rx_end) {
iowrite32(tx_val, &drv_data->regs->tfifo);
while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
cpu_relax();
*(u16 *)drv_data->rx = ioread32(&drv_data->regs->rfifo);
drv_data->rx += 2;
}
}
static void adi_spi_u16_duplex(struct adi_spi_master *drv_data)
{
dummy_read(drv_data);
while (drv_data->rx < drv_data->rx_end) {
iowrite32(*(u16 *)drv_data->tx, &drv_data->regs->tfifo);
drv_data->tx += 2;
while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
cpu_relax();
*(u16 *)drv_data->rx = ioread32(&drv_data->regs->rfifo);
drv_data->rx += 2;
}
}
static const struct adi_spi_transfer_ops adi_spi_transfer_ops_u16 = {
.write = adi_spi_u16_write,
.read = adi_spi_u16_read,
.duplex = adi_spi_u16_duplex,
};
static void adi_spi_u32_write(struct adi_spi_master *drv_data)
{
dummy_read(drv_data);
while (drv_data->tx < drv_data->tx_end) {
iowrite32(*(u32 *)drv_data->tx, &drv_data->regs->tfifo);
drv_data->tx += 4;
while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
cpu_relax();
ioread32(&drv_data->regs->rfifo);
}
}
static void adi_spi_u32_read(struct adi_spi_master *drv_data)
{
u32 tx_val = drv_data->cur_chip->tx_dummy_val;
dummy_read(drv_data);
while (drv_data->rx < drv_data->rx_end) {
iowrite32(tx_val, &drv_data->regs->tfifo);
while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
cpu_relax();
*(u32 *)drv_data->rx = ioread32(&drv_data->regs->rfifo);
drv_data->rx += 4;
}
}
static void adi_spi_u32_duplex(struct adi_spi_master *drv_data)
{
dummy_read(drv_data);
while (drv_data->rx < drv_data->rx_end) {
iowrite32(*(u32 *)drv_data->tx, &drv_data->regs->tfifo);
drv_data->tx += 4;
while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
cpu_relax();
*(u32 *)drv_data->rx = ioread32(&drv_data->regs->rfifo);
drv_data->rx += 4;
}
}
static const struct adi_spi_transfer_ops adi_spi_transfer_ops_u32 = {
.write = adi_spi_u32_write,
.read = adi_spi_u32_read,
.duplex = adi_spi_u32_duplex,
};
/* test if there is more transfer to be done */
static void adi_spi_next_transfer(struct adi_spi_master *drv)
{
struct spi_message *msg = drv->cur_msg;
struct spi_transfer *t = drv->cur_transfer;
/* Move to next transfer */
if (t->transfer_list.next != &msg->transfers) {
drv->cur_transfer = list_entry(t->transfer_list.next,
struct spi_transfer, transfer_list);
drv->state = RUNNING_STATE;
} else {
drv->state = DONE_STATE;
drv->cur_transfer = NULL;
}
}
static void adi_spi_giveback(struct adi_spi_master *drv_data)
{
struct adi_spi_device *chip = drv_data->cur_chip;
adi_spi_cs_deactive(drv_data, chip);
spi_finalize_current_message(drv_data->master);
}
static int adi_spi_setup_transfer(struct adi_spi_master *drv)
{
struct spi_transfer *t = drv->cur_transfer;
u32 cr, cr_width;
if (t->tx_buf) {
drv->tx = (void *)t->tx_buf;
drv->tx_end = drv->tx + t->len;
} else {
drv->tx = NULL;
}
if (t->rx_buf) {
drv->rx = t->rx_buf;
drv->rx_end = drv->rx + t->len;
} else {
drv->rx = NULL;
}
drv->transfer_len = t->len;
/* bits per word setup */
switch (t->bits_per_word) {
case 8:
cr_width = SPI_CTL_SIZE08;
drv->ops = &adi_spi_transfer_ops_u8;
break;
case 16:
cr_width = SPI_CTL_SIZE16;
drv->ops = &adi_spi_transfer_ops_u16;
break;
case 32:
cr_width = SPI_CTL_SIZE32;
drv->ops = &adi_spi_transfer_ops_u32;
break;
default:
return -EINVAL;
}
cr = ioread32(&drv->regs->control) & ~SPI_CTL_SIZE;
cr |= cr_width;
iowrite32(cr, &drv->regs->control);
/* speed setup */
iowrite32(hz_to_spi_clock(drv->sclk, t->speed_hz), &drv->regs->clock);
