linux-hardened/drivers/iommu/exynos-iommu.c
Linus Torvalds 97027da6ad IOMMU Updates for Linux v3.6-rc1
The most important part of these updates is the IOMMU groups code
 enhancement written by Alex Williamson. It abstracts the problem that a
 given hardware IOMMU can't isolate any given device from any other
 device (e.g. 32 bit PCI devices can't usually be isolated). Devices that
 can't be isolated are grouped together. This code is required for the
 upcoming VFIO framework.
 
 Another IOMMU-API change written by be is the introduction of domain
 attributes. This makes it easier to handle GART-like IOMMUs with the
 IOMMU-API because now the start-address and the size of the domain
 address space can be queried.
 
 Besides that there are a few cleanups and fixes for the NVidia Tegra
 IOMMU drivers and the reworked init-code for the AMD IOMMU. The later is
 from my patch-set to support interrupt remapping. The rest of this
 patch-set requires x86 changes which are not mergabe yet. So full
 support for interrupt remapping with AMD IOMMUs will come in a future
 merge window.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1.4.11 (GNU/Linux)
 
 iQIcBAABAgAGBQJQDV/MAAoJECvwRC2XARrjSDcP+gJbtSHDMyZ71zyfQfAZcxJt
 rTqLbdZRtIjrjgtKSEDp8u5Bo5TK9dAYoZVuJMOZewFzwI/fSfbRsWp1PU0I88Fr
 ZzM+/o1N9MLvf1e3kRVOzNzUfku+jTQgUBD4txsbtQzc/IeGHe9qP1Bqzs/xg4Pk
 SjWu7pLNYxaER10z76nRodNn6zGjsc7GFdOW8cJu2HOAHhisIAR291jSQgd6Rz9r
 zWqSTsXIEzYt2CtU3G2/tFJ554Mp8v5F80gHo+0Ldw8aNxlD6nGtbqGNt+KI8qTv
 MUL8KJ0TNms9CZdti1CSlSNp51VgJi2GaWKCaDAkYuuER2IbC/8Yp/p2DIIA0GNp
 HpziIs+dauZPWfZHc6oU7lJAClGAG4MUx7CysVIOzl7ML/Bf4mjYv0faGf5YQfyE
 weOR+OPPIWDUwgjzHKMAboA4ijkE/v+EKjOaN/S9rEqFEMKC99fwGkf9wUcpZTne
 8lzdI2JrgYNDWMVNYlomeLD4lBAbxb/QsnRUa33igjr0MclvMDkp5HaO631Z1+Zx
 be2z8Rl1CtMwS4qeaOXoeaoNWHU26+oJRZNtCGi/Fw4aKqYXP1dnE/m0GtqEP9Yi
 +CU2rKbZn3j0+ZcQjCQop8FREPrZ2/Uaji70b6G7WZ2ApcqBxzBffpbMKOmd6T1D
 HIzGh0fpdYNDuwn6Txit
 =MbAC
 -----END PGP SIGNATURE-----

Merge tag 'iommu-updates-v3.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu

Pull IOMMU updates from Joerg Roedel:
 "The most important part of these updates is the IOMMU groups code
  enhancement written by Alex Williamson.  It abstracts the problem that
  a given hardware IOMMU can't isolate any given device from any other
  device (e.g.  32 bit PCI devices can't usually be isolated).  Devices
  that can't be isolated are grouped together.  This code is required
  for the upcoming VFIO framework.

  Another IOMMU-API change written by me is the introduction of domain
  attributes.  This makes it easier to handle GART-like IOMMUs with the
  IOMMU-API because now the start-address and the size of the domain
  address space can be queried.

  Besides that there are a few cleanups and fixes for the NVidia Tegra
  IOMMU drivers and the reworked init-code for the AMD IOMMU.  The
  latter is from my patch-set to support interrupt remapping.  The rest
  of this patch-set requires x86 changes which are not mergabe yet.  So
  full support for interrupt remapping with AMD IOMMUs will come in a
  future merge window."

* tag 'iommu-updates-v3.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu: (33 commits)
  iommu/amd: Fix hotplug with iommu=pt
  iommu/amd: Add missing spin_lock initialization
  iommu/amd: Convert iommu initialization to state machine
  iommu/amd: Introduce amd_iommu_init_dma routine
  iommu/amd: Move unmap_flush message to amd_iommu_init_dma_ops()
  iommu/amd: Split enable_iommus() routine
  iommu/amd: Introduce early_amd_iommu_init routine
  iommu/amd: Move informational prinks out of iommu_enable
  iommu/amd: Split out PCI related parts of IOMMU initialization
  iommu/amd: Use acpi_get_table instead of acpi_table_parse
  iommu/amd: Fix sparse warnings
  iommu/tegra: Don't call alloc_pdir with as->lock
  iommu/tegra: smmu: Fix unsleepable memory allocation at alloc_pdir()
  iommu/tegra: smmu: Remove unnecessary sanity check at alloc_pdir()
  iommu/exynos: Implement DOMAIN_ATTR_GEOMETRY attribute
  iommu/tegra: Implement DOMAIN_ATTR_GEOMETRY attribute
  iommu/msm: Implement DOMAIN_ATTR_GEOMETRY attribute
  iommu/omap: Implement DOMAIN_ATTR_GEOMETRY attribute
  iommu/vt-d: Implement DOMAIN_ATTR_GEOMETRY attribute
  iommu/amd: Implement DOMAIN_ATTR_GEOMETRY attribute
  ...
