linux-hardened/drivers/net/veth.c
Toshiaki Makita 638264dc90 veth: Support per queue XDP ring
Move XDP and napi related fields from veth_priv to newly created veth_rq
structure.

When xdp_frames are enqueued from ndo_xdp_xmit and XDP_TX, rxq is
selected by current cpu.

When skbs are enqueued from the peer device, rxq is one to one mapping
of its peer txq. This way we have a restriction that the number of rxqs
must not less than the number of peer txqs, but leave the possibility to
achieve bulk skb xmit in the future because txq lock would make it
possible to remove rxq ptr_ring lock.

v3:
- Add extack messages.
- Fix array overrun in veth_xmit.

Signed-off-by: Toshiaki Makita <makita.toshiaki@lab.ntt.co.jp>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-08-10 16:12:21 +02:00

1268 lines
28 KiB
C

/*
* drivers/net/veth.c
*
* Copyright (C) 2007 OpenVZ http://openvz.org, SWsoft Inc
*
* Author: Pavel Emelianov <xemul@openvz.org>
* Ethtool interface from: Eric W. Biederman <ebiederm@xmission.com>
*
*/
#include <linux/netdevice.h>
#include <linux/slab.h>
#include <linux/ethtool.h>
#include <linux/etherdevice.h>
#include <linux/u64_stats_sync.h>
#include <net/rtnetlink.h>
#include <net/dst.h>
#include <net/xfrm.h>
#include <net/xdp.h>
#include <linux/veth.h>
#include <linux/module.h>
#include <linux/bpf.h>
#include <linux/filter.h>
#include <linux/ptr_ring.h>
#include <linux/bpf_trace.h>
#define DRV_NAME "veth"
#define DRV_VERSION "1.0"
#define VETH_XDP_FLAG BIT(0)
#define VETH_RING_SIZE 256
#define VETH_XDP_HEADROOM (XDP_PACKET_HEADROOM + NET_IP_ALIGN)
/* Separating two types of XDP xmit */
#define VETH_XDP_TX BIT(0)
#define VETH_XDP_REDIR BIT(1)
struct pcpu_vstats {
u64 packets;
u64 bytes;
struct u64_stats_sync syncp;
};
struct veth_rq {
struct napi_struct xdp_napi;
struct net_device *dev;
struct bpf_prog __rcu *xdp_prog;
struct xdp_mem_info xdp_mem;
bool rx_notify_masked;
struct ptr_ring xdp_ring;
struct xdp_rxq_info xdp_rxq;
};
struct veth_priv {
struct net_device __rcu *peer;
atomic64_t dropped;
struct bpf_prog *_xdp_prog;
struct veth_rq *rq;
unsigned int requested_headroom;
};
/*
* ethtool interface
*/
static struct {
const char string[ETH_GSTRING_LEN];
} ethtool_stats_keys[] = {
{ "peer_ifindex" },
};
static int veth_get_link_ksettings(struct net_device *dev,
struct ethtool_link_ksettings *cmd)
{
cmd->base.speed = SPEED_10000;
cmd->base.duplex = DUPLEX_FULL;
cmd->base.port = PORT_TP;
cmd->base.autoneg = AUTONEG_DISABLE;
return 0;
}
static void veth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
strlcpy(info->version, DRV_VERSION, sizeof(info->version));
}
static void veth_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
{
switch(stringset) {
case ETH_SS_STATS:
memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
break;
}
}
static int veth_get_sset_count(struct net_device *dev, int sset)
{
switch (sset) {
case ETH_SS_STATS:
return ARRAY_SIZE(ethtool_stats_keys);
default:
return -EOPNOTSUPP;
}
}
static void veth_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *stats, u64 *data)
{
struct veth_priv *priv = netdev_priv(dev);
struct net_device *peer = rtnl_dereference(priv->peer);
data[0] = peer ? peer->ifindex : 0;
}
static const struct ethtool_ops veth_ethtool_ops = {
.get_drvinfo = veth_get_drvinfo,
.get_link = ethtool_op_get_link,
.get_strings = veth_get_strings,
.get_sset_count = veth_get_sset_count,
.get_ethtool_stats = veth_get_ethtool_stats,
.get_link_ksettings = veth_get_link_ksettings,
};
/* general routines */
static bool veth_is_xdp_frame(void *ptr)
{
return (unsigned long)ptr & VETH_XDP_FLAG;
}
static void *veth_ptr_to_xdp(void *ptr)
{
return (void *)((unsigned long)ptr & ~VETH_XDP_FLAG);
}
static void *veth_xdp_to_ptr(void *ptr)
{
return (void *)((unsigned long)ptr | VETH_XDP_FLAG);
}
static void veth_ptr_free(void *ptr)
{
if (veth_is_xdp_frame(ptr))
xdp_return_frame(veth_ptr_to_xdp(ptr));
else
kfree_skb(ptr);
}
static void __veth_xdp_flush(struct veth_rq *rq)
{
/* Write ptr_ring before reading rx_notify_masked */
smp_mb();
if (!rq->rx_notify_masked) {
rq->rx_notify_masked = true;
napi_schedule(&rq->xdp_napi);
}
}
static int veth_xdp_rx(struct veth_rq *rq, struct sk_buff *skb)
{
if (unlikely(ptr_ring_produce(&rq->xdp_ring, skb))) {
dev_kfree_skb_any(skb);
return NET_RX_DROP;
}
return NET_RX_SUCCESS;
}
static int veth_forward_skb(struct net_device *dev, struct sk_buff *skb,
struct veth_rq *rq, bool xdp)
{
return __dev_forward_skb(dev, skb) ?: xdp ?
