linux-hardened/mm/page_alloc.c
Christoph Lameter 8ef8286689 [PATCH] slab: reduce size of alien cache to cover only possible nodes
The alien cache is a per cpu per node array allocated for every slab on the
system.  Currently we size this array for all nodes that the kernel does
support.  For IA64 this is 1024 nodes.  So we allocate an array with 1024
objects even if we only boot a system with 4 nodes.

This patch uses "nr_node_ids" to determine the number of possible nodes
supported by a hardware configuration and only allocates an alien cache
sized for possible nodes.

The initialization of nr_node_ids occurred too late relative to the bootstrap
of the slab allocator and so I moved the setup_nr_node_ids() into
free_area_init_nodes().

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-20 17:10:13 -08:00

3394 lines
91 KiB
C

/*
* linux/mm/page_alloc.c
*
* Manages the free list, the system allocates free pages here.
* Note that kmalloc() lives in slab.c
*
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
* Swap reorganised 29.12.95, Stephen Tweedie
* Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
* Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
* Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
* Zone balancing, Kanoj Sarcar, SGI, Jan 2000
* Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
* (lots of bits borrowed from Ingo Molnar & Andrew Morton)
*/
#include <linux/stddef.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
#include <linux/bootmem.h>
#include <linux/compiler.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
#include <linux/notifier.h>
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/memory_hotplug.h>
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
#include <linux/mempolicy.h>
#include <linux/stop_machine.h>
#include <linux/sort.h>
#include <linux/pfn.h>
#include <linux/backing-dev.h>
#include <linux/fault-inject.h>
#include <asm/tlbflush.h>
#include <asm/div64.h>
#include "internal.h"
/*
* MCD - HACK: Find somewhere to initialize this EARLY, or make this
* initializer cleaner
*/
nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
EXPORT_SYMBOL(node_online_map);
nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
EXPORT_SYMBOL(node_possible_map);
unsigned long totalram_pages __read_mostly;
unsigned long totalreserve_pages __read_mostly;
long nr_swap_pages;
int percpu_pagelist_fraction;
static void __free_pages_ok(struct page *page, unsigned int order);
/*
* results with 256, 32 in the lowmem_reserve sysctl:
* 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
* 1G machine -> (16M dma, 784M normal, 224M high)
* NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
* HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
* HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
*
* TBD: should special case ZONE_DMA32 machines here - in those we normally
* don't need any ZONE_NORMAL reservation
*/
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
#ifdef CONFIG_ZONE_DMA
256,
#endif
#ifdef CONFIG_ZONE_DMA32
256,
#endif
#ifdef CONFIG_HIGHMEM
32
#endif
};
EXPORT_SYMBOL(totalram_pages);
static char * const zone_names[MAX_NR_ZONES] = {
#ifdef CONFIG_ZONE_DMA
"DMA",
#endif
#ifdef CONFIG_ZONE_DMA32
"DMA32",
#endif
"Normal",
#ifdef CONFIG_HIGHMEM
"HighMem"
#endif
};
int min_free_kbytes = 1024;
unsigned long __meminitdata nr_kernel_pages;
unsigned long __meminitdata nr_all_pages;
static unsigned long __initdata dma_reserve;
#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
/*
* MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
* ranges of memory (RAM) that may be registered with add_active_range().
* Ranges passed to add_active_range() will be merged if possible
* so the number of times add_active_range() can be called is
* related to the number of nodes and the number of holes
*/
#ifdef CONFIG_MAX_ACTIVE_REGIONS
/* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
#define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
#else
#if MAX_NUMNODES >= 32
/* If there can be many nodes, allow up to 50 holes per node */
#define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
#else
/* By default, allow up to 256 distinct regions */
#define MAX_ACTIVE_REGIONS 256
#endif
#endif
struct node_active_region __initdata early_node_map[MAX_ACTIVE_REGIONS];
int __initdata nr_nodemap_entries;
unsigned long __initdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
unsigned long __initdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
unsigned long __initdata node_boundary_start_pfn[MAX_NUMNODES];
unsigned long __initdata node_boundary_end_pfn[MAX_NUMNODES];
#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
#ifdef CONFIG_DEBUG_VM
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
{
int ret = 0;
unsigned seq;
unsigned long pfn = page_to_pfn(page);
do {
seq = zone_span_seqbegin(zone);
if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
ret = 1;
else if (pfn < zone->zone_start_pfn)
ret = 1;
} while (zone_span_seqretry(zone, seq));
return ret;
}
static int page_is_consistent(struct zone *zone, struct page *page)
{
#ifdef CONFIG_HOLES_IN_ZONE
if (!pfn_valid(page_to_pfn(page)))
return 0;
#endif
if (zone != page_zone(page))
return 0;
return 1;
}
/*
* Temporary debugging check for pages not lying within a given zone.
*/
static int bad_range(struct zone *zone, struct page *page)
{
if (page_outside_zone_boundaries(zone, page))
return 1;
if (!page_is_consistent(zone, page))
return 1;
return 0;
}
#else
static inline int bad_range(struct zone *zone, struct page *page)
{
return 0;
}
#endif
static void bad_page(struct page *page)
{
printk(KERN_EMERG "Bad page state in process '%s'\n"
KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
KERN_EMERG "Backtrace:\n",
current->comm, page, (int)(2*sizeof(unsigned long)),
(unsigned long)page->flags, page->mapping,
page_mapcount(page), page_count(page));
dump_stack();
page->flags &= ~(1 << PG_lru |
1 << PG_private |
1 << PG_locked |
1 << PG_active |
1 << PG_dirty |
1 << PG_reclaim |
1 << PG_slab |
1 << PG_swapcache |
1 << PG_writeback |
1 << PG_buddy );
set_page_count(page, 0);
reset_page_mapcount(page);
page->mapping = NULL;
add_taint(TAINT_BAD_PAGE);
}
/*
* Higher-order pages are called "compound pages". They are structured thusly:
*
* The first PAGE_SIZE page is called the "head page".
*
* The remaining PAGE_SIZE pages are called "tail pages".
*
* All pages have PG_compound set. All pages have their ->private pointing at
* the head page (even the head page has this).
*
* The first tail page's ->lru.next holds the address of the compound page's
* put_page() function. Its ->lru.prev holds the order of allocation.
* This usage means that zero-order pages may not be compound.
*/
static void free_compound_page(struct page *page)
{
__free_pages_ok(page, (unsigned long)page[1].lru.prev);
}
static void prep_compound_page(struct page *page, unsigned long order)
{
int i;
int nr_pages = 1 << order;
set_compound_page_dtor(page, free_compound_page);
page[1].lru.prev = (void *)order;
for (i = 0; i < nr_pages; i++) {
struct page *p = page + i;
__SetPageCompound(p);
set_page_private(p, (unsigned long)page);
}
}
static void destroy_compound_page(struct page *page, unsigned long order)
{
int i;
int nr_pages = 1 << order;
if (unlikely((unsigned long)page[1].lru.prev != order))
bad_page(page);
for (i = 0; i < nr_pages; i++) {
struct page *p = page + i;
if (unlikely(!PageCompound(p) |
(page_private(p) != (unsigned long)page)))
bad_page(page);
__ClearPageCompound(p);
}
}
static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
{
int i;
VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
/*
* clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
* and __GFP_HIGHMEM from hard or soft interrupt context.
*/
VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
for (i = 0; i < (1 << order); i++)
clear_highpage(page + i);
}
/*
* function for dealing with page's order in buddy system.
* zone->lock is already acquired when we use these.
* So, we don't need atomic page->flags operations here.
*/
static inline unsigned long page_order(struct page *page)
{
return page_private(page);
}
static inline void set_page_order(struct page *page, int order)
{
set_page_private(page, order);
__SetPageBuddy(page);
}
static inline void rmv_page_order(struct page *page)
{
__ClearPageBuddy(page);
set_page_private(page, 0);
}
/*
* Locate the struct page for both the matching buddy in our
* pair (buddy1) and the combined O(n+1) page they form (page).
*
* 1) Any buddy B1 will have an order O twin B2 which satisfies
* the following equation:
* B2 = B1 ^ (1 << O)
* For example, if the starting buddy (buddy2) is #8 its order
* 1 buddy is #10:
* B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
*
* 2) Any buddy B will have an order O+1 parent P which
* satisfies the following equation:
* P = B & ~(1 << O)
*
* Assumption: *_mem_map is contiguous at least up to MAX_ORDER
*/
static inline struct page *
__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
{
unsigned long buddy_idx = page_idx ^ (1 << order);
return page + (buddy_idx - page_idx);
}
static inline unsigned long
__find_combined_index(unsigned long page_idx, unsigned int order)
{
return (page_idx & ~(1 << order));
}
/*
* This function checks whether a page is free && is the buddy
* we can do coalesce a page and its buddy if
* (a) the buddy is not in a hole &&
* (b) the buddy is in the buddy system &&
* (c) a page and its buddy have the same order &&
* (d) a page and its buddy are in the same zone.
*
* For recording whether a page is in the buddy system, we use PG_buddy.
* Setting, clearing, and testing PG_buddy is serialized by zone->lock.
*
* For recording page's order, we use page_private(page).
*/
static inline int page_is_buddy(struct page *page, struct page *buddy,
int order)
{
#ifdef CONFIG_HOLES_IN_ZONE
if (!pfn_valid(page_to_pfn(buddy)))
return 0;
#endif
if (page_zone_id(page) != page_zone_id(buddy))
return 0;
if (PageBuddy(buddy) && page_order(buddy) == order) {
BUG_ON(page_count(buddy) != 0);
return 1;
}
return 0;
}
/*
* Freeing function for a buddy system allocator.
*
* The concept of a buddy system is to maintain direct-mapped table
* (containing bit values) for memory blocks of various "orders".
* The bottom level table contains the map for the smallest allocatable
* units of memory (here, pages), and each level above it describes
* pairs of units from the levels below, hence, "buddies".
* At a high level, all that happens here is marking the table entry
* at the bottom level available, and propagating the changes upward
* as necessary, plus some accounting needed to play nicely with other
* parts of the VM system.
* At each level, we keep a list of pages, which are heads of continuous
* free pages of length of (1 << order) and marked with PG_buddy. Page's
* order is recorded in page_private(page) field.
* So when we are allocating or freeing one, we can derive the state of the
* other. That is, if we allocate a small block, and both were
* free, the remainder of the region must be split into blocks.
* If a block is freed, and its buddy is also free, then this
* triggers coalescing into a block of larger size.