2012-07-24 16:24:11 -07:00

1080 lines
25 KiB
C

/* linux/drivers/iommu/exynos_iommu.c
*
* Copyright (c) 2011 Samsung Electronics Co., Ltd.
* http://www.samsung.com
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifdef CONFIG_EXYNOS_IOMMU_DEBUG
#define DEBUG
#endif
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/pm_runtime.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/mm.h>
#include <linux/iommu.h>
#include <linux/errno.h>
#include <linux/list.h>
#include <linux/memblock.h>
#include <linux/export.h>
#include <asm/cacheflush.h>
#include <asm/pgtable.h>
#include <mach/sysmmu.h>
/* We does not consider super section mapping (16MB) */
#define SECT_ORDER 20
#define LPAGE_ORDER 16
#define SPAGE_ORDER 12
#define SECT_SIZE (1 << SECT_ORDER)
#define LPAGE_SIZE (1 << LPAGE_ORDER)
#define SPAGE_SIZE (1 << SPAGE_ORDER)
#define SECT_MASK (~(SECT_SIZE - 1))
#define LPAGE_MASK (~(LPAGE_SIZE - 1))
#define SPAGE_MASK (~(SPAGE_SIZE - 1))
#define lv1ent_fault(sent) (((*(sent) & 3) == 0) || ((*(sent) & 3) == 3))
#define lv1ent_page(sent) ((*(sent) & 3) == 1)
#define lv1ent_section(sent) ((*(sent) & 3) == 2)
#define lv2ent_fault(pent) ((*(pent) & 3) == 0)
#define lv2ent_small(pent) ((*(pent) & 2) == 2)
#define lv2ent_large(pent) ((*(pent) & 3) == 1)
#define section_phys(sent) (*(sent) & SECT_MASK)
#define section_offs(iova) ((iova) & 0xFFFFF)
#define lpage_phys(pent) (*(pent) & LPAGE_MASK)
#define lpage_offs(iova) ((iova) & 0xFFFF)
#define spage_phys(pent) (*(pent) & SPAGE_MASK)
#define spage_offs(iova) ((iova) & 0xFFF)
#define lv1ent_offset(iova) ((iova) >> SECT_ORDER)
#define lv2ent_offset(iova) (((iova) & 0xFF000) >> SPAGE_ORDER)
#define NUM_LV1ENTRIES 4096
#define NUM_LV2ENTRIES 256
#define LV2TABLE_SIZE (NUM_LV2ENTRIES * sizeof(long))
#define SPAGES_PER_LPAGE (LPAGE_SIZE / SPAGE_SIZE)
#define lv2table_base(sent) (*(sent) & 0xFFFFFC00)
#define mk_lv1ent_sect(pa) ((pa) | 2)
#define mk_lv1ent_page(pa) ((pa) | 1)
#define mk_lv2ent_lpage(pa) ((pa) | 1)
#define mk_lv2ent_spage(pa) ((pa) | 2)
#define CTRL_ENABLE 0x5
#define CTRL_BLOCK 0x7
#define CTRL_DISABLE 0x0
#define REG_MMU_CTRL 0x000
#define REG_MMU_CFG 0x004
#define REG_MMU_STATUS 0x008
#define REG_MMU_FLUSH 0x00C
#define REG_MMU_FLUSH_ENTRY 0x010
#define REG_PT_BASE_ADDR 0x014
#define REG_INT_STATUS 0x018
#define REG_INT_CLEAR 0x01C
#define REG_PAGE_FAULT_ADDR 0x024
#define REG_AW_FAULT_ADDR 0x028
#define REG_AR_FAULT_ADDR 0x02C
#define REG_DEFAULT_SLAVE_ADDR 0x030
#define REG_MMU_VERSION 0x034
#define REG_PB0_SADDR 0x04C
#define REG_PB0_EADDR 0x050
#define REG_PB1_SADDR 0x054
#define REG_PB1_EADDR 0x058
static unsigned long *section_entry(unsigned long *pgtable, unsigned long iova)
{
return pgtable + lv1ent_offset(iova);
}
static unsigned long *page_entry(unsigned long *sent, unsigned long iova)
{
return (unsigned long *)__va(lv2table_base(sent)) + lv2ent_offset(iova);
}
enum exynos_sysmmu_inttype {
SYSMMU_PAGEFAULT,
SYSMMU_AR_MULTIHIT,
SYSMMU_AW_MULTIHIT,
SYSMMU_BUSERROR,
SYSMMU_AR_SECURITY,
SYSMMU_AR_ACCESS,
SYSMMU_AW_SECURITY,
SYSMMU_AW_PROTECTION, /* 7 */
SYSMMU_FAULT_UNKNOWN,
SYSMMU_FAULTS_NUM
};
/*
* @itype: type of fault.