return 0;
}
static int adi_spi_dma_xfer(struct adi_spi_master *drv_data)
{
struct spi_transfer *t = drv_data->cur_transfer;
struct spi_message *msg = drv_data->cur_msg;
struct adi_spi_device *chip = drv_data->cur_chip;
u32 dma_config;
unsigned long word_count, word_size;
void *tx_buf, *rx_buf;
switch (t->bits_per_word) {
case 8:
dma_config = WDSIZE_8 | PSIZE_8;
word_count = drv_data->transfer_len;
word_size = 1;
break;
case 16:
dma_config = WDSIZE_16 | PSIZE_16;
word_count = drv_data->transfer_len / 2;
word_size = 2;
break;
default:
dma_config = WDSIZE_32 | PSIZE_32;
word_count = drv_data->transfer_len / 4;
word_size = 4;
break;
}
if (!drv_data->rx) {
tx_buf = drv_data->tx;
rx_buf = &drv_data->dummy_buffer;
drv_data->tx_dma_size = drv_data->transfer_len;
drv_data->rx_dma_size = sizeof(drv_data->dummy_buffer);
set_dma_x_modify(drv_data->tx_dma, word_size);
set_dma_x_modify(drv_data->rx_dma, 0);
} else if (!drv_data->tx) {
drv_data->dummy_buffer = chip->tx_dummy_val;
tx_buf = &drv_data->dummy_buffer;
rx_buf = drv_data->rx;
drv_data->tx_dma_size = sizeof(drv_data->dummy_buffer);
drv_data->rx_dma_size = drv_data->transfer_len;
set_dma_x_modify(drv_data->tx_dma, 0);
set_dma_x_modify(drv_data->rx_dma, word_size);
} else {
tx_buf = drv_data->tx;
rx_buf = drv_data->rx;
drv_data->tx_dma_size = drv_data->rx_dma_size
= drv_data->transfer_len;
set_dma_x_modify(drv_data->tx_dma, word_size);
set_dma_x_modify(drv_data->rx_dma, word_size);
}
drv_data->tx_dma_addr = dma_map_single(&msg->spi->dev,
(void *)tx_buf,
drv_data->tx_dma_size,
DMA_TO_DEVICE);
if (dma_mapping_error(&msg->spi->dev,
drv_data->tx_dma_addr))
return -ENOMEM;
drv_data->rx_dma_addr = dma_map_single(&msg->spi->dev,
(void *)rx_buf,
drv_data->rx_dma_size,
DMA_FROM_DEVICE);
if (dma_mapping_error(&msg->spi->dev,
drv_data->rx_dma_addr)) {
dma_unmap_single(&msg->spi->dev,
drv_data->tx_dma_addr,
drv_data->tx_dma_size,
DMA_TO_DEVICE);
return -ENOMEM;
}
dummy_read(drv_data);
set_dma_x_count(drv_data->tx_dma, word_count);
set_dma_x_count(drv_data->rx_dma, word_count);
set_dma_start_addr(drv_data->tx_dma, drv_data->tx_dma_addr);
set_dma_start_addr(drv_data->rx_dma, drv_data->rx_dma_addr);
dma_config |= DMAFLOW_STOP | RESTART | DI_EN;
set_dma_config(drv_data->tx_dma, dma_config);
set_dma_config(drv_data->rx_dma, dma_config | WNR);
enable_dma(drv_data->tx_dma);
enable_dma(drv_data->rx_dma);
iowrite32(SPI_RXCTL_REN | SPI_RXCTL_RDR_NE,
&drv_data->regs->rx_control);
iowrite32(SPI_TXCTL_TEN | SPI_TXCTL_TTI | SPI_TXCTL_TDR_NF,
&drv_data->regs->tx_control);
return 0;
}
static int adi_spi_pio_xfer(struct adi_spi_master *drv_data)
{
struct spi_message *msg = drv_data->cur_msg;
if (!drv_data->rx) {
/* write only half duplex */
drv_data->ops->write(drv_data);
if (drv_data->tx != drv_data->tx_end)
return -EIO;
} else if (!drv_data->tx) {
/* read only half duplex */
drv_data->ops->read(drv_data);
if (drv_data->rx != drv_data->rx_end)
return -EIO;
} else {
/* full duplex mode */
drv_data->ops->duplex(drv_data);
if (drv_data->tx != drv_data->tx_end)
return -EIO;
}
if (!adi_spi_flush(drv_data))
return -EIO;
msg->actual_length += drv_data->transfer_len;
tasklet_schedule(&drv_data->pump_transfers);
return 0;
}
static void adi_spi_pump_transfers(unsigned long data)
{
struct adi_spi_master *drv_data = (struct adi_spi_master *)data;
struct spi_message *msg = NULL;
struct spi_transfer *t = NULL;