*
* -- wli
*/
static inline void __free_one_page(struct page *page,
struct zone *zone, unsigned int order)
{
unsigned long page_idx;
int order_size = 1 << order;
if (unlikely(PageCompound(page)))
destroy_compound_page(page, order);
page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
VM_BUG_ON(page_idx & (order_size - 1));
VM_BUG_ON(bad_range(zone, page));
__mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
while (order < MAX_ORDER-1) {
unsigned long combined_idx;
struct free_area *area;
struct page *buddy;
buddy = __page_find_buddy(page, page_idx, order);
if (!page_is_buddy(page, buddy, order))
break; /* Move the buddy up one level. */
list_del(&buddy->lru);
area = zone->free_area + order;
area->nr_free--;
rmv_page_order(buddy);
combined_idx = __find_combined_index(page_idx, order);
page = page + (combined_idx - page_idx);
page_idx = combined_idx;
order++;
}
set_page_order(page, order);
list_add(&page->lru, &zone->free_area[order].free_list);
zone->free_area[order].nr_free++;
}
static inline int free_pages_check(struct page *page)
{
if (unlikely(page_mapcount(page) |
(page->mapping != NULL) |
(page_count(page) != 0) |
(page->flags & (
1 << PG_lru |
1 << PG_private |
1 << PG_locked |
1 << PG_active |
1 << PG_reclaim |
1 << PG_slab |
1 << PG_swapcache |
1 << PG_writeback |
1 << PG_reserved |
1 << PG_buddy ))))
bad_page(page);
if (PageDirty(page))
__ClearPageDirty(page);
/*
* For now, we report if PG_reserved was found set, but do not
* clear it, and do not free the page. But we shall soon need
* to do more, for when the ZERO_PAGE count wraps negative.
*/
return PageReserved(page);
}
/*
* Frees a list of pages.
* Assumes all pages on list are in same zone, and of same order.
* count is the number of pages to free.
*
* If the zone was previously in an "all pages pinned" state then look to
* see if this freeing clears that state.
*
* And clear the zone's pages_scanned counter, to hold off the "all pages are
* pinned" detection logic.
*/
static void free_pages_bulk(struct zone *zone, int count,
struct list_head *list, int order)
{
spin_lock(&zone->lock);
zone->all_unreclaimable = 0;
zone->pages_scanned = 0;
while (count--) {
struct page *page;
VM_BUG_ON(list_empty(list));
page = list_entry(list->prev, struct page, lru);
/* have to delete it as __free_one_page list manipulates */
list_del(&page->lru);
__free_one_page(page, zone, order);
}
spin_unlock(&zone->lock);
}
static void free_one_page(struct zone *zone, struct page *page, int order)
{
spin_lock(&zone->lock);
zone->all_unreclaimable = 0;
zone->pages_scanned = 0;
__free_one_page(page, zone, order);
spin_unlock(&zone->lock);
}
static void __free_pages_ok(struct page *page, unsigned int order)
{
unsigned long flags;
int i;
int reserved = 0;
for (i = 0 ; i < (1 << order) ; ++i)
reserved += free_pages_check(page + i);
if (reserved)
return;
if (!PageHighMem(page))
debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
arch_free_page(page, order);
kernel_map_pages(page, 1 << order, 0);
local_irq_save(flags);
__count_vm_events(PGFREE, 1 << order);
free_one_page(page_zone(page), page, order);
local_irq_restore(flags);
}
/*
* permit the bootmem allocator to evade page validation on high-order frees
*/
void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
{
if (order == 0) {
__ClearPageReserved(page);
set_page_count(page, 0);
set_page_refcounted(page);
__free_page(page);
} else {
int loop;
prefetchw(page);
for (loop = 0; loop < BITS_PER_LONG; loop++) {
struct page *p = &page[loop];
if (loop + 1 < BITS_PER_LONG)
prefetchw(p + 1);
__ClearPageReserved(p);
set_page_count(p, 0);
}
set_page_refcounted(page);
__free_pages(page, order);
}
}
/*
* The order of subdivision here is critical for the IO subsystem.
* Please do not alter this order without good reasons and regression
* testing. Specifically, as large blocks of memory are subdivided,
* the order in which smaller blocks are delivered depends on the order
* they're subdivided in this function. This is the primary factor
* influencing the order in which pages are delivered to the IO
* subsystem according to empirical testing, and this is also justified
* by considering the behavior of a buddy system containing a single
* large block of memory acted on by a series of small allocations.
* This behavior is a critical factor in sglist merging's success.
*
* -- wli
*/
static inline void expand(struct zone *zone, struct page *page,
int low, int high, struct free_area *area)
{
unsigned long size = 1 << high;
while (high > low) {
area--;
high--;
size >>= 1;
VM_BUG_ON(bad_range(zone, &page[size]));
list_add(&page[size].lru, &area->free_list);
area->nr_free++;
set_page_order(&page[size], high);
}
}
/*
* This page is about to be returned from the page allocator
*/
static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
{
if (unlikely(page_mapcount(page) |
(page->mapping != NULL) |
(page_count(page) != 0) |
(page->flags & (
1 << PG_lru |
1 << PG_private |
1 << PG_locked |
1 << PG_active |
1 << PG_dirty |
1 << PG_reclaim |
1 << PG_slab |
1 << PG_swapcache |
1 << PG_writeback |
1 << PG_reserved |
1 << PG_buddy ))))
bad_page(page);
/*
* For now, we report if PG_reserved was found set, but do not
* clear it, and do not allocate the page: as a safety net.
*/
if (PageReserved(page))
return 1;
page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
1 << PG_referenced | 1 << PG_arch_1 |
1 << PG_checked | 1 << PG_mappedtodisk);
set_page_private(page, 0);
set_page_refcounted(page);
arch_alloc_page(page, order);
kernel_map_pages(page, 1 << order, 1);
if (gfp_flags & __GFP_ZERO)
prep_zero_page(page, order, gfp_flags);
if (order && (gfp_flags & __GFP_COMP))
prep_compound_page(page, order);
return 0;
}
/*
* Do the hard work of removing an element from the buddy allocator.
* Call me with the zone->lock already held.
*/
static struct page *__rmqueue(struct zone *zone, unsigned int order)
{
struct free_area * area;
unsigned int current_order;
struct page *page;
for (current_order = order; current_order < MAX_ORDER; ++current_order) {
area = zone->free_area + current_order;
if (list_empty(&area->free_list))
continue;
page = list_entry(area->free_list.next, struct page, lru);
list_del(&page->lru);
rmv_page_order(page);
area->nr_free--;
__mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
expand(zone, page, order, current_order, area);
return page;
}
return NULL;
}
/*
* Obtain a specified number of elements from the buddy allocator, all under
* a single hold of the lock, for efficiency. Add them to the supplied list.
* Returns the number of new pages which were placed at *list.
*/
static int rmqueue_bulk(struct zone *zone, unsigned int order,
unsigned long count, struct list_head *list)
{
int i;
spin_lock(&zone->lock);
for (i = 0; i < count; ++i) {
struct page *page = __rmqueue(zone, order);
if (unlikely(page == NULL))
break;
list_add_tail(&page->lru, list);
}
spin_unlock(&zone->lock);
return i;
}
#if MAX_NUMNODES > 1
int nr_node_ids __read_mostly;
EXPORT_SYMBOL(nr_node_ids);
/*
* Figure out the number of possible node ids.
*/
static void __init setup_nr_node_ids(void)
{
unsigned int node;
unsigned int highest = 0;
for_each_node_mask(node, node_possible_map)
highest = node;
nr_node_ids = highest + 1;
}
#else
static void __init setup_nr_node_ids(void) {}
#endif
#ifdef CONFIG_NUMA
/*
* Called from the slab reaper to drain pagesets on a particular node that
* belongs to the currently executing processor.
* Note that this function must be called with the thread pinned to
* a single processor.
*/
void drain_node_pages(int nodeid)
{
int i;
enum zone_type z;
unsigned long flags;
for (z = 0; z < MAX_NR_ZONES; z++) {
struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
struct per_cpu_pageset *pset;
if (!populated_zone(zone))
continue;
pset = zone_pcp(zone, smp_processor_id());
for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
struct per_cpu_pages *pcp;
pcp = &pset->pcp[i];
if (pcp->count) {
int to_drain;
local_irq_save(flags);
if (pcp->count >= pcp->batch)
to_drain = pcp->batch;
else
to_drain = pcp->count;
free_pages_bulk(zone, to_drain, &pcp->list, 0);
pcp->count -= to_drain;
local_irq_restore(flags);
}
}
}
}
#endif
static void __drain_pages(unsigned int cpu)
{
unsigned long flags;
struct zone *zone;
int i;
for_each_zone(zone) {
struct per_cpu_pageset *pset;
if (!populated_zone(zone))
continue;
pset = zone_pcp(zone, cpu);
for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
struct per_cpu_pages *pcp;
pcp = &pset->pcp[i];
local_irq_save(flags);
free_pages_bulk(zone, pcp->count, &pcp->list, 0);
pcp->count = 0;
local_irq_restore(flags);
}
}
}
#ifdef CONFIG_PM
void mark_free_pages(struct zone *zone)
{
unsigned long pfn, max_zone_pfn;
unsigned long flags;
int order;
struct list_head *curr;
if (!zone->spanned_pages)
return;
spin_lock_irqsave(&zone->lock, flags);
max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
if (pfn_valid(pfn)) {
struct page *page = pfn_to_page(pfn);
if (!PageNosave(page))
ClearPageNosaveFree(page);
}
for (order = MAX_ORDER - 1; order >= 0; --order)
list_for_each(curr, &zone->free_area[order].free_list) {
unsigned long i;
pfn = page_to_pfn(list_entry(curr, struct page, lru));
for (i = 0; i < (1UL << order); i++)
SetPageNosaveFree(pfn_to_page(pfn + i));
}
spin_unlock_irqrestore(&zone->lock, flags);
}
/*
* Spill all of this CPU's per-cpu pages back into the buddy allocator.
*/
void drain_local_pages(void)
{
unsigned long flags;
local_irq_save(flags);
__drain_pages(smp_processor_id());
local_irq_restore(flags);
}
#endif /* CONFIG_PM */
/*
* Free a 0-order page
*/
static void fastcall free_hot_cold_page(struct page *page, int cold)
{
struct zone *zone = page_zone(page);
struct per_cpu_pages *pcp;
unsigned long flags;
if (PageAnon(page))
page->mapping = NULL;
if (free_pages_check(page))
return;
if (!PageHighMem(page))
debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
arch_free_page(page, 0);
kernel_map_pages(page, 1, 0);
pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
local_irq_save(flags);
__count_vm_event(PGFREE);
list_add(&page->lru, &pcp->list);
pcp->count++;
if (pcp->count >= pcp->high) {
free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
pcp->count -= pcp->batch;
}
local_irq_restore(flags);
put_cpu();
}
void fastcall free_hot_page(struct page *page)
{
free_hot_cold_page(page, 0);
}
void fastcall free_cold_page(struct page *page)
{
free_hot_cold_page(page, 1);
}
/*
* split_page takes a non-compound higher-order page, and splits it into
* n (1<<order) sub-pages: page[0..n]
* Each sub-page must be freed individually.
*
* Note: this is probably too low level an operation for use in drivers.
* Please consult with lkml before using this in your driver.