* @pgtable_base: the physical address of page table base. This is 0 if @itype
* is SYSMMU_BUSERROR.
* @fault_addr: the device (virtual) address that the System MMU tried to
* translated. This is 0 if @itype is SYSMMU_BUSERROR.
*/
typedef int (*sysmmu_fault_handler_t)(enum exynos_sysmmu_inttype itype,
unsigned long pgtable_base, unsigned long fault_addr);
static unsigned short fault_reg_offset[SYSMMU_FAULTS_NUM] = {
REG_PAGE_FAULT_ADDR,
REG_AR_FAULT_ADDR,
REG_AW_FAULT_ADDR,
REG_DEFAULT_SLAVE_ADDR,
REG_AR_FAULT_ADDR,
REG_AR_FAULT_ADDR,
REG_AW_FAULT_ADDR,
REG_AW_FAULT_ADDR
};
static char *sysmmu_fault_name[SYSMMU_FAULTS_NUM] = {
"PAGE FAULT",
"AR MULTI-HIT FAULT",
"AW MULTI-HIT FAULT",
"BUS ERROR",
"AR SECURITY PROTECTION FAULT",
"AR ACCESS PROTECTION FAULT",
"AW SECURITY PROTECTION FAULT",
"AW ACCESS PROTECTION FAULT",
"UNKNOWN FAULT"
};
struct exynos_iommu_domain {
struct list_head clients; /* list of sysmmu_drvdata.node */
unsigned long *pgtable; /* lv1 page table, 16KB */
short *lv2entcnt; /* free lv2 entry counter for each section */
spinlock_t lock; /* lock for this structure */
spinlock_t pgtablelock; /* lock for modifying page table @ pgtable */
};
struct sysmmu_drvdata {
struct list_head node; /* entry of exynos_iommu_domain.clients */
struct device *sysmmu; /* System MMU's device descriptor */
struct device *dev; /* Owner of system MMU */
char *dbgname;
int nsfrs;
void __iomem **sfrbases;
struct clk *clk[2];
int activations;
rwlock_t lock;
struct iommu_domain *domain;
sysmmu_fault_handler_t fault_handler;
unsigned long pgtable;
};
static bool set_sysmmu_active(struct sysmmu_drvdata *data)
{
/* return true if the System MMU was not active previously
and it needs to be initialized */
return ++data->activations == 1;
}
static bool set_sysmmu_inactive(struct sysmmu_drvdata *data)
{
/* return true if the System MMU is needed to be disabled */
BUG_ON(data->activations < 1);
return --data->activations == 0;
}
static bool is_sysmmu_active(struct sysmmu_drvdata *data)
{
return data->activations > 0;
}
static void sysmmu_unblock(void __iomem *sfrbase)
{
__raw_writel(CTRL_ENABLE, sfrbase + REG_MMU_CTRL);
}
static bool sysmmu_block(void __iomem *sfrbase)
{
int i = 120;
__raw_writel(CTRL_BLOCK, sfrbase + REG_MMU_CTRL);
while ((i > 0) && !(__raw_readl(sfrbase + REG_MMU_STATUS) & 1))
--i;
if (!(__raw_readl(sfrbase + REG_MMU_STATUS) & 1)) {
sysmmu_unblock(sfrbase);
return false;
}
return true;
}
static void __sysmmu_tlb_invalidate(void __iomem *sfrbase)
{
__raw_writel(0x1, sfrbase + REG_MMU_FLUSH);
}
static void __sysmmu_tlb_invalidate_entry(void __iomem *sfrbase,
unsigned long iova)
{
__raw_writel((iova & SPAGE_MASK) | 1, sfrbase + REG_MMU_FLUSH_ENTRY);
}
static void __sysmmu_set_ptbase(void __iomem *sfrbase,
unsigned long pgd)
{
__raw_writel(0x1, sfrbase + REG_MMU_CFG); /* 16KB LV1, LRU */
__raw_writel(pgd, sfrbase + REG_PT_BASE_ADDR);
__sysmmu_tlb_invalidate(sfrbase);
}
static void __sysmmu_set_prefbuf(void __iomem *sfrbase, unsigned long base,
unsigned long size, int idx)
{
__raw_writel(base, sfrbase + REG_PB0_SADDR + idx * 8);
__raw_writel(size - 1 + base, sfrbase + REG_PB0_EADDR + idx * 8);
}
void exynos_sysmmu_set_prefbuf(struct device *dev,
unsigned long base0, unsigned long size0,
unsigned long base1, unsigned long size1)
{
struct sysmmu_drvdata *data = dev_get_drvdata(dev->archdata.iommu);
unsigned long flags;
int i;
BUG_ON((base0 + size0) <= base0);
BUG_ON((size1 > 0) && ((base1 + size1) <= base1));
read_lock_irqsave(&data->lock, flags);
if (!is_sysmmu_active(data))
goto finish;
for (i = 0; i < data->nsfrs; i++) {
if ((readl(data->sfrbases[i] + REG_MMU_VERSION) >> 28) == 3) {
if (!sysmmu_block(data->sfrbases[i]))
continue;
if (size1 == 0) {
if (size0 <= SZ_128K) {
base1 = base0;
size1 = size0;
} else {