veth_xdp_rx(rq, skb) :
netif_rx(skb);
}
static netdev_tx_t veth_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
struct veth_rq *rq = NULL;
struct net_device *rcv;
int length = skb->len;
bool rcv_xdp = false;
int rxq;
rcu_read_lock();
rcv = rcu_dereference(priv->peer);
if (unlikely(!rcv)) {
kfree_skb(skb);
goto drop;
}
rcv_priv = netdev_priv(rcv);
rxq = skb_get_queue_mapping(skb);
if (rxq < rcv->real_num_rx_queues) {
rq = &rcv_priv->rq[rxq];
rcv_xdp = rcu_access_pointer(rq->xdp_prog);
if (rcv_xdp)
skb_record_rx_queue(skb, rxq);
}
if (likely(veth_forward_skb(rcv, skb, rq, rcv_xdp) == NET_RX_SUCCESS)) {
struct pcpu_vstats *stats = this_cpu_ptr(dev->vstats);
u64_stats_update_begin(&stats->syncp);
stats->bytes += length;
stats->packets++;
u64_stats_update_end(&stats->syncp);
} else {
drop:
atomic64_inc(&priv->dropped);
}
if (rcv_xdp)
__veth_xdp_flush(rq);
rcu_read_unlock();
return NETDEV_TX_OK;
}
static u64 veth_stats_one(struct pcpu_vstats *result, struct net_device *dev)
{
struct veth_priv *priv = netdev_priv(dev);
int cpu;
result->packets = 0;
result->bytes = 0;
for_each_possible_cpu(cpu) {
struct pcpu_vstats *stats = per_cpu_ptr(dev->vstats, cpu);
u64 packets, bytes;
unsigned int start;
do {
start = u64_stats_fetch_begin_irq(&stats->syncp);
packets = stats->packets;
bytes = stats->bytes;
} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
result->packets += packets;
result->bytes += bytes;
}
return atomic64_read(&priv->dropped);
}
static void veth_get_stats64(struct net_device *dev,
struct rtnl_link_stats64 *tot)
{
struct veth_priv *priv = netdev_priv(dev);
struct net_device *peer;
struct pcpu_vstats one;
tot->tx_dropped = veth_stats_one(&one, dev);
tot->tx_bytes = one.bytes;
tot->tx_packets = one.packets;
rcu_read_lock();
peer = rcu_dereference(priv->peer);
if (peer) {
tot->rx_dropped = veth_stats_one(&one, peer);
tot->rx_bytes = one.bytes;
tot->rx_packets = one.packets;
}
rcu_read_unlock();
}
/* fake multicast ability */
static void veth_set_multicast_list(struct net_device *dev)
{
}
static struct sk_buff *veth_build_skb(void *head, int headroom, int len,
int buflen)
{
struct sk_buff *skb;
if (!buflen) {
buflen = SKB_DATA_ALIGN(headroom + len) +
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
}
skb = build_skb(head, buflen);
if (!skb)
return NULL;
skb_reserve(skb, headroom);
skb_put(skb, len);
return skb;
}
static int veth_select_rxq(struct net_device *dev)
{
return smp_processor_id() % dev->real_num_rx_queues;
}
static int veth_xdp_xmit(struct net_device *dev, int n,
struct xdp_frame **frames, u32 flags)
{
struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
struct net_device *rcv;
unsigned int max_len;
struct veth_rq *rq;
int i, drops = 0;
if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
return -EINVAL;
rcv = rcu_dereference(priv->peer);
if (unlikely(!rcv))
return -ENXIO;
rcv_priv = netdev_priv(rcv);
rq = &rcv_priv->rq[veth_select_rxq(rcv)];
/* Non-NULL xdp_prog ensures that xdp_ring is initialized on receive
* side. This means an XDP program is loaded on the peer and the peer
* device is up.