struct adi_spi_device *chip = NULL;
int ret;
/* Get current state information */
msg = drv_data->cur_msg;
t = drv_data->cur_transfer;
chip = drv_data->cur_chip;
/* Handle for abort */
if (drv_data->state == ERROR_STATE) {
msg->status = -EIO;
adi_spi_giveback(drv_data);
return;
}
if (drv_data->state == RUNNING_STATE) {
if (t->delay_usecs)
udelay(t->delay_usecs);
if (t->cs_change)
adi_spi_cs_deactive(drv_data, chip);
adi_spi_next_transfer(drv_data);
t = drv_data->cur_transfer;
}
/* Handle end of message */
if (drv_data->state == DONE_STATE) {
msg->status = 0;
adi_spi_giveback(drv_data);
return;
}
if ((t->len == 0) || (t->tx_buf == NULL && t->rx_buf == NULL)) {
/* Schedule next transfer tasklet */
tasklet_schedule(&drv_data->pump_transfers);
return;
}
ret = adi_spi_setup_transfer(drv_data);
if (ret) {
msg->status = ret;
adi_spi_giveback(drv_data);
}
iowrite32(0xFFFFFFFF, &drv_data->regs->status);
adi_spi_cs_active(drv_data, chip);
drv_data->state = RUNNING_STATE;
if (chip->enable_dma)
ret = adi_spi_dma_xfer(drv_data);
else
ret = adi_spi_pio_xfer(drv_data);
if (ret) {
msg->status = ret;
adi_spi_giveback(drv_data);
}
}
static int adi_spi_transfer_one_message(struct spi_master *master,
struct spi_message *m)
{
struct adi_spi_master *drv_data = spi_master_get_devdata(master);
drv_data->cur_msg = m;
drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
adi_spi_restore_state(drv_data);
drv_data->state = START_STATE;
drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
struct spi_transfer, transfer_list);
tasklet_schedule(&drv_data->pump_transfers);
return 0;
}
#define MAX_SPI_SSEL 7
static const u16 ssel[][MAX_SPI_SSEL] = {
{P_SPI0_SSEL1, P_SPI0_SSEL2, P_SPI0_SSEL3,
P_SPI0_SSEL4, P_SPI0_SSEL5,
P_SPI0_SSEL6, P_SPI0_SSEL7},
{P_SPI1_SSEL1, P_SPI1_SSEL2, P_SPI1_SSEL3,
P_SPI1_SSEL4, P_SPI1_SSEL5,
P_SPI1_SSEL6, P_SPI1_SSEL7},
{P_SPI2_SSEL1, P_SPI2_SSEL2, P_SPI2_SSEL3,
P_SPI2_SSEL4, P_SPI2_SSEL5,
P_SPI2_SSEL6, P_SPI2_SSEL7},
};
static int adi_spi_setup(struct spi_device *spi)
{
struct adi_spi_master *drv_data = spi_master_get_devdata(spi->master);
struct adi_spi_device *chip = spi_get_ctldata(spi);
u32 ctl_reg = SPI_CTL_ODM | SPI_CTL_PSSE;
int ret = -EINVAL;
if (!chip) {
struct adi_spi3_chip *chip_info = spi->controller_data;
chip = kzalloc(sizeof(*chip), GFP_KERNEL);
if (!chip)
return -ENOMEM;
if (chip_info) {
if (chip_info->control & ~ctl_reg) {
dev_err(&spi->dev,
"do not set bits that the SPI framework manages\n");
goto error;
}
chip->control = chip_info->control;
chip->cs_chg_udelay = chip_info->cs_chg_udelay;
chip->tx_dummy_val = chip_info->tx_dummy_val;
chip->enable_dma = chip_info->enable_dma;
}
chip->cs = spi->chip_select;
if (chip->cs < MAX_CTRL_CS) {
chip->ssel = (1 << chip->cs) << 8;
ret = peripheral_request(ssel[spi->master->bus_num]
[chip->cs-1], dev_name(&spi->dev));
if (ret) {
dev_err(&spi->dev, "peripheral_request() error\n");
goto error;
}
} else {
chip->cs_gpio = chip->cs - MAX_CTRL_CS;
ret = gpio_request_one(chip->cs_gpio, GPIOF_OUT_INIT_HIGH,
dev_name(&spi->dev));
if (ret) {
dev_err(&spi->dev, "gpio_request_one() error\n");
goto error;
}
}
spi_set_ctldata(spi, chip);
}
/* force a default base state */
chip->control &= ctl_reg;
if (spi->mode & SPI_CPOL)
chip->control |= SPI_CTL_CPOL;
if (spi->mode & SPI_CPHA)
chip->control |= SPI_CTL_CPHA;
if (spi->mode & SPI_LSB_FIRST)
chip->control |= SPI_CTL_LSBF;
chip->control |= SPI_CTL_MSTR;