size1 = size0 -
ALIGN(size0 / 2, SZ_64K);
size0 = size0 - size1;
base1 = base0 + size0;
}
}
__sysmmu_set_prefbuf(
data->sfrbases[i], base0, size0, 0);
__sysmmu_set_prefbuf(
data->sfrbases[i], base1, size1, 1);
sysmmu_unblock(data->sfrbases[i]);
}
}
finish:
read_unlock_irqrestore(&data->lock, flags);
}
static void __set_fault_handler(struct sysmmu_drvdata *data,
sysmmu_fault_handler_t handler)
{
unsigned long flags;
write_lock_irqsave(&data->lock, flags);
data->fault_handler = handler;
write_unlock_irqrestore(&data->lock, flags);
}
void exynos_sysmmu_set_fault_handler(struct device *dev,
sysmmu_fault_handler_t handler)
{
struct sysmmu_drvdata *data = dev_get_drvdata(dev->archdata.iommu);
__set_fault_handler(data, handler);
}
static int default_fault_handler(enum exynos_sysmmu_inttype itype,
unsigned long pgtable_base, unsigned long fault_addr)
{
unsigned long *ent;
if ((itype >= SYSMMU_FAULTS_NUM) || (itype < SYSMMU_PAGEFAULT))
itype = SYSMMU_FAULT_UNKNOWN;
pr_err("%s occurred at 0x%lx(Page table base: 0x%lx)\n",
sysmmu_fault_name[itype], fault_addr, pgtable_base);
ent = section_entry(__va(pgtable_base), fault_addr);
pr_err("\tLv1 entry: 0x%lx\n", *ent);
if (lv1ent_page(ent)) {
ent = page_entry(ent, fault_addr);
pr_err("\t Lv2 entry: 0x%lx\n", *ent);
}
pr_err("Generating Kernel OOPS... because it is unrecoverable.\n");
BUG();
return 0;
}
static irqreturn_t exynos_sysmmu_irq(int irq, void *dev_id)
{
/* SYSMMU is in blocked when interrupt occurred. */
struct sysmmu_drvdata *data = dev_id;
struct resource *irqres;
struct platform_device *pdev;
enum exynos_sysmmu_inttype itype;
unsigned long addr = -1;
int i, ret = -ENOSYS;
read_lock(&data->lock);
WARN_ON(!is_sysmmu_active(data));
pdev = to_platform_device(data->sysmmu);
for (i = 0; i < (pdev->num_resources / 2); i++) {
irqres = platform_get_resource(pdev, IORESOURCE_IRQ, i);
if (irqres && ((int)irqres->start == irq))
break;
}
if (i == pdev->num_resources) {
itype = SYSMMU_FAULT_UNKNOWN;
} else {
itype = (enum exynos_sysmmu_inttype)
__ffs(__raw_readl(data->sfrbases[i] + REG_INT_STATUS));
if (WARN_ON(!((itype >= 0) && (itype < SYSMMU_FAULT_UNKNOWN))))
itype = SYSMMU_FAULT_UNKNOWN;
else
addr = __raw_readl(
data->sfrbases[i] + fault_reg_offset[itype]);
}
if (data->domain)
ret = report_iommu_fault(data->domain, data->dev,
addr, itype);
if ((ret == -ENOSYS) && data->fault_handler) {
unsigned long base = data->pgtable;
if (itype != SYSMMU_FAULT_UNKNOWN)
base = __raw_readl(
data->sfrbases[i] + REG_PT_BASE_ADDR);
ret = data->fault_handler(itype, base, addr);
}
if (!ret && (itype != SYSMMU_FAULT_UNKNOWN))
__raw_writel(1 << itype, data->sfrbases[i] + REG_INT_CLEAR);
else
dev_dbg(data->sysmmu, "(%s) %s is not handled.\n",
data->dbgname, sysmmu_fault_name[itype]);
if (itype != SYSMMU_FAULT_UNKNOWN)
sysmmu_unblock(data->sfrbases[i]);
read_unlock(&data->lock);
return IRQ_HANDLED;
}
static bool __exynos_sysmmu_disable(struct sysmmu_drvdata *data)
{
unsigned long flags;
bool disabled = false;
int i;
write_lock_irqsave(&data->lock, flags);
if (!set_sysmmu_inactive(data))
goto finish;
for (i = 0; i < data->nsfrs; i++)
__raw_writel(CTRL_DISABLE, data->sfrbases[i] + REG_MMU_CTRL);
if (data->clk[1])
clk_disable(data->clk[1]);
if (data->clk[0])
clk_disable(data->clk[0]);
disabled = true;
data->pgtable = 0;
data->domain = NULL;
finish:
write_unlock_irqrestore(&data->lock, flags);
if (disabled)
dev_dbg(data->sysmmu, "(%s) Disabled\n", data->dbgname);
else
dev_dbg(data->sysmmu, "(%s) %d times left to be disabled\n",
data->dbgname, data->activations);
return disabled;
}
/* __exynos_sysmmu_enable: Enables System MMU
*
* returns -error if an error occurred and System MMU is not enabled,
* 0 if the System MMU has been just enabled and 1 if System MMU was already
* enabled before.