*/
if (!rcu_access_pointer(rq->xdp_prog))
return -ENXIO;
max_len = rcv->mtu + rcv->hard_header_len + VLAN_HLEN;
spin_lock(&rq->xdp_ring.producer_lock);
for (i = 0; i < n; i++) {
struct xdp_frame *frame = frames[i];
void *ptr = veth_xdp_to_ptr(frame);
if (unlikely(frame->len > max_len ||
__ptr_ring_produce(&rq->xdp_ring, ptr))) {
xdp_return_frame_rx_napi(frame);
drops++;
}
}
spin_unlock(&rq->xdp_ring.producer_lock);
if (flags & XDP_XMIT_FLUSH)
__veth_xdp_flush(rq);
return n - drops;
}
static void veth_xdp_flush(struct net_device *dev)
{
struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
struct net_device *rcv;
struct veth_rq *rq;
rcu_read_lock();
rcv = rcu_dereference(priv->peer);
if (unlikely(!rcv))
goto out;
rcv_priv = netdev_priv(rcv);
rq = &rcv_priv->rq[veth_select_rxq(rcv)];
/* xdp_ring is initialized on receive side? */
if (unlikely(!rcu_access_pointer(rq->xdp_prog)))
goto out;
__veth_xdp_flush(rq);
out:
rcu_read_unlock();
}
static int veth_xdp_tx(struct net_device *dev, struct xdp_buff *xdp)
{
struct xdp_frame *frame = convert_to_xdp_frame(xdp);
if (unlikely(!frame))
return -EOVERFLOW;
return veth_xdp_xmit(dev, 1, &frame, 0);
}
static struct sk_buff *veth_xdp_rcv_one(struct veth_rq *rq,
struct xdp_frame *frame,
unsigned int *xdp_xmit)
{
void *hard_start = frame->data - frame->headroom;
void *head = hard_start - sizeof(struct xdp_frame);
int len = frame->len, delta = 0;
struct xdp_frame orig_frame;
struct bpf_prog *xdp_prog;
unsigned int headroom;
struct sk_buff *skb;
rcu_read_lock();
xdp_prog = rcu_dereference(rq->xdp_prog);
if (likely(xdp_prog)) {
struct xdp_buff xdp;
u32 act;
xdp.data_hard_start = hard_start;
xdp.data = frame->data;
xdp.data_end = frame->data + frame->len;
xdp.data_meta = frame->data - frame->metasize;
xdp.rxq = &rq->xdp_rxq;
act = bpf_prog_run_xdp(xdp_prog, &xdp);
switch (act) {
case XDP_PASS:
delta = frame->data - xdp.data;
len = xdp.data_end - xdp.data;
break;
case XDP_TX:
orig_frame = *frame;
xdp.data_hard_start = head;
xdp.rxq->mem = frame->mem;
if (unlikely(veth_xdp_tx(rq->dev, &xdp) < 0)) {
trace_xdp_exception(rq->dev, xdp_prog, act);
frame = &orig_frame;
goto err_xdp;
}
*xdp_xmit |= VETH_XDP_TX;
rcu_read_unlock();
goto xdp_xmit;
case XDP_REDIRECT:
orig_frame = *frame;
xdp.data_hard_start = head;
xdp.rxq->mem = frame->mem;
if (xdp_do_redirect(rq->dev, &xdp, xdp_prog)) {
frame = &orig_frame;
goto err_xdp;
}
*xdp_xmit |= VETH_XDP_REDIR;
rcu_read_unlock();
goto xdp_xmit;
default:
bpf_warn_invalid_xdp_action(act);
case XDP_ABORTED:
trace_xdp_exception(rq->dev, xdp_prog, act);
case XDP_DROP:
goto err_xdp;
}
}
rcu_read_unlock();
headroom = sizeof(struct xdp_frame) + frame->headroom - delta;
skb = veth_build_skb(head, headroom, len, 0);
if (!skb) {
xdp_return_frame(frame);
goto err;
}
xdp_scrub_frame(frame);
skb->protocol = eth_type_trans(skb, rq->dev);
err:
return skb;
err_xdp:
rcu_read_unlock();
xdp_return_frame(frame);
xdp_xmit:
return NULL;
}
static struct sk_buff *veth_xdp_rcv_skb(struct veth_rq *rq, struct sk_buff *skb,
unsigned int *xdp_xmit)
{
u32 pktlen, headroom, act, metalen;
void *orig_data, *orig_data_end;
struct bpf_prog *xdp_prog;
int mac_len, delta, off;
struct xdp_buff xdp;
rcu_read_lock();
xdp_prog = rcu_dereference(rq->xdp_prog);
if (unlikely(!xdp_prog)) {
rcu_read_unlock();
goto out;
}
mac_len = skb->data - skb_mac_header(skb);
pktlen = skb->len + mac_len;
headroom = skb_headroom(skb) - mac_len;