/* we choose software to controll cs */
chip->control &= ~SPI_CTL_ASSEL;
chip->clock = hz_to_spi_clock(drv_data->sclk, spi->max_speed_hz);
adi_spi_cs_enable(drv_data, chip);
adi_spi_cs_deactive(drv_data, chip);
return 0;
error:
if (chip) {
kfree(chip);
spi_set_ctldata(spi, NULL);
}
return ret;
}
static void adi_spi_cleanup(struct spi_device *spi)
{
struct adi_spi_device *chip = spi_get_ctldata(spi);
struct adi_spi_master *drv_data = spi_master_get_devdata(spi->master);
if (!chip)
return;
if (chip->cs < MAX_CTRL_CS) {
peripheral_free(ssel[spi->master->bus_num]
[chip->cs-1]);
adi_spi_cs_disable(drv_data, chip);
} else {
gpio_free(chip->cs_gpio);
}
kfree(chip);
spi_set_ctldata(spi, NULL);
}
static irqreturn_t adi_spi_tx_dma_isr(int irq, void *dev_id)
{
struct adi_spi_master *drv_data = dev_id;
u32 dma_stat = get_dma_curr_irqstat(drv_data->tx_dma);
u32 tx_ctl;
clear_dma_irqstat(drv_data->tx_dma);
if (dma_stat & DMA_DONE) {
drv_data->tx_num++;
} else {
dev_err(&drv_data->master->dev,
"spi tx dma error: %d\n", dma_stat);
if (drv_data->tx)
drv_data->state = ERROR_STATE;
}
tx_ctl = ioread32(&drv_data->regs->tx_control);
tx_ctl &= ~SPI_TXCTL_TDR_NF;
iowrite32(tx_ctl, &drv_data->regs->tx_control);
return IRQ_HANDLED;
}
static irqreturn_t adi_spi_rx_dma_isr(int irq, void *dev_id)
{
struct adi_spi_master *drv_data = dev_id;
struct spi_message *msg = drv_data->cur_msg;
u32 dma_stat = get_dma_curr_irqstat(drv_data->rx_dma);
clear_dma_irqstat(drv_data->rx_dma);
if (dma_stat & DMA_DONE) {
drv_data->rx_num++;
/* we may fail on tx dma */
if (drv_data->state != ERROR_STATE)
msg->actual_length += drv_data->transfer_len;
} else {
drv_data->state = ERROR_STATE;
dev_err(&drv_data->master->dev,
"spi rx dma error: %d\n", dma_stat);
}
iowrite32(0, &drv_data->regs->tx_control);
iowrite32(0, &drv_data->regs->rx_control);
if (drv_data->rx_num != drv_data->tx_num)
dev_dbg(&drv_data->master->dev,
"dma interrupt missing: tx=%d,rx=%d\n",
drv_data->tx_num, drv_data->rx_num);
tasklet_schedule(&drv_data->pump_transfers);
return IRQ_HANDLED;
}
static int adi_spi_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct adi_spi3_master *info = dev_get_platdata(dev);
struct spi_master *master;
struct adi_spi_master *drv_data;
struct resource *mem, *res;
unsigned int tx_dma, rx_dma;
struct clk *sclk;
int ret;
if (!info) {
dev_err(dev, "platform data missing!\n");
return -ENODEV;
}
sclk = devm_clk_get(dev, "spi");
if (IS_ERR(sclk)) {
dev_err(dev, "can not get spi clock\n");
return PTR_ERR(sclk);
}
res = platform_get_resource(pdev, IORESOURCE_DMA, 0);
if (!res) {
dev_err(dev, "can not get tx dma resource\n");
return -ENXIO;
}
tx_dma = res->start;
res = platform_get_resource(pdev, IORESOURCE_DMA, 1);
if (!res) {
dev_err(dev, "can not get rx dma resource\n");
return -ENXIO;
}
rx_dma = res->start;
/* allocate master with space for drv_data */
master = spi_alloc_master(dev, sizeof(*drv_data));
if (!master) {
dev_err(dev, "can not alloc spi_master\n");
return -ENOMEM;
}
platform_set_drvdata(pdev, master);
/* the mode bits supported by this driver */
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
master->bus_num = pdev->id;
master->num_chipselect = info->num_chipselect;
master->cleanup = adi_spi_cleanup;
master->setup = adi_spi_setup;
master->transfer_one_message = adi_spi_transfer_one_message;
master->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(16) |
SPI_BPW_MASK(8);
drv_data = spi_master_get_devdata(master);