*/
static int __exynos_sysmmu_enable(struct sysmmu_drvdata *data,
unsigned long pgtable, struct iommu_domain *domain)
{
int i, ret = 0;
unsigned long flags;
write_lock_irqsave(&data->lock, flags);
if (!set_sysmmu_active(data)) {
if (WARN_ON(pgtable != data->pgtable)) {
ret = -EBUSY;
set_sysmmu_inactive(data);
} else {
ret = 1;
}
dev_dbg(data->sysmmu, "(%s) Already enabled\n", data->dbgname);
goto finish;
}
if (data->clk[0])
clk_enable(data->clk[0]);
if (data->clk[1])
clk_enable(data->clk[1]);
data->pgtable = pgtable;
for (i = 0; i < data->nsfrs; i++) {
__sysmmu_set_ptbase(data->sfrbases[i], pgtable);
if ((readl(data->sfrbases[i] + REG_MMU_VERSION) >> 28) == 3) {
/* System MMU version is 3.x */
__raw_writel((1 << 12) | (2 << 28),
data->sfrbases[i] + REG_MMU_CFG);
__sysmmu_set_prefbuf(data->sfrbases[i], 0, -1, 0);
__sysmmu_set_prefbuf(data->sfrbases[i], 0, -1, 1);
}
__raw_writel(CTRL_ENABLE, data->sfrbases[i] + REG_MMU_CTRL);
}
data->domain = domain;
dev_dbg(data->sysmmu, "(%s) Enabled\n", data->dbgname);
finish:
write_unlock_irqrestore(&data->lock, flags);
return ret;
}
int exynos_sysmmu_enable(struct device *dev, unsigned long pgtable)
{
struct sysmmu_drvdata *data = dev_get_drvdata(dev->archdata.iommu);
int ret;
BUG_ON(!memblock_is_memory(pgtable));
ret = pm_runtime_get_sync(data->sysmmu);
if (ret < 0) {
dev_dbg(data->sysmmu, "(%s) Failed to enable\n", data->dbgname);
return ret;
}
ret = __exynos_sysmmu_enable(data, pgtable, NULL);
if (WARN_ON(ret < 0)) {
pm_runtime_put(data->sysmmu);
dev_err(data->sysmmu,
"(%s) Already enabled with page table %#lx\n",
data->dbgname, data->pgtable);
} else {
data->dev = dev;
}
return ret;
}
bool exynos_sysmmu_disable(struct device *dev)
{
struct sysmmu_drvdata *data = dev_get_drvdata(dev->archdata.iommu);
bool disabled;
disabled = __exynos_sysmmu_disable(data);
pm_runtime_put(data->sysmmu);
return disabled;
}
static void sysmmu_tlb_invalidate_entry(struct device *dev, unsigned long iova)
{
unsigned long flags;
struct sysmmu_drvdata *data = dev_get_drvdata(dev->archdata.iommu);
read_lock_irqsave(&data->lock, flags);
if (is_sysmmu_active(data)) {
int i;
for (i = 0; i < data->nsfrs; i++) {
if (sysmmu_block(data->sfrbases[i])) {
__sysmmu_tlb_invalidate_entry(
data->sfrbases[i], iova);
sysmmu_unblock(data->sfrbases[i]);
}
}
} else {
dev_dbg(data->sysmmu,
"(%s) Disabled. Skipping invalidating TLB.\n",
data->dbgname);
}
read_unlock_irqrestore(&data->lock, flags);
}
void exynos_sysmmu_tlb_invalidate(struct device *dev)
{
unsigned long flags;
struct sysmmu_drvdata *data = dev_get_drvdata(dev->archdata.iommu);
read_lock_irqsave(&data->lock, flags);
if (is_sysmmu_active(data)) {
int i;
for (i = 0; i < data->nsfrs; i++) {
if (sysmmu_block(data->sfrbases[i])) {
__sysmmu_tlb_invalidate(data->sfrbases[i]);
sysmmu_unblock(data->sfrbases[i]);
}
}
} else {
dev_dbg(data->sysmmu,
"(%s) Disabled. Skipping invalidating TLB.\n",
data->dbgname);
}
read_unlock_irqrestore(&data->lock, flags);
}
static int exynos_sysmmu_probe(struct platform_device *pdev)
{
int i, ret;
struct device *dev;
struct sysmmu_drvdata *data;
dev = &pdev->dev;
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (!data) {
dev_dbg(dev, "Not enough memory\n");
ret = -ENOMEM;
goto err_alloc;
}
ret = dev_set_drvdata(dev, data);
if (ret) {
dev_dbg(dev, "Unabled to initialize driver data\n");
goto err_init;
}
data->nsfrs = pdev->num_resources / 2;