if (skb_shared(skb) || skb_head_is_locked(skb) ||
skb_is_nonlinear(skb) || headroom < XDP_PACKET_HEADROOM) {
struct sk_buff *nskb;
int size, head_off;
void *head, *start;
struct page *page;
size = SKB_DATA_ALIGN(VETH_XDP_HEADROOM + pktlen) +
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
if (size > PAGE_SIZE)
goto drop;
page = alloc_page(GFP_ATOMIC | __GFP_NOWARN);
if (!page)
goto drop;
head = page_address(page);
start = head + VETH_XDP_HEADROOM;
if (skb_copy_bits(skb, -mac_len, start, pktlen)) {
page_frag_free(head);
goto drop;
}
nskb = veth_build_skb(head,
VETH_XDP_HEADROOM + mac_len, skb->len,
PAGE_SIZE);
if (!nskb) {
page_frag_free(head);
goto drop;
}
skb_copy_header(nskb, skb);
head_off = skb_headroom(nskb) - skb_headroom(skb);
skb_headers_offset_update(nskb, head_off);
if (skb->sk)
skb_set_owner_w(nskb, skb->sk);
consume_skb(skb);
skb = nskb;
}
xdp.data_hard_start = skb->head;
xdp.data = skb_mac_header(skb);
xdp.data_end = xdp.data + pktlen;
xdp.data_meta = xdp.data;
xdp.rxq = &rq->xdp_rxq;
orig_data = xdp.data;
orig_data_end = xdp.data_end;
act = bpf_prog_run_xdp(xdp_prog, &xdp);
switch (act) {
case XDP_PASS:
break;
case XDP_TX:
get_page(virt_to_page(xdp.data));
consume_skb(skb);
xdp.rxq->mem = rq->xdp_mem;
if (unlikely(veth_xdp_tx(rq->dev, &xdp) < 0)) {
trace_xdp_exception(rq->dev, xdp_prog, act);
goto err_xdp;
}
*xdp_xmit |= VETH_XDP_TX;
rcu_read_unlock();
goto xdp_xmit;
case XDP_REDIRECT:
get_page(virt_to_page(xdp.data));
consume_skb(skb);
xdp.rxq->mem = rq->xdp_mem;
if (xdp_do_redirect(rq->dev, &xdp, xdp_prog))
goto err_xdp;
*xdp_xmit |= VETH_XDP_REDIR;
rcu_read_unlock();
goto xdp_xmit;
default:
bpf_warn_invalid_xdp_action(act);
case XDP_ABORTED:
trace_xdp_exception(rq->dev, xdp_prog, act);
case XDP_DROP:
goto drop;
}
rcu_read_unlock();
delta = orig_data - xdp.data;
off = mac_len + delta;
if (off > 0)
__skb_push(skb, off);
else if (off < 0)
__skb_pull(skb, -off);
skb->mac_header -= delta;
off = xdp.data_end - orig_data_end;
if (off != 0)
__skb_put(skb, off);
skb->protocol = eth_type_trans(skb, rq->dev);
metalen = xdp.data - xdp.data_meta;
if (metalen)
skb_metadata_set(skb, metalen);
out:
return skb;
drop:
rcu_read_unlock();
kfree_skb(skb);
return NULL;
err_xdp:
rcu_read_unlock();
page_frag_free(xdp.data);
xdp_xmit:
return NULL;
}
static int veth_xdp_rcv(struct veth_rq *rq, int budget, unsigned int *xdp_xmit)
{
int i, done = 0;
for (i = 0; i < budget; i++) {
void *ptr = __ptr_ring_consume(&rq->xdp_ring);
struct sk_buff *skb;
if (!ptr)
break;
if (veth_is_xdp_frame(ptr)) {
skb = veth_xdp_rcv_one(rq, veth_ptr_to_xdp(ptr),
xdp_xmit);
} else {
skb = veth_xdp_rcv_skb(rq, ptr, xdp_xmit);
}
if (skb)
napi_gro_receive(&rq->xdp_napi, skb);
done++;
}
return done;
}
static int veth_poll(struct napi_struct *napi, int budget)
{
struct veth_rq *rq =
container_of(napi, struct veth_rq, xdp_napi);
unsigned int xdp_xmit = 0;
int done;
xdp_set_return_frame_no_direct();
done = veth_xdp_rcv(rq, budget, &xdp_xmit);
if (done < budget && napi_complete_done(napi, done)) {
/* Write rx_notify_masked before reading ptr_ring */
smp_store_mb(rq->rx_notify_masked, false);
if (unlikely(!__ptr_ring_empty(&rq->xdp_ring))) {
rq->rx_notify_masked = true;
napi_schedule(&rq->xdp_napi);
}
}
if (xdp_xmit & VETH_XDP_TX)
veth_xdp_flush(rq->dev);
if (xdp_xmit & VETH_XDP_REDIR)
xdp_do_flush_map();
xdp_clear_return_frame_no_direct();
return done;
}
static int veth_napi_add(struct net_device *dev)
{