drv_data->master = master;
drv_data->tx_dma = tx_dma;
drv_data->rx_dma = rx_dma;
drv_data->pin_req = info->pin_req;
drv_data->sclk = clk_get_rate(sclk);
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
drv_data->regs = devm_ioremap_resource(dev, mem);
if (IS_ERR(drv_data->regs)) {
ret = PTR_ERR(drv_data->regs);
goto err_put_master;
}
/* request tx and rx dma */
ret = request_dma(tx_dma, "SPI_TX_DMA");
if (ret) {
dev_err(dev, "can not request SPI TX DMA channel\n");
goto err_put_master;
}
set_dma_callback(tx_dma, adi_spi_tx_dma_isr, drv_data);
ret = request_dma(rx_dma, "SPI_RX_DMA");
if (ret) {
dev_err(dev, "can not request SPI RX DMA channel\n");
goto err_free_tx_dma;
}
set_dma_callback(drv_data->rx_dma, adi_spi_rx_dma_isr, drv_data);
/* request CLK, MOSI and MISO */
ret = peripheral_request_list(drv_data->pin_req, "adi-spi3");
if (ret < 0) {
dev_err(dev, "can not request spi pins\n");
goto err_free_rx_dma;
}
iowrite32(SPI_CTL_MSTR | SPI_CTL_CPHA, &drv_data->regs->control);
iowrite32(0x0000FE00, &drv_data->regs->ssel);
iowrite32(0x0, &drv_data->regs->delay);
tasklet_init(&drv_data->pump_transfers,
adi_spi_pump_transfers, (unsigned long)drv_data);
/* register with the SPI framework */
ret = devm_spi_register_master(dev, master);
if (ret) {
dev_err(dev, "can not register spi master\n");
goto err_free_peripheral;
}
return ret;
err_free_peripheral:
peripheral_free_list(drv_data->pin_req);
err_free_rx_dma:
free_dma(rx_dma);
err_free_tx_dma:
free_dma(tx_dma);
err_put_master:
spi_master_put(master);
return ret;
}
static int adi_spi_remove(struct platform_device *pdev)
{
struct spi_master *master = platform_get_drvdata(pdev);
struct adi_spi_master *drv_data = spi_master_get_devdata(master);
adi_spi_disable(drv_data);
peripheral_free_list(drv_data->pin_req);
free_dma(drv_data->rx_dma);
free_dma(drv_data->tx_dma);
return 0;
}
#ifdef CONFIG_PM
static int adi_spi_suspend(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct adi_spi_master *drv_data = spi_master_get_devdata(master);
spi_master_suspend(master);
drv_data->control = ioread32(&drv_data->regs->control);
drv_data->ssel = ioread32(&drv_data->regs->ssel);
iowrite32(SPI_CTL_MSTR | SPI_CTL_CPHA, &drv_data->regs->control);
iowrite32(0x0000FE00, &drv_data->regs->ssel);
dma_disable_irq(drv_data->rx_dma);
dma_disable_irq(drv_data->tx_dma);
return 0;
}
static int adi_spi_resume(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct adi_spi_master *drv_data = spi_master_get_devdata(master);
int ret = 0;
/* bootrom may modify spi and dma status when resume in spi boot mode */
disable_dma(drv_data->rx_dma);
dma_enable_irq(drv_data->rx_dma);
dma_enable_irq(drv_data->tx_dma);
iowrite32(drv_data->control, &drv_data->regs->control);
iowrite32(drv_data->ssel, &drv_data->regs->ssel);
ret = spi_master_resume(master);
if (ret) {
free_dma(drv_data->rx_dma);
free_dma(drv_data->tx_dma);
}
return ret;
}
#endif
static const struct dev_pm_ops adi_spi_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(adi_spi_suspend, adi_spi_resume)
};
MODULE_ALIAS("platform:adi-spi3");
static struct platform_driver adi_spi_driver = {
.driver = {
.name = "adi-spi3",
.pm = &adi_spi_pm_ops,
},
.remove = adi_spi_remove,
};
module_platform_driver_probe(adi_spi_driver, adi_spi_probe);
MODULE_DESCRIPTION("Analog Devices SPI3 controller driver");
MODULE_AUTHOR("Scott Jiang <Scott.Jiang.Linux@gmail.com>");
MODULE_LICENSE("GPL v2");