data->sfrbases = kmalloc(sizeof(*data->sfrbases) * data->nsfrs,
GFP_KERNEL);
if (data->sfrbases == NULL) {
dev_dbg(dev, "Not enough memory\n");
ret = -ENOMEM;
goto err_init;
}
for (i = 0; i < data->nsfrs; i++) {
struct resource *res;
res = platform_get_resource(pdev, IORESOURCE_MEM, i);
if (!res) {
dev_dbg(dev, "Unable to find IOMEM region\n");
ret = -ENOENT;
goto err_res;
}
data->sfrbases[i] = ioremap(res->start, resource_size(res));
if (!data->sfrbases[i]) {
dev_dbg(dev, "Unable to map IOMEM @ PA:%#x\n",
res->start);
ret = -ENOENT;
goto err_res;
}
}
for (i = 0; i < data->nsfrs; i++) {
ret = platform_get_irq(pdev, i);
if (ret <= 0) {
dev_dbg(dev, "Unable to find IRQ resource\n");
goto err_irq;
}
ret = request_irq(ret, exynos_sysmmu_irq, 0,
dev_name(dev), data);
if (ret) {
dev_dbg(dev, "Unabled to register interrupt handler\n");
goto err_irq;
}
}
if (dev_get_platdata(dev)) {
char *deli, *beg;
struct sysmmu_platform_data *platdata = dev_get_platdata(dev);
beg = platdata->clockname;
for (deli = beg; (*deli != '\0') && (*deli != ','); deli++)
/* NOTHING */;
if (*deli == '\0')
deli = NULL;
else
*deli = '\0';
data->clk[0] = clk_get(dev, beg);
if (IS_ERR(data->clk[0])) {
data->clk[0] = NULL;
dev_dbg(dev, "No clock descriptor registered\n");
}
if (data->clk[0] && deli) {
*deli = ',';
data->clk[1] = clk_get(dev, deli + 1);
if (IS_ERR(data->clk[1]))
data->clk[1] = NULL;
}
data->dbgname = platdata->dbgname;
}
data->sysmmu = dev;
rwlock_init(&data->lock);
INIT_LIST_HEAD(&data->node);
__set_fault_handler(data, &default_fault_handler);
if (dev->parent)
pm_runtime_enable(dev);
dev_dbg(dev, "(%s) Initialized\n", data->dbgname);
return 0;
err_irq:
while (i-- > 0) {
int irq;
irq = platform_get_irq(pdev, i);
free_irq(irq, data);
}
err_res:
while (data->nsfrs-- > 0)
iounmap(data->sfrbases[data->nsfrs]);
kfree(data->sfrbases);
err_init:
kfree(data);
err_alloc:
dev_err(dev, "Failed to initialize\n");
return ret;
}
static struct platform_driver exynos_sysmmu_driver = {
.probe = exynos_sysmmu_probe,
.driver = {
.owner = THIS_MODULE,
.name = "exynos-sysmmu",
}
};
static inline void pgtable_flush(void *vastart, void *vaend)
{
dmac_flush_range(vastart, vaend);
outer_flush_range(virt_to_phys(vastart),
virt_to_phys(vaend));
}
static int exynos_iommu_domain_init(struct iommu_domain *domain)
{
struct exynos_iommu_domain *priv;
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->pgtable = (unsigned long *)__get_free_pages(
GFP_KERNEL | __GFP_ZERO, 2);
if (!priv->pgtable)
goto err_pgtable;
priv->lv2entcnt = (short *)__get_free_pages(
GFP_KERNEL | __GFP_ZERO, 1);
if (!priv->lv2entcnt)
goto err_counter;
pgtable_flush(priv->pgtable, priv->pgtable + NUM_LV1ENTRIES);
spin_lock_init(&priv->lock);
spin_lock_init(&priv->pgtablelock);
INIT_LIST_HEAD(&priv->clients);
dom->geometry.aperture_start = 0;
dom->geometry.aperture_end = ~0UL;
dom->geometry.force_aperture = true;
domain->priv = priv;
return 0;
err_counter:
free_pages((unsigned long)priv->pgtable, 2);
err_pgtable:
kfree(priv);
return -ENOMEM;
}
static void exynos_iommu_domain_destroy(struct iommu_domain *domain)
{
struct exynos_iommu_domain *priv = domain->priv;
struct sysmmu_drvdata *data;
unsigned long flags;
int i;
WARN_ON(!list_empty(&priv->clients));
spin_lock_irqsave(&priv->lock, flags);
list_for_each_entry(data, &priv->clients, node) {
while (!exynos_sysmmu_disable(data->dev))