*/
void split_page(struct page *page, unsigned int order)
{
int i;
VM_BUG_ON(PageCompound(page));
VM_BUG_ON(!page_count(page));
for (i = 1; i < (1 << order); i++)
set_page_refcounted(page + i);
}
/*
* Really, prep_compound_page() should be called from __rmqueue_bulk(). But
* we cheat by calling it from here, in the order > 0 path. Saves a branch
* or two.
*/
static struct page *buffered_rmqueue(struct zonelist *zonelist,
struct zone *zone, int order, gfp_t gfp_flags)
{
unsigned long flags;
struct page *page;
int cold = !!(gfp_flags & __GFP_COLD);
int cpu;
again:
cpu = get_cpu();
if (likely(order == 0)) {
struct per_cpu_pages *pcp;
pcp = &zone_pcp(zone, cpu)->pcp[cold];
local_irq_save(flags);
if (!pcp->count) {
pcp->count = rmqueue_bulk(zone, 0,
pcp->batch, &pcp->list);
if (unlikely(!pcp->count))
goto failed;
}
page = list_entry(pcp->list.next, struct page, lru);
list_del(&page->lru);
pcp->count--;
} else {
spin_lock_irqsave(&zone->lock, flags);
page = __rmqueue(zone, order);
spin_unlock(&zone->lock);
if (!page)
goto failed;
}
__count_zone_vm_events(PGALLOC, zone, 1 << order);
zone_statistics(zonelist, zone);
local_irq_restore(flags);
put_cpu();
VM_BUG_ON(bad_range(zone, page));
if (prep_new_page(page, order, gfp_flags))
goto again;
return page;
failed:
local_irq_restore(flags);
put_cpu();
return NULL;
}
#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
#define ALLOC_HARDER 0x10 /* try to alloc harder */
#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
#ifdef CONFIG_FAIL_PAGE_ALLOC
static struct fail_page_alloc_attr {
struct fault_attr attr;
u32 ignore_gfp_highmem;
u32 ignore_gfp_wait;
#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
struct dentry *ignore_gfp_highmem_file;
struct dentry *ignore_gfp_wait_file;
#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
} fail_page_alloc = {
.attr = FAULT_ATTR_INITIALIZER,
.ignore_gfp_wait = 1,
.ignore_gfp_highmem = 1,
};
static int __init setup_fail_page_alloc(char *str)
{
return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);
static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
{
if (gfp_mask & __GFP_NOFAIL)
return 0;
if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
return 0;
if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
return 0;
return should_fail(&fail_page_alloc.attr, 1 << order);
}
#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
static int __init fail_page_alloc_debugfs(void)
{
mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
struct dentry *dir;
int err;
err = init_fault_attr_dentries(&fail_page_alloc.attr,
"fail_page_alloc");
if (err)
return err;
dir = fail_page_alloc.attr.dentries.dir;
fail_page_alloc.ignore_gfp_wait_file =
debugfs_create_bool("ignore-gfp-wait", mode, dir,
&fail_page_alloc.ignore_gfp_wait);
fail_page_alloc.ignore_gfp_highmem_file =
debugfs_create_bool("ignore-gfp-highmem", mode, dir,
&fail_page_alloc.ignore_gfp_highmem);
if (!fail_page_alloc.ignore_gfp_wait_file ||
!fail_page_alloc.ignore_gfp_highmem_file) {
err = -ENOMEM;
debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
cleanup_fault_attr_dentries(&fail_page_alloc.attr);
}
return err;
}
late_initcall(fail_page_alloc_debugfs);
#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
#else /* CONFIG_FAIL_PAGE_ALLOC */
static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
{
return 0;
}
#endif /* CONFIG_FAIL_PAGE_ALLOC */
/*
* Return 1 if free pages are above 'mark'. This takes into account the order
* of the allocation.
*/
int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
int classzone_idx, int alloc_flags)
{
/* free_pages my go negative - that's OK */
long min = mark;
long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
int o;
if (alloc_flags & ALLOC_HIGH)
min -= min / 2;
if (alloc_flags & ALLOC_HARDER)
min -= min / 4;
if (free_pages <= min + z->lowmem_reserve[classzone_idx])
return 0;
for (o = 0; o < order; o++) {
/* At the next order, this order's pages become unavailable */
free_pages -= z->free_area[o].nr_free << o;
/* Require fewer higher order pages to be free */
min >>= 1;
if (free_pages <= min)
return 0;
}
return 1;
}
#ifdef CONFIG_NUMA
/*
* zlc_setup - Setup for "zonelist cache". Uses cached zone data to
* skip over zones that are not allowed by the cpuset, or that have
* been recently (in last second) found to be nearly full. See further
* comments in mmzone.h. Reduces cache footprint of zonelist scans
* that have to skip over alot of full or unallowed zones.
*
* If the zonelist cache is present in the passed in zonelist, then
* returns a pointer to the allowed node mask (either the current
* tasks mems_allowed, or node_online_map.)
*
* If the zonelist cache is not available for this zonelist, does
* nothing and returns NULL.
*
* If the fullzones BITMAP in the zonelist cache is stale (more than
* a second since last zap'd) then we zap it out (clear its bits.)
*
* We hold off even calling zlc_setup, until after we've checked the
* first zone in the zonelist, on the theory that most allocations will
* be satisfied from that first zone, so best to examine that zone as
* quickly as we can.
*/
static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
{
struct zonelist_cache *zlc; /* cached zonelist speedup info */
nodemask_t *allowednodes; /* zonelist_cache approximation */
zlc = zonelist->zlcache_ptr;
if (!zlc)
return NULL;
if (jiffies - zlc->last_full_zap > 1 * HZ) {
bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
zlc->last_full_zap = jiffies;
}
allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
&cpuset_current_mems_allowed :
&node_online_map;
return allowednodes;
}
/*
* Given 'z' scanning a zonelist, run a couple of quick checks to see
* if it is worth looking at further for free memory:
* 1) Check that the zone isn't thought to be full (doesn't have its
* bit set in the zonelist_cache fullzones BITMAP).
* 2) Check that the zones node (obtained from the zonelist_cache
* z_to_n[] mapping) is allowed in the passed in allowednodes mask.
* Return true (non-zero) if zone is worth looking at further, or
* else return false (zero) if it is not.
*
* This check -ignores- the distinction between various watermarks,
* such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
* found to be full for any variation of these watermarks, it will
* be considered full for up to one second by all requests, unless
* we are so low on memory on all allowed nodes that we are forced
* into the second scan of the zonelist.
*
* In the second scan we ignore this zonelist cache and exactly
* apply the watermarks to all zones, even it is slower to do so.
* We are low on memory in the second scan, and should leave no stone
* unturned looking for a free page.
*/
static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
nodemask_t *allowednodes)
{
struct zonelist_cache *zlc; /* cached zonelist speedup info */
int i; /* index of *z in zonelist zones */
int n; /* node that zone *z is on */
zlc = zonelist->zlcache_ptr;
if (!zlc)
return 1;
i = z - zonelist->zones;
n = zlc->z_to_n[i];
/* This zone is worth trying if it is allowed but not full */
return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
}
/*
* Given 'z' scanning a zonelist, set the corresponding bit in
* zlc->fullzones, so that subsequent attempts to allocate a page
* from that zone don't waste time re-examining it.
*/
static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
{
struct zonelist_cache *zlc; /* cached zonelist speedup info */
int i; /* index of *z in zonelist zones */
zlc = zonelist->zlcache_ptr;
if (!zlc)
return;
i = z - zonelist->zones;
set_bit(i, zlc->fullzones);
}
#else /* CONFIG_NUMA */
static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
{
return NULL;
}
static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
nodemask_t *allowednodes)
{
return 1;
}
static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
{
}
#endif /* CONFIG_NUMA */
/*
* get_page_from_freelist goes through the zonelist trying to allocate
* a page.
*/
static struct page *
get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
struct zonelist *zonelist, int alloc_flags)
{
struct zone **z;
struct page *page = NULL;
int classzone_idx = zone_idx(zonelist->zones[0]);
struct zone *zone;
nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
int zlc_active = 0; /* set if using zonelist_cache */
int did_zlc_setup = 0; /* just call zlc_setup() one time */
zonelist_scan:
/*
* Scan zonelist, looking for a zone with enough free.
* See also cpuset_zone_allowed() comment in kernel/cpuset.c.
*/
z = zonelist->zones;
do {
if (NUMA_BUILD && zlc_active &&
!zlc_zone_worth_trying(zonelist, z, allowednodes))
continue;
zone = *z;
if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
break;
if ((alloc_flags & ALLOC_CPUSET) &&
!cpuset_zone_allowed_softwall(zone, gfp_mask))
goto try_next_zone;
if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
unsigned long mark;
if (alloc_flags & ALLOC_WMARK_MIN)
mark = zone->pages_min;
else if (alloc_flags & ALLOC_WMARK_LOW)
mark = zone->pages_low;
else
mark = zone->pages_high;
if (!zone_watermark_ok(zone, order, mark,
classzone_idx, alloc_flags)) {
if (!zone_reclaim_mode ||
!zone_reclaim(zone, gfp_mask, order))
goto this_zone_full;
}
}
page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
if (page)
break;
this_zone_full:
if (NUMA_BUILD)
zlc_mark_zone_full(zonelist, z);
try_next_zone:
if (NUMA_BUILD && !did_zlc_setup) {
/* we do zlc_setup after the first zone is tried */
allowednodes = zlc_setup(zonelist, alloc_flags);
zlc_active = 1;
did_zlc_setup = 1;
}
} while (*(++z) != NULL);
if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
/* Disable zlc cache for second zonelist scan */
zlc_active = 0;
goto zonelist_scan;
}
return page;
}
/*
* This is the 'heart' of the zoned buddy allocator.
*/
struct page * fastcall
__alloc_pages(gfp_t gfp_mask, unsigned int order,
struct zonelist *zonelist)
{
const gfp_t wait = gfp_mask & __GFP_WAIT;
struct zone **z;
struct page *page;
struct reclaim_state reclaim_state;
struct task_struct *p = current;
int do_retry;
int alloc_flags;
int did_some_progress;
might_sleep_if(wait);
if (should_fail_alloc_page(gfp_mask, order))
return NULL;
restart:
z = zonelist->zones; /* the list of zones suitable for gfp_mask */
if (unlikely(*z == NULL)) {
/* Should this ever happen?? */
return NULL;
}
page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
if (page)
goto got_pg;
/*
* GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
* __GFP_NOWARN set) should not cause reclaim since the subsystem
* (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
* using a larger set of nodes after it has established that the
* allowed per node queues are empty and that nodes are
* over allocated.
*/
if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
goto nopage;
for (z = zonelist->zones; *z; z++)
wakeup_kswapd(*z, order);
/*
* OK, we're below the kswapd watermark and have kicked background
* reclaim. Now things get more complex, so set up alloc_flags according
* to how we want to proceed.