struct veth_priv *priv = netdev_priv(dev);
int err, i;
for (i = 0; i < dev->real_num_rx_queues; i++) {
struct veth_rq *rq = &priv->rq[i];
err = ptr_ring_init(&rq->xdp_ring, VETH_RING_SIZE, GFP_KERNEL);
if (err)
goto err_xdp_ring;
}
for (i = 0; i < dev->real_num_rx_queues; i++) {
struct veth_rq *rq = &priv->rq[i];
netif_napi_add(dev, &rq->xdp_napi, veth_poll, NAPI_POLL_WEIGHT);
napi_enable(&rq->xdp_napi);
}
return 0;
err_xdp_ring:
for (i--; i >= 0; i--)
ptr_ring_cleanup(&priv->rq[i].xdp_ring, veth_ptr_free);
return err;
}
static void veth_napi_del(struct net_device *dev)
{
struct veth_priv *priv = netdev_priv(dev);
int i;
for (i = 0; i < dev->real_num_rx_queues; i++) {
struct veth_rq *rq = &priv->rq[i];
napi_disable(&rq->xdp_napi);
napi_hash_del(&rq->xdp_napi);
}
synchronize_net();
for (i = 0; i < dev->real_num_rx_queues; i++) {
struct veth_rq *rq = &priv->rq[i];
netif_napi_del(&rq->xdp_napi);
rq->rx_notify_masked = false;
ptr_ring_cleanup(&rq->xdp_ring, veth_ptr_free);
}
}
static int veth_enable_xdp(struct net_device *dev)
{
struct veth_priv *priv = netdev_priv(dev);
int err, i;
if (!xdp_rxq_info_is_reg(&priv->rq[0].xdp_rxq)) {
for (i = 0; i < dev->real_num_rx_queues; i++) {
struct veth_rq *rq = &priv->rq[i];
err = xdp_rxq_info_reg(&rq->xdp_rxq, dev, i);
if (err < 0)
goto err_rxq_reg;
err = xdp_rxq_info_reg_mem_model(&rq->xdp_rxq,
MEM_TYPE_PAGE_SHARED,
NULL);
if (err < 0)
goto err_reg_mem;
/* Save original mem info as it can be overwritten */
rq->xdp_mem = rq->xdp_rxq.mem;
}
err = veth_napi_add(dev);
if (err)
goto err_rxq_reg;
}
for (i = 0; i < dev->real_num_rx_queues; i++)
rcu_assign_pointer(priv->rq[i].xdp_prog, priv->_xdp_prog);
return 0;
err_reg_mem:
xdp_rxq_info_unreg(&priv->rq[i].xdp_rxq);
err_rxq_reg:
for (i--; i >= 0; i--)
xdp_rxq_info_unreg(&priv->rq[i].xdp_rxq);
return err;
}
static void veth_disable_xdp(struct net_device *dev)
{
struct veth_priv *priv = netdev_priv(dev);
int i;
for (i = 0; i < dev->real_num_rx_queues; i++)
rcu_assign_pointer(priv->rq[i].xdp_prog, NULL);
veth_napi_del(dev);
for (i = 0; i < dev->real_num_rx_queues; i++) {
struct veth_rq *rq = &priv->rq[i];
rq->xdp_rxq.mem = rq->xdp_mem;
xdp_rxq_info_unreg(&rq->xdp_rxq);
}
}
static int veth_open(struct net_device *dev)
{
struct veth_priv *priv = netdev_priv(dev);
struct net_device *peer = rtnl_dereference(priv->peer);
int err;
if (!peer)
return -ENOTCONN;
if (priv->_xdp_prog) {
err = veth_enable_xdp(dev);
if (err)
return err;
}
if (peer->flags & IFF_UP) {
netif_carrier_on(dev);
netif_carrier_on(peer);
}
return 0;
}
static int veth_close(struct net_device *dev)
{
struct veth_priv *priv = netdev_priv(dev);
struct net_device *peer = rtnl_dereference(priv->peer);
netif_carrier_off(dev);
if (peer)
netif_carrier_off(peer);
if (priv->_xdp_prog)
veth_disable_xdp(dev);
return 0;
}
static int is_valid_veth_mtu(int mtu)
{
return mtu >= ETH_MIN_MTU && mtu <= ETH_MAX_MTU;
}
static int veth_dev_init(struct net_device *dev)
{
dev->vstats = netdev_alloc_pcpu_stats(struct pcpu_vstats);
if (!dev->vstats)
return -ENOMEM;
return 0;
}
static void veth_dev_free(struct net_device *dev)
{
free_percpu(dev->vstats);
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void veth_poll_controller(struct net_device *dev)
{
/* veth only receives frames when its peer sends one
* Since it has nothing to do with disabling irqs, we are guaranteed
* never to have pending data when we poll for it so
* there is nothing to do here.