; /* until System MMU is actually disabled */
}
spin_unlock_irqrestore(&priv->lock, flags);
for (i = 0; i < NUM_LV1ENTRIES; i++)
if (lv1ent_page(priv->pgtable + i))
kfree(__va(lv2table_base(priv->pgtable + i)));
free_pages((unsigned long)priv->pgtable, 2);
free_pages((unsigned long)priv->lv2entcnt, 1);
kfree(domain->priv);
domain->priv = NULL;
}
static int exynos_iommu_attach_device(struct iommu_domain *domain,
struct device *dev)
{
struct sysmmu_drvdata *data = dev_get_drvdata(dev->archdata.iommu);
struct exynos_iommu_domain *priv = domain->priv;
unsigned long flags;
int ret;
ret = pm_runtime_get_sync(data->sysmmu);
if (ret < 0)
return ret;
ret = 0;
spin_lock_irqsave(&priv->lock, flags);
ret = __exynos_sysmmu_enable(data, __pa(priv->pgtable), domain);
if (ret == 0) {
/* 'data->node' must not be appeared in priv->clients */
BUG_ON(!list_empty(&data->node));
data->dev = dev;
list_add_tail(&data->node, &priv->clients);
}
spin_unlock_irqrestore(&priv->lock, flags);
if (ret < 0) {
dev_err(dev, "%s: Failed to attach IOMMU with pgtable %#lx\n",
__func__, __pa(priv->pgtable));
pm_runtime_put(data->sysmmu);
} else if (ret > 0) {
dev_dbg(dev, "%s: IOMMU with pgtable 0x%lx already attached\n",
__func__, __pa(priv->pgtable));
} else {
dev_dbg(dev, "%s: Attached new IOMMU with pgtable 0x%lx\n",
__func__, __pa(priv->pgtable));
}
return ret;
}
static void exynos_iommu_detach_device(struct iommu_domain *domain,
struct device *dev)
{
struct sysmmu_drvdata *data = dev_get_drvdata(dev->archdata.iommu);
struct exynos_iommu_domain *priv = domain->priv;
struct list_head *pos;
unsigned long flags;
bool found = false;
spin_lock_irqsave(&priv->lock, flags);
list_for_each(pos, &priv->clients) {
if (list_entry(pos, struct sysmmu_drvdata, node) == data) {
found = true;
break;
}
}
if (!found)
goto finish;
if (__exynos_sysmmu_disable(data)) {
dev_dbg(dev, "%s: Detached IOMMU with pgtable %#lx\n",
__func__, __pa(priv->pgtable));
list_del(&data->node);
INIT_LIST_HEAD(&data->node);
} else {
dev_dbg(dev, "%s: Detaching IOMMU with pgtable %#lx delayed",
__func__, __pa(priv->pgtable));
}
finish:
spin_unlock_irqrestore(&priv->lock, flags);
if (found)
pm_runtime_put(data->sysmmu);
}
static unsigned long *alloc_lv2entry(unsigned long *sent, unsigned long iova,
short *pgcounter)
{
if (lv1ent_fault(sent)) {
unsigned long *pent;
pent = kzalloc(LV2TABLE_SIZE, GFP_ATOMIC);
BUG_ON((unsigned long)pent & (LV2TABLE_SIZE - 1));
if (!pent)
return NULL;
*sent = mk_lv1ent_page(__pa(pent));
*pgcounter = NUM_LV2ENTRIES;
pgtable_flush(pent, pent + NUM_LV2ENTRIES);
pgtable_flush(sent, sent + 1);
}
return page_entry(sent, iova);
}
static int lv1set_section(unsigned long *sent, phys_addr_t paddr, short *pgcnt)
{
if (lv1ent_section(sent))
return -EADDRINUSE;
if (lv1ent_page(sent)) {
if (*pgcnt != NUM_LV2ENTRIES)
return -EADDRINUSE;
kfree(page_entry(sent, 0));
*pgcnt = 0;
}
*sent = mk_lv1ent_sect(paddr);
pgtable_flush(sent, sent + 1);
return 0;
}
static int lv2set_page(unsigned long *pent, phys_addr_t paddr, size_t size,
short *pgcnt)
{
if (size == SPAGE_SIZE) {
if (!lv2ent_fault(pent))
return -EADDRINUSE;
*pent = mk_lv2ent_spage(paddr);
pgtable_flush(pent, pent + 1);
*pgcnt -= 1;
} else { /* size == LPAGE_SIZE */
int i;
for (i = 0; i < SPAGES_PER_LPAGE; i++, pent++) {
if (!lv2ent_fault(pent)) {
memset(pent, 0, sizeof(*pent) * i);
return -EADDRINUSE;
}
*pent = mk_lv2ent_lpage(paddr);
}