*
* The caller may dip into page reserves a bit more if the caller
* cannot run direct reclaim, or if the caller has realtime scheduling
* policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
* set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
*/
alloc_flags = ALLOC_WMARK_MIN;
if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
alloc_flags |= ALLOC_HARDER;
if (gfp_mask & __GFP_HIGH)
alloc_flags |= ALLOC_HIGH;
if (wait)
alloc_flags |= ALLOC_CPUSET;
/*
* Go through the zonelist again. Let __GFP_HIGH and allocations
* coming from realtime tasks go deeper into reserves.
*
* This is the last chance, in general, before the goto nopage.
* Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
* See also cpuset_zone_allowed() comment in kernel/cpuset.c.
*/
page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
if (page)
goto got_pg;
/* This allocation should allow future memory freeing. */
rebalance:
if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
&& !in_interrupt()) {
if (!(gfp_mask & __GFP_NOMEMALLOC)) {
nofail_alloc:
/* go through the zonelist yet again, ignoring mins */
page = get_page_from_freelist(gfp_mask, order,
zonelist, ALLOC_NO_WATERMARKS);
if (page)
goto got_pg;
if (gfp_mask & __GFP_NOFAIL) {
congestion_wait(WRITE, HZ/50);
goto nofail_alloc;
}
}
goto nopage;
}
/* Atomic allocations - we can't balance anything */
if (!wait)
goto nopage;
cond_resched();
/* We now go into synchronous reclaim */
cpuset_memory_pressure_bump();
p->flags |= PF_MEMALLOC;
reclaim_state.reclaimed_slab = 0;
p->reclaim_state = &reclaim_state;
did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
p->reclaim_state = NULL;
p->flags &= ~PF_MEMALLOC;
cond_resched();
if (likely(did_some_progress)) {
page = get_page_from_freelist(gfp_mask, order,
zonelist, alloc_flags);
if (page)
goto got_pg;
} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
/*
* Go through the zonelist yet one more time, keep
* very high watermark here, this is only to catch
* a parallel oom killing, we must fail if we're still
* under heavy pressure.
*/
page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
if (page)
goto got_pg;
out_of_memory(zonelist, gfp_mask, order);
goto restart;
}
/*
* Don't let big-order allocations loop unless the caller explicitly
* requests that. Wait for some write requests to complete then retry.
*
* In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
* <= 3, but that may not be true in other implementations.
*/
do_retry = 0;
if (!(gfp_mask & __GFP_NORETRY)) {
if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
do_retry = 1;
if (gfp_mask & __GFP_NOFAIL)
do_retry = 1;
}
if (do_retry) {
congestion_wait(WRITE, HZ/50);
goto rebalance;
}
nopage:
if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
printk(KERN_WARNING "%s: page allocation failure."
" order:%d, mode:0x%x\n",
p->comm, order, gfp_mask);
dump_stack();
show_mem();
}
got_pg:
return page;
}
EXPORT_SYMBOL(__alloc_pages);
/*
* Common helper functions.
*/
fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
{
struct page * page;
page = alloc_pages(gfp_mask, order);
if (!page)
return 0;
return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);
fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
{
struct page * page;
/*
* get_zeroed_page() returns a 32-bit address, which cannot represent
* a highmem page
*/
VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
if (page)
return (unsigned long) page_address(page);
return 0;
}
EXPORT_SYMBOL(get_zeroed_page);
void __pagevec_free(struct pagevec *pvec)
{
int i = pagevec_count(pvec);
while (--i >= 0)
free_hot_cold_page(pvec->pages[i], pvec->cold);
}
fastcall void __free_pages(struct page *page, unsigned int order)
{
if (put_page_testzero(page)) {
if (order == 0)
free_hot_page(page);
else
__free_pages_ok(page, order);
}
}
EXPORT_SYMBOL(__free_pages);
fastcall void free_pages(unsigned long addr, unsigned int order)
{
if (addr != 0) {
VM_BUG_ON(!virt_addr_valid((void *)addr));
__free_pages(virt_to_page((void *)addr), order);
}
}
EXPORT_SYMBOL(free_pages);
static unsigned int nr_free_zone_pages(int offset)
{
/* Just pick one node, since fallback list is circular */
pg_data_t *pgdat = NODE_DATA(numa_node_id());
unsigned int sum = 0;
struct zonelist *zonelist = pgdat->node_zonelists + offset;
struct zone **zonep = zonelist->zones;
struct zone *zone;
for (zone = *zonep++; zone; zone = *zonep++) {
unsigned long size = zone->present_pages;
unsigned long high = zone->pages_high;
if (size > high)
sum += size - high;
}
return sum;
}
/*
* Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
*/
unsigned int nr_free_buffer_pages(void)
{
return nr_free_zone_pages(gfp_zone(GFP_USER));
}
/*
* Amount of free RAM allocatable within all zones
*/
unsigned int nr_free_pagecache_pages(void)
{
return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
}
static inline void show_node(struct zone *zone)
{
if (NUMA_BUILD)
printk("Node %d ", zone_to_nid(zone));
}
void si_meminfo(struct sysinfo *val)
{
val->totalram = totalram_pages;
val->sharedram = 0;
val->freeram = global_page_state(NR_FREE_PAGES);
val->bufferram = nr_blockdev_pages();
val->totalhigh = totalhigh_pages;
val->freehigh = nr_free_highpages();
val->mem_unit = PAGE_SIZE;
}
EXPORT_SYMBOL(si_meminfo);
#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
pg_data_t *pgdat = NODE_DATA(nid);
val->totalram = pgdat->node_present_pages;
val->freeram = node_page_state(nid, NR_FREE_PAGES);
#ifdef CONFIG_HIGHMEM
val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
NR_FREE_PAGES);
#else
val->totalhigh = 0;
val->freehigh = 0;
#endif
val->mem_unit = PAGE_SIZE;
}
#endif
#define K(x) ((x) << (PAGE_SHIFT-10))
/*
* Show free area list (used inside shift_scroll-lock stuff)
* We also calculate the percentage fragmentation. We do this by counting the
* memory on each free list with the exception of the first item on the list.
*/
void show_free_areas(void)
{
int cpu;
struct zone *zone;
for_each_zone(zone) {
if (!populated_zone(zone))
continue;
show_node(zone);
printk("%s per-cpu:\n", zone->name);
for_each_online_cpu(cpu) {
struct per_cpu_pageset *pageset;
pageset = zone_pcp(zone, cpu);
printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
"Cold: hi:%5d, btch:%4d usd:%4d\n",
cpu, pageset->pcp[0].high,
pageset->pcp[0].batch, pageset->pcp[0].count,
pageset->pcp[1].high, pageset->pcp[1].batch,
pageset->pcp[1].count);
}
}
printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
" free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
global_page_state(NR_ACTIVE),
global_page_state(NR_INACTIVE),
global_page_state(NR_FILE_DIRTY),
global_page_state(NR_WRITEBACK),
global_page_state(NR_UNSTABLE_NFS),
global_page_state(NR_FREE_PAGES),
global_page_state(NR_SLAB_RECLAIMABLE) +
global_page_state(NR_SLAB_UNRECLAIMABLE),
global_page_state(NR_FILE_MAPPED),
global_page_state(NR_PAGETABLE),
global_page_state(NR_BOUNCE));
for_each_zone(zone) {
int i;
if (!populated_zone(zone))
continue;
show_node(zone);
printk("%s"
" free:%lukB"
" min:%lukB"
" low:%lukB"
" high:%lukB"
" active:%lukB"
" inactive:%lukB"
" present:%lukB"
" pages_scanned:%lu"
" all_unreclaimable? %s"
"\n",
zone->name,
K(zone_page_state(zone, NR_FREE_PAGES)),
K(zone->pages_min),
K(zone->pages_low),
K(zone->pages_high),
K(zone_page_state(zone, NR_ACTIVE)),
K(zone_page_state(zone, NR_INACTIVE)),
K(zone->present_pages),
zone->pages_scanned,
(zone->all_unreclaimable ? "yes" : "no")
);
printk("lowmem_reserve[]:");
for (i = 0; i < MAX_NR_ZONES; i++)
printk(" %lu", zone->lowmem_reserve[i]);
printk("\n");
}
for_each_zone(zone) {
unsigned long nr[MAX_ORDER], flags, order, total = 0;
if (!populated_zone(zone))
continue;
show_node(zone);
printk("%s: ", zone->name);
spin_lock_irqsave(&zone->lock, flags);
for (order = 0; order < MAX_ORDER; order++) {
nr[order] = zone->free_area[order].nr_free;
total += nr[order] << order;
}
spin_unlock_irqrestore(&zone->lock, flags);
for (order = 0; order < MAX_ORDER; order++)
printk("%lu*%lukB ", nr[order], K(1UL) << order);
printk("= %lukB\n", K(total));
}
show_swap_cache_info();
}
/*
* Builds allocation fallback zone lists.
*
* Add all populated zones of a node to the zonelist.
*/
static int __meminit build_zonelists_node(pg_data_t *pgdat,
struct zonelist *zonelist, int nr_zones, enum zone_type zone_type)
{
struct zone *zone;
BUG_ON(zone_type >= MAX_NR_ZONES);
zone_type++;
do {
zone_type--;
zone = pgdat->node_zones + zone_type;
if (populated_zone(zone)) {
zonelist->zones[nr_zones++] = zone;
check_highest_zone(zone_type);
}
} while (zone_type);
return nr_zones;
}
#ifdef CONFIG_NUMA
#define MAX_NODE_LOAD (num_online_nodes())
static int __meminitdata node_load[MAX_NUMNODES];
/**
* find_next_best_node - find the next node that should appear in a given node's fallback list
* @node: node whose fallback list we're appending
* @used_node_mask: nodemask_t of already used nodes
*
* We use a number of factors to determine which is the next node that should
* appear on a given node's fallback list. The node should not have appeared
* already in @node's fallback list, and it should be the next closest node
* according to the distance array (which contains arbitrary distance values
* from each node to each node in the system), and should also prefer nodes
* with no CPUs, since presumably they'll have very little allocation pressure
* on them otherwise.
* It returns -1 if no node is found.
*/
static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
{
int n, val;
int min_val = INT_MAX;
int best_node = -1;
/* Use the local node if we haven't already */
if (!node_isset(node, *used_node_mask)) {
node_set(node, *used_node_mask);
return node;
}
for_each_online_node(n) {
cpumask_t tmp;
/* Don't want a node to appear more than once */
if (node_isset(n, *used_node_mask))
continue;
/* Use the distance array to find the distance */
val = node_distance(node, n);
/* Penalize nodes under us ("prefer the next node") */
val += (n < node);
/* Give preference to headless and unused nodes */
tmp = node_to_cpumask(n);
if (!cpus_empty(tmp))
val += PENALTY_FOR_NODE_WITH_CPUS;
/* Slight preference for less loaded node */
val *= (MAX_NODE_LOAD*MAX_NUMNODES);
val += node_load[n];
if (val < min_val) {
min_val = val;
best_node = n;
}
}
if (best_node >= 0)
node_set(best_node, *used_node_mask);
return best_node;
}
static void __meminit build_zonelists(pg_data_t *pgdat)
{
int j, node, local_node;
enum zone_type i;
int prev_node, load;
struct zonelist *zonelist;
nodemask_t used_mask;
/* initialize zonelists */
for (i = 0; i < MAX_NR_ZONES; i++) {
zonelist = pgdat->node_zonelists + i;
zonelist->zones[0] = NULL;
}
/* NUMA-aware ordering of nodes */
local_node = pgdat->node_id;
load = num_online_nodes();
prev_node = local_node;
nodes_clear(used_mask);
while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
int distance = node_distance(local_node, node);
/*
* If another node is sufficiently far away then it is better
* to reclaim pages in a zone before going off node.