*
* We need this though so netpoll recognizes us as an interface that
* supports polling, which enables bridge devices in virt setups to
* still use netconsole
*/
}
#endif /* CONFIG_NET_POLL_CONTROLLER */
static int veth_get_iflink(const struct net_device *dev)
{
struct veth_priv *priv = netdev_priv(dev);
struct net_device *peer;
int iflink;
rcu_read_lock();
peer = rcu_dereference(priv->peer);
iflink = peer ? peer->ifindex : 0;
rcu_read_unlock();
return iflink;
}
static netdev_features_t veth_fix_features(struct net_device *dev,
netdev_features_t features)
{
struct veth_priv *priv = netdev_priv(dev);
struct net_device *peer;
peer = rtnl_dereference(priv->peer);
if (peer) {
struct veth_priv *peer_priv = netdev_priv(peer);
if (peer_priv->_xdp_prog)
features &= ~NETIF_F_GSO_SOFTWARE;
}
return features;
}
static void veth_set_rx_headroom(struct net_device *dev, int new_hr)
{
struct veth_priv *peer_priv, *priv = netdev_priv(dev);
struct net_device *peer;
if (new_hr < 0)
new_hr = 0;
rcu_read_lock();
peer = rcu_dereference(priv->peer);
if (unlikely(!peer))
goto out;
peer_priv = netdev_priv(peer);
priv->requested_headroom = new_hr;
new_hr = max(priv->requested_headroom, peer_priv->requested_headroom);
dev->needed_headroom = new_hr;
peer->needed_headroom = new_hr;
out:
rcu_read_unlock();
}
static int veth_xdp_set(struct net_device *dev, struct bpf_prog *prog,
struct netlink_ext_ack *extack)
{
struct veth_priv *priv = netdev_priv(dev);
struct bpf_prog *old_prog;
struct net_device *peer;
unsigned int max_mtu;
int err;
old_prog = priv->_xdp_prog;
priv->_xdp_prog = prog;
peer = rtnl_dereference(priv->peer);
if (prog) {
if (!peer) {
NL_SET_ERR_MSG_MOD(extack, "Cannot set XDP when peer is detached");
err = -ENOTCONN;
goto err;
}
max_mtu = PAGE_SIZE - VETH_XDP_HEADROOM -
peer->hard_header_len -
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
if (peer->mtu > max_mtu) {
NL_SET_ERR_MSG_MOD(extack, "Peer MTU is too large to set XDP");
err = -ERANGE;
goto err;
}
if (dev->real_num_rx_queues < peer->real_num_tx_queues) {
NL_SET_ERR_MSG_MOD(extack, "XDP expects number of rx queues not less than peer tx queues");
err = -ENOSPC;
goto err;
}
if (dev->flags & IFF_UP) {
err = veth_enable_xdp(dev);
if (err) {
NL_SET_ERR_MSG_MOD(extack, "Setup for XDP failed");
goto err;
}
}
if (!old_prog) {
peer->hw_features &= ~NETIF_F_GSO_SOFTWARE;
peer->max_mtu = max_mtu;
}
}
if (old_prog) {
if (!prog) {
if (dev->flags & IFF_UP)
veth_disable_xdp(dev);
if (peer) {
peer->hw_features |= NETIF_F_GSO_SOFTWARE;
peer->max_mtu = ETH_MAX_MTU;
}
}
bpf_prog_put(old_prog);
}
if ((!!old_prog ^ !!prog) && peer)
netdev_update_features(peer);
return 0;
err:
priv->_xdp_prog = old_prog;
return err;
}
static u32 veth_xdp_query(struct net_device *dev)
{
struct veth_priv *priv = netdev_priv(dev);
const struct bpf_prog *xdp_prog;
xdp_prog = priv->_xdp_prog;
if (xdp_prog)
return xdp_prog->aux->id;
return 0;
}
static int veth_xdp(struct net_device *dev, struct netdev_bpf *xdp)
{
switch (xdp->command) {
case XDP_SETUP_PROG:
return veth_xdp_set(dev, xdp->prog, xdp->extack);
case XDP_QUERY_PROG:
xdp->prog_id = veth_xdp_query(dev);
return 0;
default:
return -EINVAL;
}
}
static const struct net_device_ops veth_netdev_ops = {
.ndo_init = veth_dev_init,
.ndo_open = veth_open,