pgtable_flush(pent - SPAGES_PER_LPAGE, pent);
*pgcnt -= SPAGES_PER_LPAGE;
}
return 0;
}
static int exynos_iommu_map(struct iommu_domain *domain, unsigned long iova,
phys_addr_t paddr, size_t size, int prot)
{
struct exynos_iommu_domain *priv = domain->priv;
unsigned long *entry;
unsigned long flags;
int ret = -ENOMEM;
BUG_ON(priv->pgtable == NULL);
spin_lock_irqsave(&priv->pgtablelock, flags);
entry = section_entry(priv->pgtable, iova);
if (size == SECT_SIZE) {
ret = lv1set_section(entry, paddr,
&priv->lv2entcnt[lv1ent_offset(iova)]);
} else {
unsigned long *pent;
pent = alloc_lv2entry(entry, iova,
&priv->lv2entcnt[lv1ent_offset(iova)]);
if (!pent)
ret = -ENOMEM;
else
ret = lv2set_page(pent, paddr, size,
&priv->lv2entcnt[lv1ent_offset(iova)]);
}
if (ret) {
pr_debug("%s: Failed to map iova 0x%lx/0x%x bytes\n",
__func__, iova, size);
}
spin_unlock_irqrestore(&priv->pgtablelock, flags);
return ret;
}
static size_t exynos_iommu_unmap(struct iommu_domain *domain,
unsigned long iova, size_t size)
{
struct exynos_iommu_domain *priv = domain->priv;
struct sysmmu_drvdata *data;
unsigned long flags;
unsigned long *ent;
BUG_ON(priv->pgtable == NULL);
spin_lock_irqsave(&priv->pgtablelock, flags);
ent = section_entry(priv->pgtable, iova);
if (lv1ent_section(ent)) {
BUG_ON(size < SECT_SIZE);
*ent = 0;
pgtable_flush(ent, ent + 1);
size = SECT_SIZE;
goto done;
}
if (unlikely(lv1ent_fault(ent))) {
if (size > SECT_SIZE)
size = SECT_SIZE;
goto done;
}
/* lv1ent_page(sent) == true here */
ent = page_entry(ent, iova);
if (unlikely(lv2ent_fault(ent))) {
size = SPAGE_SIZE;
goto done;
}
if (lv2ent_small(ent)) {
*ent = 0;
size = SPAGE_SIZE;
priv->lv2entcnt[lv1ent_offset(iova)] += 1;
goto done;
}
/* lv1ent_large(ent) == true here */
BUG_ON(size < LPAGE_SIZE);
memset(ent, 0, sizeof(*ent) * SPAGES_PER_LPAGE);
size = LPAGE_SIZE;
priv->lv2entcnt[lv1ent_offset(iova)] += SPAGES_PER_LPAGE;
done:
spin_unlock_irqrestore(&priv->pgtablelock, flags);
spin_lock_irqsave(&priv->lock, flags);
list_for_each_entry(data, &priv->clients, node)
sysmmu_tlb_invalidate_entry(data->dev, iova);
spin_unlock_irqrestore(&priv->lock, flags);
return size;
}
static phys_addr_t exynos_iommu_iova_to_phys(struct iommu_domain *domain,
unsigned long iova)
{
struct exynos_iommu_domain *priv = domain->priv;
unsigned long *entry;
unsigned long flags;
phys_addr_t phys = 0;
spin_lock_irqsave(&priv->pgtablelock, flags);
entry = section_entry(priv->pgtable, iova);
if (lv1ent_section(entry)) {
phys = section_phys(entry) + section_offs(iova);
} else if (lv1ent_page(entry)) {
entry = page_entry(entry, iova);
if (lv2ent_large(entry))
phys = lpage_phys(entry) + lpage_offs(iova);
else if (lv2ent_small(entry))
phys = spage_phys(entry) + spage_offs(iova);
}
spin_unlock_irqrestore(&priv->pgtablelock, flags);
return phys;
}
static struct iommu_ops exynos_iommu_ops = {
.domain_init = &exynos_iommu_domain_init,
.domain_destroy = &exynos_iommu_domain_destroy,
.attach_dev = &exynos_iommu_attach_device,
.detach_dev = &exynos_iommu_detach_device,
.map = &exynos_iommu_map,
.unmap = &exynos_iommu_unmap,
.iova_to_phys = &exynos_iommu_iova_to_phys,
.pgsize_bitmap = SECT_SIZE | LPAGE_SIZE | SPAGE_SIZE,
};
static int __init exynos_iommu_init(void)
{
int ret;
ret = platform_driver_register(&exynos_sysmmu_driver);
if (ret == 0)
bus_set_iommu(&platform_bus_type, &exynos_iommu_ops);
return ret;
}
subsys_initcall(exynos_iommu_init);