*/
if (distance > RECLAIM_DISTANCE)
zone_reclaim_mode = 1;
/*
* We don't want to pressure a particular node.
* So adding penalty to the first node in same
* distance group to make it round-robin.
*/
if (distance != node_distance(local_node, prev_node))
node_load[node] += load;
prev_node = node;
load--;
for (i = 0; i < MAX_NR_ZONES; i++) {
zonelist = pgdat->node_zonelists + i;
for (j = 0; zonelist->zones[j] != NULL; j++);
j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
zonelist->zones[j] = NULL;
}
}
}
/* Construct the zonelist performance cache - see further mmzone.h */
static void __meminit build_zonelist_cache(pg_data_t *pgdat)
{
int i;
for (i = 0; i < MAX_NR_ZONES; i++) {
struct zonelist *zonelist;
struct zonelist_cache *zlc;
struct zone **z;
zonelist = pgdat->node_zonelists + i;
zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
for (z = zonelist->zones; *z; z++)
zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
}
}
#else /* CONFIG_NUMA */
static void __meminit build_zonelists(pg_data_t *pgdat)
{
int node, local_node;
enum zone_type i,j;
local_node = pgdat->node_id;
for (i = 0; i < MAX_NR_ZONES; i++) {
struct zonelist *zonelist;
zonelist = pgdat->node_zonelists + i;
j = build_zonelists_node(pgdat, zonelist, 0, i);
/*
* Now we build the zonelist so that it contains the zones
* of all the other nodes.
* We don't want to pressure a particular node, so when
* building the zones for node N, we make sure that the
* zones coming right after the local ones are those from
* node N+1 (modulo N)
*/
for (node = local_node + 1; node < MAX_NUMNODES; node++) {
if (!node_online(node))
continue;
j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
}
for (node = 0; node < local_node; node++) {
if (!node_online(node))
continue;
j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
}
zonelist->zones[j] = NULL;
}
}
/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
static void __meminit build_zonelist_cache(pg_data_t *pgdat)
{
int i;
for (i = 0; i < MAX_NR_ZONES; i++)
pgdat->node_zonelists[i].zlcache_ptr = NULL;
}
#endif /* CONFIG_NUMA */
/* return values int ....just for stop_machine_run() */
static int __meminit __build_all_zonelists(void *dummy)
{
int nid;
for_each_online_node(nid) {
build_zonelists(NODE_DATA(nid));
build_zonelist_cache(NODE_DATA(nid));
}
return 0;
}
void __meminit build_all_zonelists(void)
{
if (system_state == SYSTEM_BOOTING) {
__build_all_zonelists(NULL);
cpuset_init_current_mems_allowed();
} else {
/* we have to stop all cpus to guaranntee there is no user
of zonelist */
stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
/* cpuset refresh routine should be here */
}
vm_total_pages = nr_free_pagecache_pages();
printk("Built %i zonelists. Total pages: %ld\n",
num_online_nodes(), vm_total_pages);
}
/*
* Helper functions to size the waitqueue hash table.
* Essentially these want to choose hash table sizes sufficiently
* large so that collisions trying to wait on pages are rare.
* But in fact, the number of active page waitqueues on typical
* systems is ridiculously low, less than 200. So this is even
* conservative, even though it seems large.
*
* The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
* waitqueues, i.e. the size of the waitq table given the number of pages.
*/
#define PAGES_PER_WAITQUEUE 256
#ifndef CONFIG_MEMORY_HOTPLUG
static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
{
unsigned long size = 1;
pages /= PAGES_PER_WAITQUEUE;
while (size < pages)
size <<= 1;
/*
* Once we have dozens or even hundreds of threads sleeping
* on IO we've got bigger problems than wait queue collision.
* Limit the size of the wait table to a reasonable size.
*/
size = min(size, 4096UL);
return max(size, 4UL);
}
#else
/*
* A zone's size might be changed by hot-add, so it is not possible to determine
* a suitable size for its wait_table. So we use the maximum size now.
*
* The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
*
* i386 (preemption config) : 4096 x 16 = 64Kbyte.
* ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
* ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
*
* The maximum entries are prepared when a zone's memory is (512K + 256) pages
* or more by the traditional way. (See above). It equals:
*
* i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
* ia64(16K page size) : = ( 8G + 4M)byte.
* powerpc (64K page size) : = (32G +16M)byte.
*/
static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
{
return 4096UL;
}
#endif
/*
* This is an integer logarithm so that shifts can be used later
* to extract the more random high bits from the multiplicative
* hash function before the remainder is taken.
*/
static inline unsigned long wait_table_bits(unsigned long size)
{
return ffz(~size);
}
#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
/*
* Initially all pages are reserved - free ones are freed
* up by free_all_bootmem() once the early boot process is
* done. Non-atomic initialization, single-pass.
*/
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
unsigned long start_pfn, enum memmap_context context)
{
struct page *page;
unsigned long end_pfn = start_pfn + size;
unsigned long pfn;
for (pfn = start_pfn; pfn < end_pfn; pfn++) {
/*
* There can be holes in boot-time mem_map[]s
* handed to this function. They do not
* exist on hotplugged memory.
*/
if (context == MEMMAP_EARLY) {
if (!early_pfn_valid(pfn))
continue;
if (!early_pfn_in_nid(pfn, nid))
continue;
}
page = pfn_to_page(pfn);
set_page_links(page, zone, nid, pfn);
init_page_count(page);
reset_page_mapcount(page);
SetPageReserved(page);
INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
/* The shift won't overflow because ZONE_NORMAL is below 4G. */
if (!is_highmem_idx(zone))
set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}
}
void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
unsigned long size)
{
int order;
for (order = 0; order < MAX_ORDER ; order++) {
INIT_LIST_HEAD(&zone->free_area[order].free_list);
zone->free_area[order].nr_free = 0;
}
}
#ifndef __HAVE_ARCH_MEMMAP_INIT
#define memmap_init(size, nid, zone, start_pfn) \
memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
#endif
static int __cpuinit zone_batchsize(struct zone *zone)
{
int batch;
/*
* The per-cpu-pages pools are set to around 1000th of the
* size of the zone. But no more than 1/2 of a meg.
*
* OK, so we don't know how big the cache is. So guess.
*/
batch = zone->present_pages / 1024;
if (batch * PAGE_SIZE > 512 * 1024)
batch = (512 * 1024) / PAGE_SIZE;
batch /= 4; /* We effectively *= 4 below */
if (batch < 1)
batch = 1;
/*
* Clamp the batch to a 2^n - 1 value. Having a power
* of 2 value was found to be more likely to have
* suboptimal cache aliasing properties in some cases.
*
* For example if 2 tasks are alternately allocating
* batches of pages, one task can end up with a lot
* of pages of one half of the possible page colors
* and the other with pages of the other colors.
*/
batch = (1 << (fls(batch + batch/2)-1)) - 1;
return batch;
}
inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
struct per_cpu_pages *pcp;
memset(p, 0, sizeof(*p));
pcp = &p->pcp[0]; /* hot */
pcp->count = 0;
pcp->high = 6 * batch;
pcp->batch = max(1UL, 1 * batch);
INIT_LIST_HEAD(&pcp->list);
pcp = &p->pcp[1]; /* cold*/
pcp->count = 0;
pcp->high = 2 * batch;
pcp->batch = max(1UL, batch/2);
INIT_LIST_HEAD(&pcp->list);
}
/*
* setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
* to the value high for the pageset p.
*/
static void setup_pagelist_highmark(struct per_cpu_pageset *p,
unsigned long high)
{
struct per_cpu_pages *pcp;
pcp = &p->pcp[0]; /* hot list */
pcp->high = high;
pcp->batch = max(1UL, high/4);
if ((high/4) > (PAGE_SHIFT * 8))
pcp->batch = PAGE_SHIFT * 8;
}
#ifdef CONFIG_NUMA
/*
* Boot pageset table. One per cpu which is going to be used for all
* zones and all nodes. The parameters will be set in such a way
* that an item put on a list will immediately be handed over to
* the buddy list. This is safe since pageset manipulation is done
* with interrupts disabled.
*
* Some NUMA counter updates may also be caught by the boot pagesets.
*
* The boot_pagesets must be kept even after bootup is complete for
* unused processors and/or zones. They do play a role for bootstrapping
* hotplugged processors.
*
* zoneinfo_show() and maybe other functions do
* not check if the processor is online before following the pageset pointer.
* Other parts of the kernel may not check if the zone is available.
*/
static struct per_cpu_pageset boot_pageset[NR_CPUS];
/*
* Dynamically allocate memory for the
* per cpu pageset array in struct zone.
*/
static int __cpuinit process_zones(int cpu)
{
struct zone *zone, *dzone;
for_each_zone(zone) {
if (!populated_zone(zone))
continue;
zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
GFP_KERNEL, cpu_to_node(cpu));
if (!zone_pcp(zone, cpu))
goto bad;
setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
if (percpu_pagelist_fraction)
setup_pagelist_highmark(zone_pcp(zone, cpu),
(zone->present_pages / percpu_pagelist_fraction));
}
return 0;
bad:
for_each_zone(dzone) {
if (dzone == zone)
break;
kfree(zone_pcp(dzone, cpu));
zone_pcp(dzone, cpu) = NULL;
}
return -ENOMEM;
}
static inline void free_zone_pagesets(int cpu)
{
struct zone *zone;
for_each_zone(zone) {
struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
/* Free per_cpu_pageset if it is slab allocated */
if (pset != &boot_pageset[cpu])
kfree(pset);
zone_pcp(zone, cpu) = NULL;
}
}
static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
unsigned long action,
void *hcpu)
{
int cpu = (long)hcpu;
int ret = NOTIFY_OK;
switch (action) {
case CPU_UP_PREPARE:
if (process_zones(cpu))
ret = NOTIFY_BAD;
break;
case CPU_UP_CANCELED:
case CPU_DEAD:
free_zone_pagesets(cpu);
break;
default:
break;
}
return ret;
}
static struct notifier_block __cpuinitdata pageset_notifier =
{ &pageset_cpuup_callback, NULL, 0 };
void __init setup_per_cpu_pageset(void)
{
int err;
/* Initialize per_cpu_pageset for cpu 0.