.ndo_stop = veth_close,
.ndo_start_xmit = veth_xmit,
.ndo_get_stats64 = veth_get_stats64,
.ndo_set_rx_mode = veth_set_multicast_list,
.ndo_set_mac_address = eth_mac_addr,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = veth_poll_controller,
#endif
.ndo_get_iflink = veth_get_iflink,
.ndo_fix_features = veth_fix_features,
.ndo_features_check = passthru_features_check,
.ndo_set_rx_headroom = veth_set_rx_headroom,
.ndo_bpf = veth_xdp,
.ndo_xdp_xmit = veth_xdp_xmit,
};
#define VETH_FEATURES (NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HW_CSUM | \
NETIF_F_RXCSUM | NETIF_F_SCTP_CRC | NETIF_F_HIGHDMA | \
NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ENCAP_ALL | \
NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | \
NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_STAG_RX )
static void veth_setup(struct net_device *dev)
{
ether_setup(dev);
dev->priv_flags &= ~IFF_TX_SKB_SHARING;
dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
dev->priv_flags |= IFF_NO_QUEUE;
dev->priv_flags |= IFF_PHONY_HEADROOM;
dev->netdev_ops = &veth_netdev_ops;
dev->ethtool_ops = &veth_ethtool_ops;
dev->features |= NETIF_F_LLTX;
dev->features |= VETH_FEATURES;
dev->vlan_features = dev->features &
~(NETIF_F_HW_VLAN_CTAG_TX |
NETIF_F_HW_VLAN_STAG_TX |
NETIF_F_HW_VLAN_CTAG_RX |
NETIF_F_HW_VLAN_STAG_RX);
dev->needs_free_netdev = true;
dev->priv_destructor = veth_dev_free;
dev->max_mtu = ETH_MAX_MTU;
dev->hw_features = VETH_FEATURES;
dev->hw_enc_features = VETH_FEATURES;
dev->mpls_features = NETIF_F_HW_CSUM | NETIF_F_GSO_SOFTWARE;
}
/*
* netlink interface
*/
static int veth_validate(struct nlattr *tb[], struct nlattr *data[],
struct netlink_ext_ack *extack)
{
if (tb[IFLA_ADDRESS]) {
if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
return -EINVAL;
if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
return -EADDRNOTAVAIL;
}
if (tb[IFLA_MTU]) {
if (!is_valid_veth_mtu(nla_get_u32(tb[IFLA_MTU])))
return -EINVAL;
}
return 0;
}
static int veth_alloc_queues(struct net_device *dev)
{
struct veth_priv *priv = netdev_priv(dev);
priv->rq = kcalloc(dev->num_rx_queues, sizeof(*priv->rq), GFP_KERNEL);
if (!priv->rq)
return -ENOMEM;
return 0;
}
static void veth_free_queues(struct net_device *dev)
{
struct veth_priv *priv = netdev_priv(dev);
kfree(priv->rq);
}
static struct rtnl_link_ops veth_link_ops;
static int veth_newlink(struct net *src_net, struct net_device *dev,
struct nlattr *tb[], struct nlattr *data[],
struct netlink_ext_ack *extack)
{
int err, i;
struct net_device *peer;
struct veth_priv *priv;
char ifname[IFNAMSIZ];
struct nlattr *peer_tb[IFLA_MAX + 1], **tbp;
unsigned char name_assign_type;
struct ifinfomsg *ifmp;
struct net *net;
/*
* create and register peer first
*/
if (data != NULL && data[VETH_INFO_PEER] != NULL) {
struct nlattr *nla_peer;
nla_peer = data[VETH_INFO_PEER];
ifmp = nla_data(nla_peer);
err = rtnl_nla_parse_ifla(peer_tb,
nla_data(nla_peer) + sizeof(struct ifinfomsg),
nla_len(nla_peer) - sizeof(struct ifinfomsg),
NULL);
if (err < 0)
return err;
err = veth_validate(peer_tb, NULL, extack);
if (err < 0)
return err;
tbp = peer_tb;
} else {
ifmp = NULL;
tbp = tb;
}
if (ifmp && tbp[IFLA_IFNAME]) {
nla_strlcpy(ifname, tbp[IFLA_IFNAME], IFNAMSIZ);
name_assign_type = NET_NAME_USER;
} else {
snprintf(ifname, IFNAMSIZ, DRV_NAME "%%d");