* A cpuup callback will do this for every cpu
* as it comes online
*/
err = process_zones(smp_processor_id());
BUG_ON(err);
register_cpu_notifier(&pageset_notifier);
}
#endif
static __meminit
int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
{
int i;
struct pglist_data *pgdat = zone->zone_pgdat;
size_t alloc_size;
/*
* The per-page waitqueue mechanism uses hashed waitqueues
* per zone.
*/
zone->wait_table_hash_nr_entries =
wait_table_hash_nr_entries(zone_size_pages);
zone->wait_table_bits =
wait_table_bits(zone->wait_table_hash_nr_entries);
alloc_size = zone->wait_table_hash_nr_entries
* sizeof(wait_queue_head_t);
if (system_state == SYSTEM_BOOTING) {
zone->wait_table = (wait_queue_head_t *)
alloc_bootmem_node(pgdat, alloc_size);
} else {
/*
* This case means that a zone whose size was 0 gets new memory
* via memory hot-add.
* But it may be the case that a new node was hot-added. In
* this case vmalloc() will not be able to use this new node's
* memory - this wait_table must be initialized to use this new
* node itself as well.
* To use this new node's memory, further consideration will be
* necessary.
*/
zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
}
if (!zone->wait_table)
return -ENOMEM;
for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
init_waitqueue_head(zone->wait_table + i);
return 0;
}
static __meminit void zone_pcp_init(struct zone *zone)
{
int cpu;
unsigned long batch = zone_batchsize(zone);
for (cpu = 0; cpu < NR_CPUS; cpu++) {
#ifdef CONFIG_NUMA
/* Early boot. Slab allocator not functional yet */
zone_pcp(zone, cpu) = &boot_pageset[cpu];
setup_pageset(&boot_pageset[cpu],0);
#else
setup_pageset(zone_pcp(zone,cpu), batch);
#endif
}
if (zone->present_pages)
printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
zone->name, zone->present_pages, batch);
}
__meminit int init_currently_empty_zone(struct zone *zone,
unsigned long zone_start_pfn,
unsigned long size,
enum memmap_context context)
{
struct pglist_data *pgdat = zone->zone_pgdat;
int ret;
ret = zone_wait_table_init(zone, size);
if (ret)
return ret;
pgdat->nr_zones = zone_idx(zone) + 1;
zone->zone_start_pfn = zone_start_pfn;
memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
zone_init_free_lists(pgdat, zone, zone->spanned_pages);
return 0;
}
#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
/*
* Basic iterator support. Return the first range of PFNs for a node
* Note: nid == MAX_NUMNODES returns first region regardless of node
*/
static int __init first_active_region_index_in_nid(int nid)
{
int i;
for (i = 0; i < nr_nodemap_entries; i++)
if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
return i;
return -1;
}
/*
* Basic iterator support. Return the next active range of PFNs for a node
* Note: nid == MAX_NUMNODES returns next region regardles of node
*/
static int __init next_active_region_index_in_nid(int index, int nid)
{
for (index = index + 1; index < nr_nodemap_entries; index++)
if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
return index;
return -1;
}
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
/*
* Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
* Architectures may implement their own version but if add_active_range()
* was used and there are no special requirements, this is a convenient
* alternative
*/
int __init early_pfn_to_nid(unsigned long pfn)
{
int i;
for (i = 0; i < nr_nodemap_entries; i++) {
unsigned long start_pfn = early_node_map[i].start_pfn;
unsigned long end_pfn = early_node_map[i].end_pfn;
if (start_pfn <= pfn && pfn < end_pfn)
return early_node_map[i].nid;
}
return 0;
}
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
/* Basic iterator support to walk early_node_map[] */
#define for_each_active_range_index_in_nid(i, nid) \
for (i = first_active_region_index_in_nid(nid); i != -1; \
i = next_active_region_index_in_nid(i, nid))
/**
* free_bootmem_with_active_regions - Call free_bootmem_node for each active range
* @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
* @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
*
* If an architecture guarantees that all ranges registered with
* add_active_ranges() contain no holes and may be freed, this
* this function may be used instead of calling free_bootmem() manually.
*/
void __init free_bootmem_with_active_regions(int nid,
unsigned long max_low_pfn)
{
int i;
for_each_active_range_index_in_nid(i, nid) {
unsigned long size_pages = 0;
unsigned long end_pfn = early_node_map[i].end_pfn;
if (early_node_map[i].start_pfn >= max_low_pfn)
continue;
if (end_pfn > max_low_pfn)
end_pfn = max_low_pfn;
size_pages = end_pfn - early_node_map[i].start_pfn;
free_bootmem_node(NODE_DATA(early_node_map[i].nid),
PFN_PHYS(early_node_map[i].start_pfn),
size_pages << PAGE_SHIFT);
}
}
/**
* sparse_memory_present_with_active_regions - Call memory_present for each active range
* @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
*
* If an architecture guarantees that all ranges registered with
* add_active_ranges() contain no holes and may be freed, this
* function may be used instead of calling memory_present() manually.
*/
void __init sparse_memory_present_with_active_regions(int nid)
{
int i;
for_each_active_range_index_in_nid(i, nid)
memory_present(early_node_map[i].nid,
early_node_map[i].start_pfn,
early_node_map[i].end_pfn);
}
/**
* push_node_boundaries - Push node boundaries to at least the requested boundary
* @nid: The nid of the node to push the boundary for
* @start_pfn: The start pfn of the node
* @end_pfn: The end pfn of the node
*
* In reserve-based hot-add, mem_map is allocated that is unused until hotadd
* time. Specifically, on x86_64, SRAT will report ranges that can potentially
* be hotplugged even though no physical memory exists. This function allows
* an arch to push out the node boundaries so mem_map is allocated that can
* be used later.
*/
#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
void __init push_node_boundaries(unsigned int nid,
unsigned long start_pfn, unsigned long end_pfn)
{
printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
nid, start_pfn, end_pfn);
/* Initialise the boundary for this node if necessary */
if (node_boundary_end_pfn[nid] == 0)
node_boundary_start_pfn[nid] = -1UL;
/* Update the boundaries */
if (node_boundary_start_pfn[nid] > start_pfn)
node_boundary_start_pfn[nid] = start_pfn;
if (node_boundary_end_pfn[nid] < end_pfn)
node_boundary_end_pfn[nid] = end_pfn;
}
/* If necessary, push the node boundary out for reserve hotadd */
static void __init account_node_boundary(unsigned int nid,
unsigned long *start_pfn, unsigned long *end_pfn)
{
printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
nid, *start_pfn, *end_pfn);
/* Return if boundary information has not been provided */
if (node_boundary_end_pfn[nid] == 0)
return;
/* Check the boundaries and update if necessary */
if (node_boundary_start_pfn[nid] < *start_pfn)
*start_pfn = node_boundary_start_pfn[nid];
if (node_boundary_end_pfn[nid] > *end_pfn)
*end_pfn = node_boundary_end_pfn[nid];
}
#else
void __init push_node_boundaries(unsigned int nid,
unsigned long start_pfn, unsigned long end_pfn) {}
static void __init account_node_boundary(unsigned int nid,
unsigned long *start_pfn, unsigned long *end_pfn) {}
#endif
/**
* get_pfn_range_for_nid - Return the start and end page frames for a node
* @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
* @start_pfn: Passed by reference. On return, it will have the node start_pfn.
* @end_pfn: Passed by reference. On return, it will have the node end_pfn.
*
* It returns the start and end page frame of a node based on information
* provided by an arch calling add_active_range(). If called for a node
* with no available memory, a warning is printed and the start and end
* PFNs will be 0.
*/
void __init get_pfn_range_for_nid(unsigned int nid,
unsigned long *start_pfn, unsigned long *end_pfn)
{
int i;
*start_pfn = -1UL;
*end_pfn = 0;
for_each_active_range_index_in_nid(i, nid) {
*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
}
if (*start_pfn == -1UL) {
printk(KERN_WARNING "Node %u active with no memory\n", nid);
*start_pfn = 0;
}
/* Push the node boundaries out if requested */
account_node_boundary(nid, start_pfn, end_pfn);
}
/*
* Return the number of pages a zone spans in a node, including holes
* present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
*/
unsigned long __init zone_spanned_pages_in_node(int nid,
unsigned long zone_type,
unsigned long *ignored)
{
unsigned long node_start_pfn, node_end_pfn;
unsigned long zone_start_pfn, zone_end_pfn;
/* Get the start and end of the node and zone */
get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
/* Check that this node has pages within the zone's required range */
if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
return 0;
/* Move the zone boundaries inside the node if necessary */
zone_end_pfn = min(zone_end_pfn, node_end_pfn);
zone_start_pfn = max(zone_start_pfn, node_start_pfn);
/* Return the spanned pages */
return zone_end_pfn - zone_start_pfn;
}
/*
* Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
* then all holes in the requested range will be accounted for.
*/
unsigned long __init __absent_pages_in_range(int nid,
unsigned long range_start_pfn,
unsigned long range_end_pfn)
{
int i = 0;
unsigned long prev_end_pfn = 0, hole_pages = 0;
unsigned long start_pfn;
/* Find the end_pfn of the first active range of pfns in the node */
i = first_active_region_index_in_nid(nid);
if (i == -1)
return 0;
/* Account for ranges before physical memory on this node */
if (early_node_map[i].start_pfn > range_start_pfn)
hole_pages = early_node_map[i].start_pfn - range_start_pfn;
prev_end_pfn = early_node_map[i].start_pfn;
/* Find all holes for the zone within the node */
for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
/* No need to continue if prev_end_pfn is outside the zone */
if (prev_end_pfn >= range_end_pfn)
break;
/* Make sure the end of the zone is not within the hole */
start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
prev_end_pfn = max(prev_end_pfn, range_start_pfn);
/* Update the hole size cound and move on */
if (start_pfn > range_start_pfn) {
BUG_ON(prev_end_pfn > start_pfn);
hole_pages += start_pfn - prev_end_pfn;
}
prev_end_pfn = early_node_map[i].end_pfn;
}
/* Account for ranges past physical memory on this node */
if (range_end_pfn > prev_end_pfn)
hole_pages += range_end_pfn -
max(range_start_pfn, prev_end_pfn);
return hole_pages;
}
/**
* absent_pages_in_range - Return number of page frames in holes within a range
* @start_pfn: The start PFN to start searching for holes
* @end_pfn: The end PFN to stop searching for holes
*
* It returns the number of pages frames in memory holes within a range.
*/
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
unsigned long end_pfn)
{
return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}
/* Return the number of page frames in holes in a zone on a node */
unsigned long __init zone_absent_pages_in_node(int nid,
unsigned long zone_type,
unsigned long *ignored)
{
unsigned long node_start_pfn, node_end_pfn;
unsigned long zone_start_pfn, zone_end_pfn;
get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
node_start_pfn);
zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
node_end_pfn);
return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
}
#else
static inline unsigned long zone_spanned_pages_in_node(int nid,
unsigned long zone_type,
unsigned long *zones_size)
{
return zones_size[zone_type];
}
static inline unsigned long zone_absent_pages_in_node(int nid,
unsigned long zone_type,
unsigned long *zholes_size)
{
if (!zholes_size)
return 0;
return zholes_size[zone_type];
}
#endif
static void __init calculate_node_totalpages(struct pglist_data *pgdat,
unsigned long *zones_size, unsigned long *zholes_size)
{
unsigned long realtotalpages, totalpages = 0;
enum zone_type i;
for (i = 0; i < MAX_NR_ZONES; i++)
totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
zones_size);
pgdat->node_spanned_pages = totalpages;
realtotalpages = totalpages;
for (i = 0; i < MAX_NR_ZONES; i++)
realtotalpages -=
zone_absent_pages_in_node(pgdat->node_id, i,
zholes_size);
pgdat->node_present_pages = realtotalpages;
printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
realtotalpages);
}
/*
* Set up the zone data structures:
* - mark all pages reserved
* - mark all memory queues empty
* - clear the memory bitmaps
*/
static void __meminit free_area_init_core(struct pglist_data *pgdat,
unsigned long *zones_size, unsigned long *zholes_size)
{
enum zone_type j;
int nid = pgdat->node_id;
unsigned long zone_start_pfn = pgdat->node_start_pfn;
int ret;
pgdat_resize_init(pgdat);
pgdat->nr_zones = 0;
init_waitqueue_head(&pgdat->kswapd_wait);
pgdat->kswapd_max_order = 0;
for (j = 0; j < MAX_NR_ZONES; j++) {
struct zone *zone = pgdat->node_zones + j;
unsigned long size, realsize, memmap_pages;
size = zone_spanned_pages_in_node(nid, j, zones_size);
realsize = size - zone_absent_pages_in_node(nid, j,
zholes_size);
/*
* Adjust realsize so that it accounts for how much memory
* is used by this zone for memmap. This affects the watermark
* and per-cpu initialisations
*/
memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
if (realsize >= memmap_pages) {
realsize -= memmap_pages;
printk(KERN_DEBUG
" %s zone: %lu pages used for memmap\n",
zone_names[j], memmap_pages);
} else
printk(KERN_WARNING
" %s zone: %lu pages exceeds realsize %lu\n",
zone_names[j], memmap_pages, realsize);
/* Account for reserved pages */
if (j == 0 && realsize > dma_reserve) {
realsize -= dma_reserve;
printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
zone_names[0], dma_reserve);
}
if (!is_highmem_idx(j))
nr_kernel_pages += realsize;
nr_all_pages += realsize;
zone->spanned_pages = size;
zone->present_pages = realsize;
#ifdef CONFIG_NUMA
zone->node = nid;
zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
/ 100;
zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
#endif
zone->name = zone_names[j];
spin_lock_init(&zone->lock);
spin_lock_init(&zone->lru_lock);
zone_seqlock_init(zone);
zone->zone_pgdat = pgdat;
zone->prev_priority = DEF_PRIORITY;
zone_pcp_init(zone);
INIT_LIST_HEAD(&zone->active_list);
INIT_LIST_HEAD(&zone->inactive_list);
zone->nr_scan_active = 0;
zone->nr_scan_inactive = 0;
zap_zone_vm_stats(zone);
atomic_set(&zone->reclaim_in_progress, 0);
if (!size)
continue;
ret = init_currently_empty_zone(zone, zone_start_pfn,
size, MEMMAP_EARLY);
BUG_ON(ret);
zone_start_pfn += size;
}
}
static void __init alloc_node_mem_map(struct pglist_data *pgdat)
{
/* Skip empty nodes */
if (!pgdat->node_spanned_pages)
return;
#ifdef CONFIG_FLAT_NODE_MEM_MAP
/* ia64 gets its own node_mem_map, before this, without bootmem */
if (!pgdat->node_mem_map) {
unsigned long size, start, end;
struct page *map;
/*
* The zone's endpoints aren't required to be MAX_ORDER
* aligned but the node_mem_map endpoints must be in order
* for the buddy allocator to function correctly.
*/
start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
end = ALIGN(end, MAX_ORDER_NR_PAGES);
size = (end - start) * sizeof(struct page);
map = alloc_remap(pgdat->node_id, size);
if (!map)
map = alloc_bootmem_node(pgdat, size);
pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
}
#ifdef CONFIG_FLATMEM
/*
* With no DISCONTIG, the global mem_map is just set as node 0's
*/
if (pgdat == NODE_DATA(0)) {
mem_map = NODE_DATA(0)->node_mem_map;
#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
mem_map -= pgdat->node_start_pfn;
#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
}
#endif
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
}
void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
unsigned long *zones_size, unsigned long node_start_pfn,
unsigned long *zholes_size)
{
pgdat->node_id = nid;
pgdat->node_start_pfn = node_start_pfn;
calculate_node_totalpages(pgdat, zones_size, zholes_size);
alloc_node_mem_map(pgdat);
free_area_init_core(pgdat, zones_size, zholes_size);
}
#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
/**
* add_active_range - Register a range of PFNs backed by physical memory
* @nid: The node ID the range resides on
* @start_pfn: The start PFN of the available physical memory
* @end_pfn: The end PFN of the available physical memory
*
* These ranges are stored in an early_node_map[] and later used by
* free_area_init_nodes() to calculate zone sizes and holes. If the
* range spans a memory hole, it is up to the architecture to ensure
* the memory is not freed by the bootmem allocator. If possible
* the range being registered will be merged with existing ranges.
*/
void __init add_active_range(unsigned int nid, unsigned long start_pfn,
unsigned long end_pfn)
{
int i;
printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
"%d entries of %d used\n",
nid, start_pfn, end_pfn,
nr_nodemap_entries, MAX_ACTIVE_REGIONS);
/* Merge with existing active regions if possible */
for (i = 0; i < nr_nodemap_entries; i++) {
if (early_node_map[i].nid != nid)
continue;
/* Skip if an existing region covers this new one */
if (start_pfn >= early_node_map[i].start_pfn &&
end_pfn <= early_node_map[i].end_pfn)
return;
/* Merge forward if suitable */
if (start_pfn <= early_node_map[i].end_pfn &&
end_pfn > early_node_map[i].end_pfn) {
early_node_map[i].end_pfn = end_pfn;
return;
}
/* Merge backward if suitable */
if (start_pfn < early_node_map[i].end_pfn &&
end_pfn >= early_node_map[i].start_pfn) {
early_node_map[i].start_pfn = start_pfn;
return;
}
}
/* Check that early_node_map is large enough */
if (i >= MAX_ACTIVE_REGIONS) {
printk(KERN_CRIT "More than %d memory regions, truncating\n",
MAX_ACTIVE_REGIONS);
return;
}
early_node_map[i].nid = nid;
early_node_map[i].start_pfn = start_pfn;
early_node_map[i].end_pfn = end_pfn;
nr_nodemap_entries = i + 1;
}
/**
* shrink_active_range - Shrink an existing registered range of PFNs
* @nid: The node id the range is on that should be shrunk
* @old_end_pfn: The old end PFN of the range
* @new_end_pfn: The new PFN of the range
*
* i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
* The map is kept at the end physical page range that has already been
* registered with add_active_range(). This function allows an arch to shrink
* an existing registered range.
*/
void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
unsigned long new_end_pfn)
{
int i;
/* Find the old active region end and shrink */
for_each_active_range_index_in_nid(i, nid)
if (early_node_map[i].end_pfn == old_end_pfn) {
early_node_map[i].end_pfn = new_end_pfn;
break;
}
}
/**
* remove_all_active_ranges - Remove all currently registered regions
*
* During discovery, it may be found that a table like SRAT is invalid
* and an alternative discovery method must be used. This function removes
* all currently registered regions.
*/
void __init remove_all_active_ranges(void)
{
memset(early_node_map, 0, sizeof(early_node_map));
nr_nodemap_entries = 0;
#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
}
/* Compare two active node_active_regions */
static int __init cmp_node_active_region(const void *a, const void *b)
{
struct node_active_region *arange = (struct node_active_region *)a;
struct node_active_region *brange = (struct node_active_region *)b;
/* Done this way to avoid overflows */
if (arange->start_pfn > brange->start_pfn)
return 1;
if (arange->start_pfn < brange->start_pfn)
return -1;
return 0;
}
/* sort the node_map by start_pfn */
static void __init sort_node_map(void)
{
sort(early_node_map, (size_t)nr_nodemap_entries,
sizeof(struct node_active_region),
cmp_node_active_region, NULL);
}
/* Find the lowest pfn for a node */
unsigned long __init find_min_pfn_for_node(unsigned long nid)
{
int i;
unsigned long min_pfn = ULONG_MAX;
/* Assuming a sorted map, the first range found has the starting pfn */
for_each_active_range_index_in_nid(i, nid)
min_pfn = min(min_pfn, early_node_map[i].start_pfn);
if (min_pfn == ULONG_MAX) {
printk(KERN_WARNING
"Could not find start_pfn for node %lu\n", nid);
return 0;
}
return min_pfn;
}
/**
* find_min_pfn_with_active_regions - Find the minimum PFN registered
*
* It returns the minimum PFN based on information provided via
* add_active_range().
*/
unsigned long __init find_min_pfn_with_active_regions(void)
{
return find_min_pfn_for_node(MAX_NUMNODES);
}
/**
* find_max_pfn_with_active_regions - Find the maximum PFN registered
*
* It returns the maximum PFN based on information provided via
* add_active_range().
*/
unsigned long __init find_max_pfn_with_active_regions(void)
{
int i;
unsigned long max_pfn = 0;
for (i = 0; i < nr_nodemap_entries; i++)
max_pfn = max(max_pfn, early_node_map[i].end_pfn);
return max_pfn;
}
/**
* free_area_init_nodes - Initialise all pg_data_t and zone data
* @max_zone_pfn: an array of max PFNs for each zone
*
* This will call free_area_init_node() for each active node in the system.
* Using the page ranges provided by add_active_range(), the size of each
* zone in each node and their holes is calculated. If the maximum PFN
* between two adjacent zones match, it is assumed that the zone is empty.
* For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
* that arch_max_dma32_pfn has no pages. It is also assumed that a zone
* starts where the previous one ended. For example, ZONE_DMA32 starts
* at arch_max_dma_pfn.