name_assign_type = NET_NAME_ENUM;
}
net = rtnl_link_get_net(src_net, tbp);
if (IS_ERR(net))
return PTR_ERR(net);
peer = rtnl_create_link(net, ifname, name_assign_type,
&veth_link_ops, tbp);
if (IS_ERR(peer)) {
put_net(net);
return PTR_ERR(peer);
}
err = veth_alloc_queues(peer);
if (err) {
put_net(net);
goto err_peer_alloc_queues;
}
if (!ifmp || !tbp[IFLA_ADDRESS])
eth_hw_addr_random(peer);
if (ifmp && (dev->ifindex != 0))
peer->ifindex = ifmp->ifi_index;
peer->gso_max_size = dev->gso_max_size;
peer->gso_max_segs = dev->gso_max_segs;
err = register_netdevice(peer);
put_net(net);
net = NULL;
if (err < 0)
goto err_register_peer;
netif_carrier_off(peer);
err = rtnl_configure_link(peer, ifmp);
if (err < 0)
goto err_configure_peer;
/*
* register dev last
*
* note, that since we've registered new device the dev's name
* should be re-allocated
*/
err = veth_alloc_queues(dev);
if (err)
goto err_alloc_queues;
if (tb[IFLA_ADDRESS] == NULL)
eth_hw_addr_random(dev);
if (tb[IFLA_IFNAME])
nla_strlcpy(dev->name, tb[IFLA_IFNAME], IFNAMSIZ);
else
snprintf(dev->name, IFNAMSIZ, DRV_NAME "%%d");
err = register_netdevice(dev);
if (err < 0)
goto err_register_dev;
netif_carrier_off(dev);
/*
* tie the deviced together
*/
priv = netdev_priv(dev);
for (i = 0; i < dev->real_num_rx_queues; i++)
priv->rq[i].dev = dev;
rcu_assign_pointer(priv->peer, peer);
priv = netdev_priv(peer);
for (i = 0; i < peer->real_num_rx_queues; i++)
priv->rq[i].dev = peer;
rcu_assign_pointer(priv->peer, dev);
return 0;
err_register_dev:
veth_free_queues(dev);
err_alloc_queues:
/* nothing to do */
err_configure_peer:
unregister_netdevice(peer);
return err;
err_register_peer:
veth_free_queues(peer);
err_peer_alloc_queues:
free_netdev(peer);
return err;
}
static void veth_dellink(struct net_device *dev, struct list_head *head)
{
struct veth_priv *priv;
struct net_device *peer;
priv = netdev_priv(dev);
peer = rtnl_dereference(priv->peer);
/* Note : dellink() is called from default_device_exit_batch(),
* before a rcu_synchronize() point. The devices are guaranteed
* not being freed before one RCU grace period.
*/
RCU_INIT_POINTER(priv->peer, NULL);
unregister_netdevice_queue(dev, head);
if (peer) {
priv = netdev_priv(peer);
RCU_INIT_POINTER(priv->peer, NULL);
unregister_netdevice_queue(peer, head);
}
}
static const struct nla_policy veth_policy[VETH_INFO_MAX + 1] = {
[VETH_INFO_PEER] = { .len = sizeof(struct ifinfomsg) },
};
static struct net *veth_get_link_net(const struct net_device *dev)
{
struct veth_priv *priv = netdev_priv(dev);
struct net_device *peer = rtnl_dereference(priv->peer);
return peer ? dev_net(peer) : dev_net(dev);
}
static struct rtnl_link_ops veth_link_ops = {
.kind = DRV_NAME,
.priv_size = sizeof(struct veth_priv),
.setup = veth_setup,
.validate = veth_validate,
.newlink = veth_newlink,
.dellink = veth_dellink,
.policy = veth_policy,
.maxtype = VETH_INFO_MAX,
.get_link_net = veth_get_link_net,
};
/*
* init/fini
*/
static __init int veth_init(void)
{
return rtnl_link_register(&veth_link_ops);
}
static __exit void veth_exit(void)
{
rtnl_link_unregister(&veth_link_ops);
}
module_init(veth_init);
module_exit(veth_exit);
MODULE_DESCRIPTION("Virtual Ethernet Tunnel");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS_RTNL_LINK(DRV_NAME);