*/
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
{
unsigned long nid;
enum zone_type i;
/* Sort early_node_map as initialisation assumes it is sorted */
sort_node_map();
/* Record where the zone boundaries are */
memset(arch_zone_lowest_possible_pfn, 0,
sizeof(arch_zone_lowest_possible_pfn));
memset(arch_zone_highest_possible_pfn, 0,
sizeof(arch_zone_highest_possible_pfn));
arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
for (i = 1; i < MAX_NR_ZONES; i++) {
arch_zone_lowest_possible_pfn[i] =
arch_zone_highest_possible_pfn[i-1];
arch_zone_highest_possible_pfn[i] =
max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
}
/* Print out the zone ranges */
printk("Zone PFN ranges:\n");
for (i = 0; i < MAX_NR_ZONES; i++)
printk(" %-8s %8lu -> %8lu\n",
zone_names[i],
arch_zone_lowest_possible_pfn[i],
arch_zone_highest_possible_pfn[i]);
/* Print out the early_node_map[] */
printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
for (i = 0; i < nr_nodemap_entries; i++)
printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
early_node_map[i].start_pfn,
early_node_map[i].end_pfn);
/* Initialise every node */
setup_nr_node_ids();
for_each_online_node(nid) {
pg_data_t *pgdat = NODE_DATA(nid);
free_area_init_node(nid, pgdat, NULL,
find_min_pfn_for_node(nid), NULL);
}
}
#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
/**
* set_dma_reserve - set the specified number of pages reserved in the first zone
* @new_dma_reserve: The number of pages to mark reserved
*
* The per-cpu batchsize and zone watermarks are determined by present_pages.
* In the DMA zone, a significant percentage may be consumed by kernel image
* and other unfreeable allocations which can skew the watermarks badly. This
* function may optionally be used to account for unfreeable pages in the
* first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
* smaller per-cpu batchsize.
*/
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
dma_reserve = new_dma_reserve;
}
#ifndef CONFIG_NEED_MULTIPLE_NODES
static bootmem_data_t contig_bootmem_data;
struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
EXPORT_SYMBOL(contig_page_data);
#endif
void __init free_area_init(unsigned long *zones_size)
{
free_area_init_node(0, NODE_DATA(0), zones_size,
__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
}
static int page_alloc_cpu_notify(struct notifier_block *self,
unsigned long action, void *hcpu)
{
int cpu = (unsigned long)hcpu;
if (action == CPU_DEAD) {
local_irq_disable();
__drain_pages(cpu);
vm_events_fold_cpu(cpu);
local_irq_enable();
refresh_cpu_vm_stats(cpu);
}
return NOTIFY_OK;
}
void __init page_alloc_init(void)
{
hotcpu_notifier(page_alloc_cpu_notify, 0);
}
/*
* calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
* or min_free_kbytes changes.
*/
static void calculate_totalreserve_pages(void)
{
struct pglist_data *pgdat;
unsigned long reserve_pages = 0;
enum zone_type i, j;
for_each_online_pgdat(pgdat) {
for (i = 0; i < MAX_NR_ZONES; i++) {
struct zone *zone = pgdat->node_zones + i;
unsigned long max = 0;
/* Find valid and maximum lowmem_reserve in the zone */
for (j = i; j < MAX_NR_ZONES; j++) {
if (zone->lowmem_reserve[j] > max)
max = zone->lowmem_reserve[j];
}
/* we treat pages_high as reserved pages. */
max += zone->pages_high;
if (max > zone->present_pages)
max = zone->present_pages;
reserve_pages += max;
}
}
totalreserve_pages = reserve_pages;
}
/*
* setup_per_zone_lowmem_reserve - called whenever
* sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
* has a correct pages reserved value, so an adequate number of
* pages are left in the zone after a successful __alloc_pages().
*/
static void setup_per_zone_lowmem_reserve(void)
{
struct pglist_data *pgdat;
enum zone_type j, idx;
for_each_online_pgdat(pgdat) {
for (j = 0; j < MAX_NR_ZONES; j++) {
struct zone *zone = pgdat->node_zones + j;
unsigned long present_pages = zone->present_pages;
zone->lowmem_reserve[j] = 0;
idx = j;
while (idx) {
struct zone *lower_zone;
idx--;
if (sysctl_lowmem_reserve_ratio[idx] < 1)
sysctl_lowmem_reserve_ratio[idx] = 1;
lower_zone = pgdat->node_zones + idx;
lower_zone->lowmem_reserve[j] = present_pages /
sysctl_lowmem_reserve_ratio[idx];
present_pages += lower_zone->present_pages;
}
}
}
/* update totalreserve_pages */
calculate_totalreserve_pages();
}
/**
* setup_per_zone_pages_min - called when min_free_kbytes changes.
*
* Ensures that the pages_{min,low,high} values for each zone are set correctly
* with respect to min_free_kbytes.
*/
void setup_per_zone_pages_min(void)
{
unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
unsigned long lowmem_pages = 0;
struct zone *zone;
unsigned long flags;
/* Calculate total number of !ZONE_HIGHMEM pages */
for_each_zone(zone) {
if (!is_highmem(zone))
lowmem_pages += zone->present_pages;
}
for_each_zone(zone) {
u64 tmp;
spin_lock_irqsave(&zone->lru_lock, flags);
tmp = (u64)pages_min * zone->present_pages;
do_div(tmp, lowmem_pages);
if (is_highmem(zone)) {
/*
* __GFP_HIGH and PF_MEMALLOC allocations usually don't
* need highmem pages, so cap pages_min to a small
* value here.
*
* The (pages_high-pages_low) and (pages_low-pages_min)
* deltas controls asynch page reclaim, and so should
* not be capped for highmem.
*/
int min_pages;
min_pages = zone->present_pages / 1024;
if (min_pages < SWAP_CLUSTER_MAX)
min_pages = SWAP_CLUSTER_MAX;
if (min_pages > 128)
min_pages = 128;
zone->pages_min = min_pages;
} else {
/*
* If it's a lowmem zone, reserve a number of pages
* proportionate to the zone's size.
*/
zone->pages_min = tmp;
}
zone->pages_low = zone->pages_min + (tmp >> 2);
zone->pages_high = zone->pages_min + (tmp >> 1);
spin_unlock_irqrestore(&zone->lru_lock, flags);
}
/* update totalreserve_pages */
calculate_totalreserve_pages();
}
/*
* Initialise min_free_kbytes.
*
* For small machines we want it small (128k min). For large machines
* we want it large (64MB max). But it is not linear, because network
* bandwidth does not increase linearly with machine size. We use
*
* min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
* min_free_kbytes = sqrt(lowmem_kbytes * 16)
*
* which yields
*
* 16MB: 512k
* 32MB: 724k
* 64MB: 1024k
* 128MB: 1448k
* 256MB: 2048k
* 512MB: 2896k
* 1024MB: 4096k
* 2048MB: 5792k
* 4096MB: 8192k
* 8192MB: 11584k
* 16384MB: 16384k
*/
static int __init init_per_zone_pages_min(void)
{
unsigned long lowmem_kbytes;
lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
if (min_free_kbytes < 128)
min_free_kbytes = 128;
if (min_free_kbytes > 65536)
min_free_kbytes = 65536;
setup_per_zone_pages_min();
setup_per_zone_lowmem_reserve();
return 0;
}
module_init(init_per_zone_pages_min)
/*
* min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
* that we can call two helper functions whenever min_free_kbytes
* changes.
*/
int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
{
proc_dointvec(table, write, file, buffer, length, ppos);
setup_per_zone_pages_min();
return 0;
}
#ifdef CONFIG_NUMA
int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
{
struct zone *zone;
int rc;
rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
if (rc)
return rc;
for_each_zone(zone)
zone->min_unmapped_pages = (zone->present_pages *
sysctl_min_unmapped_ratio) / 100;
return 0;
}
int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
{
struct zone *zone;
int rc;
rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
if (rc)
return rc;
for_each_zone(zone)
zone->min_slab_pages = (zone->present_pages *
sysctl_min_slab_ratio) / 100;
return 0;
}
#endif
/*
* lowmem_reserve_ratio_sysctl_handler - just a wrapper around
* proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
* whenever sysctl_lowmem_reserve_ratio changes.
*
* The reserve ratio obviously has absolutely no relation with the
* pages_min watermarks. The lowmem reserve ratio can only make sense
* if in function of the boot time zone sizes.
*/
int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
{
proc_dointvec_minmax(table, write, file, buffer, length, ppos);
setup_per_zone_lowmem_reserve();
return 0;
}
/*
* percpu_pagelist_fraction - changes the pcp->high for each zone on each
* cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
* can have before it gets flushed back to buddy allocator.
*/
int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
{
struct zone *zone;
unsigned int cpu;
int ret;
ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
if (!write || (ret == -EINVAL))
return ret;
for_each_zone(zone) {
for_each_online_cpu(cpu) {
unsigned long high;
high = zone->present_pages / percpu_pagelist_fraction;
setup_pagelist_highmark(zone_pcp(zone, cpu), high);
}
}
return 0;
}
int hashdist = HASHDIST_DEFAULT;
#ifdef CONFIG_NUMA
static int __init set_hashdist(char *str)
{
if (!str)
return 0;
hashdist = simple_strtoul(str, &str, 0);
return 1;
}
__setup("hashdist=", set_hashdist);
#endif
/*
* allocate a large system hash table from bootmem
* - it is assumed that the hash table must contain an exact power-of-2
* quantity of entries
* - limit is the number of hash buckets, not the total allocation size
*/
void *__init alloc_large_system_hash(const char *tablename,
unsigned long bucketsize,
unsigned long numentries,
int scale,
int flags,
unsigned int *_hash_shift,
unsigned int *_hash_mask,
unsigned long limit)
{
unsigned long long max = limit;
unsigned long log2qty, size;
void *table = NULL;
/* allow the kernel cmdline to have a say */
if (!numentries) {
/* round applicable memory size up to nearest megabyte */
numentries = nr_kernel_pages;
numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
numentries >>= 20 - PAGE_SHIFT;
numentries <<= 20 - PAGE_SHIFT;
/* limit to 1 bucket per 2^scale bytes of low memory */
if (scale > PAGE_SHIFT)
numentries >>= (scale - PAGE_SHIFT);
else
numentries <<= (PAGE_SHIFT - scale);
/* Make sure we've got at least a 0-order allocation.. */
if (unlikely((numentries * bucketsize) < PAGE_SIZE))
numentries = PAGE_SIZE / bucketsize;
}
numentries = roundup_pow_of_two(numentries);
/* limit allocation size to 1/16 total memory by default */
if (max == 0) {
max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
do_div(max, bucketsize);
}
if (numentries > max)
numentries = max;
log2qty = ilog2(numentries);
do {
size = bucketsize << log2qty;
if (flags & HASH_EARLY)
table = alloc_bootmem(size);
else if (hashdist)
table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
else {
unsigned long order;
for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
;
table = (void*) __get_free_pages(GFP_ATOMIC, order);
}
} while (!table && size > PAGE_SIZE && --log2qty);
if (!table)
panic("Failed to allocate %s hash table\n", tablename);
printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
tablename,
(1U << log2qty),
ilog2(size) - PAGE_SHIFT,
size);
if (_hash_shift)
*_hash_shift = log2qty;
if (_hash_mask)
*_hash_mask = (1 << log2qty) - 1;
return table;
}
#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
struct page *pfn_to_page(unsigned long pfn)
{
return __pfn_to_page(pfn);
}
unsigned long page_to_pfn(struct page *page)
{
return __page_to_pfn(page);
}
EXPORT_SYMBOL(pfn_to_page);
EXPORT_SYMBOL(page_to_pfn);
#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */