f40298fddc
Use the new IRQF_ constants and remove the SA_INTERRUPT define Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@elte.hu> Cc: "David S. Miller" <davem@davemloft.net> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
1555 lines
37 KiB
C
1555 lines
37 KiB
C
/*
|
|
* BRIEF MODULE DESCRIPTION
|
|
* Au1000 USB Device-Side (device layer)
|
|
*
|
|
* Copyright 2001-2002 MontaVista Software Inc.
|
|
* Author: MontaVista Software, Inc.
|
|
* stevel@mvista.com or source@mvista.com
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation; either version 2 of the License, or (at your
|
|
* option) any later version.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
|
|
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
|
|
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
|
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/poll.h>
|
|
#include <linux/init.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/fcntl.h>
|
|
#include <linux/module.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/list.h>
|
|
#include <linux/smp_lock.h>
|
|
#define DEBUG
|
|
#include <linux/usb.h>
|
|
|
|
#include <asm/io.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/mipsregs.h>
|
|
#include <asm/au1000.h>
|
|
#include <asm/au1000_dma.h>
|
|
#include <asm/au1000_usbdev.h>
|
|
|
|
#ifdef DEBUG
|
|
#undef VDEBUG
|
|
#ifdef VDEBUG
|
|
#define vdbg(fmt, arg...) printk(KERN_DEBUG __FILE__ ": " fmt "\n" , ## arg)
|
|
#else
|
|
#define vdbg(fmt, arg...) do {} while (0)
|
|
#endif
|
|
#else
|
|
#define vdbg(fmt, arg...) do {} while (0)
|
|
#endif
|
|
|
|
#define ALLOC_FLAGS (in_interrupt () ? GFP_ATOMIC : GFP_KERNEL)
|
|
|
|
#define EP_FIFO_DEPTH 8
|
|
|
|
typedef enum {
|
|
SETUP_STAGE = 0,
|
|
DATA_STAGE,
|
|
STATUS_STAGE
|
|
} ep0_stage_t;
|
|
|
|
typedef struct {
|
|
int read_fifo;
|
|
int write_fifo;
|
|
int ctrl_stat;
|
|
int read_fifo_status;
|
|
int write_fifo_status;
|
|
} endpoint_reg_t;
|
|
|
|
typedef struct {
|
|
usbdev_pkt_t *head;
|
|
usbdev_pkt_t *tail;
|
|
int count;
|
|
} pkt_list_t;
|
|
|
|
typedef struct {
|
|
int active;
|
|
struct usb_endpoint_descriptor *desc;
|
|
endpoint_reg_t *reg;
|
|
/* Only one of these are used, unless this is the control ep */
|
|
pkt_list_t inlist;
|
|
pkt_list_t outlist;
|
|
unsigned int indma, outdma; /* DMA channel numbers for IN, OUT */
|
|
/* following are extracted from endpoint descriptor for easy access */
|
|
int max_pkt_size;
|
|
int type;
|
|
int direction;
|
|
/* WE assign endpoint addresses! */
|
|
int address;
|
|
spinlock_t lock;
|
|
} endpoint_t;
|
|
|
|
|
|
static struct usb_dev {
|
|
endpoint_t ep[6];
|
|
ep0_stage_t ep0_stage;
|
|
|
|
struct usb_device_descriptor * dev_desc;
|
|
struct usb_interface_descriptor* if_desc;
|
|
struct usb_config_descriptor * conf_desc;
|
|
u8 * full_conf_desc;
|
|
struct usb_string_descriptor * str_desc[6];
|
|
|
|
/* callback to function layer */
|
|
void (*func_cb)(usbdev_cb_type_t type, unsigned long arg,
|
|
void *cb_data);
|
|
void* cb_data;
|
|
|
|
usbdev_state_t state; // device state
|
|
int suspended; // suspended flag
|
|
int address; // device address
|
|
int interface;
|
|
int num_ep;
|
|
u8 alternate_setting;
|
|
u8 configuration; // configuration value
|
|
int remote_wakeup_en;
|
|
} usbdev;
|
|
|
|
|
|
static endpoint_reg_t ep_reg[] = {
|
|
// FIFO's 0 and 1 are EP0 default control
|
|
{USBD_EP0RD, USBD_EP0WR, USBD_EP0CS, USBD_EP0RDSTAT, USBD_EP0WRSTAT },
|
|
{0},
|
|
// FIFO 2 is EP2, IN
|
|
{ -1, USBD_EP2WR, USBD_EP2CS, -1, USBD_EP2WRSTAT },
|
|
// FIFO 3 is EP3, IN
|
|
{ -1, USBD_EP3WR, USBD_EP3CS, -1, USBD_EP3WRSTAT },
|
|
// FIFO 4 is EP4, OUT
|
|
{USBD_EP4RD, -1, USBD_EP4CS, USBD_EP4RDSTAT, -1 },
|
|
// FIFO 5 is EP5, OUT
|
|
{USBD_EP5RD, -1, USBD_EP5CS, USBD_EP5RDSTAT, -1 }
|
|
};
|
|
|
|
static struct {
|
|
unsigned int id;
|
|
const char *str;
|
|
} ep_dma_id[] = {
|
|
{ DMA_ID_USBDEV_EP0_TX, "USBDev EP0 IN" },
|
|
{ DMA_ID_USBDEV_EP0_RX, "USBDev EP0 OUT" },
|
|
{ DMA_ID_USBDEV_EP2_TX, "USBDev EP2 IN" },
|
|
{ DMA_ID_USBDEV_EP3_TX, "USBDev EP3 IN" },
|
|
{ DMA_ID_USBDEV_EP4_RX, "USBDev EP4 OUT" },
|
|
{ DMA_ID_USBDEV_EP5_RX, "USBDev EP5 OUT" }
|
|
};
|
|
|
|
#define DIR_OUT 0
|
|
#define DIR_IN (1<<3)
|
|
|
|
#define CONTROL_EP USB_ENDPOINT_XFER_CONTROL
|
|
#define BULK_EP USB_ENDPOINT_XFER_BULK
|
|
|
|
static inline endpoint_t *
|
|
epaddr_to_ep(struct usb_dev* dev, int ep_addr)
|
|
{
|
|
if (ep_addr >= 0 && ep_addr < 2)
|
|
return &dev->ep[0];
|
|
if (ep_addr < 6)
|
|
return &dev->ep[ep_addr];
|
|
return NULL;
|
|
}
|
|
|
|
static const char* std_req_name[] = {
|
|
"GET_STATUS",
|
|
"CLEAR_FEATURE",
|
|
"RESERVED",
|
|
"SET_FEATURE",
|
|
"RESERVED",
|
|
"SET_ADDRESS",
|
|
"GET_DESCRIPTOR",
|
|
"SET_DESCRIPTOR",
|
|
"GET_CONFIGURATION",
|
|
"SET_CONFIGURATION",
|
|
"GET_INTERFACE",
|
|
"SET_INTERFACE",
|
|
"SYNCH_FRAME"
|
|
};
|
|
|
|
static inline const char*
|
|
get_std_req_name(int req)
|
|
{
|
|
return (req >= 0 && req <= 12) ? std_req_name[req] : "UNKNOWN";
|
|
}
|
|
|
|
#if 0
|
|
static void
|
|
dump_setup(struct usb_ctrlrequest* s)
|
|
{
|
|
dbg("%s: requesttype=%d", __FUNCTION__, s->requesttype);
|
|
dbg("%s: request=%d %s", __FUNCTION__, s->request,
|
|
get_std_req_name(s->request));
|
|
dbg("%s: value=0x%04x", __FUNCTION__, s->wValue);
|
|
dbg("%s: index=%d", __FUNCTION__, s->index);
|
|
dbg("%s: length=%d", __FUNCTION__, s->length);
|
|
}
|
|
#endif
|
|
|
|
static inline usbdev_pkt_t *
|
|
alloc_packet(endpoint_t * ep, int data_size, void* data)
|
|
{
|
|
usbdev_pkt_t* pkt = kmalloc(sizeof(usbdev_pkt_t) + data_size,
|
|
ALLOC_FLAGS);
|
|
if (!pkt)
|
|
return NULL;
|
|
pkt->ep_addr = ep->address;
|
|
pkt->size = data_size;
|
|
pkt->status = 0;
|
|
pkt->next = NULL;
|
|
if (data)
|
|
memcpy(pkt->payload, data, data_size);
|
|
|
|
return pkt;
|
|
}
|
|
|
|
|
|
/*
|
|
* Link a packet to the tail of the enpoint's packet list.
|
|
* EP spinlock must be held when calling.
|
|
*/
|
|
static void
|
|
link_tail(endpoint_t * ep, pkt_list_t * list, usbdev_pkt_t * pkt)
|
|
{
|
|
if (!list->tail) {
|
|
list->head = list->tail = pkt;
|
|
list->count = 1;
|
|
} else {
|
|
list->tail->next = pkt;
|
|
list->tail = pkt;
|
|
list->count++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Unlink and return a packet from the head of the given packet
|
|
* list. It is the responsibility of the caller to free the packet.
|
|
* EP spinlock must be held when calling.
|
|
*/
|
|
static usbdev_pkt_t *
|
|
unlink_head(pkt_list_t * list)
|
|
{
|
|
usbdev_pkt_t *pkt;
|
|
|
|
pkt = list->head;
|
|
if (!pkt || !list->count) {
|
|
return NULL;
|
|
}
|
|
|
|
list->head = pkt->next;
|
|
if (!list->head) {
|
|
list->head = list->tail = NULL;
|
|
list->count = 0;
|
|
} else
|
|
list->count--;
|
|
|
|
return pkt;
|
|
}
|
|
|
|
/*
|
|
* Create and attach a new packet to the tail of the enpoint's
|
|
* packet list. EP spinlock must be held when calling.
|
|
*/
|
|
static usbdev_pkt_t *
|
|
add_packet(endpoint_t * ep, pkt_list_t * list, int size)
|
|
{
|
|
usbdev_pkt_t *pkt = alloc_packet(ep, size, NULL);
|
|
if (!pkt)
|
|
return NULL;
|
|
|
|
link_tail(ep, list, pkt);
|
|
return pkt;
|
|
}
|
|
|
|
|
|
/*
|
|
* Unlink and free a packet from the head of the enpoint's
|
|
* packet list. EP spinlock must be held when calling.
|
|
*/
|
|
static inline void
|
|
free_packet(pkt_list_t * list)
|
|
{
|
|
kfree(unlink_head(list));
|
|
}
|
|
|
|
/* EP spinlock must be held when calling. */
|
|
static inline void
|
|
flush_pkt_list(pkt_list_t * list)
|
|
{
|
|
while (list->count)
|
|
free_packet(list);
|
|
}
|
|
|
|
/* EP spinlock must be held when calling */
|
|
static inline void
|
|
flush_write_fifo(endpoint_t * ep)
|
|
{
|
|
if (ep->reg->write_fifo_status >= 0) {
|
|
au_writel(USBDEV_FSTAT_FLUSH | USBDEV_FSTAT_UF |
|
|
USBDEV_FSTAT_OF,
|
|
ep->reg->write_fifo_status);
|
|
//udelay(100);
|
|
//au_writel(USBDEV_FSTAT_UF | USBDEV_FSTAT_OF,
|
|
// ep->reg->write_fifo_status);
|
|
}
|
|
}
|
|
|
|
/* EP spinlock must be held when calling */
|
|
static inline void
|
|
flush_read_fifo(endpoint_t * ep)
|
|
{
|
|
if (ep->reg->read_fifo_status >= 0) {
|
|
au_writel(USBDEV_FSTAT_FLUSH | USBDEV_FSTAT_UF |
|
|
USBDEV_FSTAT_OF,
|
|
ep->reg->read_fifo_status);
|
|
//udelay(100);
|
|
//au_writel(USBDEV_FSTAT_UF | USBDEV_FSTAT_OF,
|
|
// ep->reg->read_fifo_status);
|
|
}
|
|
}
|
|
|
|
|
|
/* EP spinlock must be held when calling. */
|
|
static void
|
|
endpoint_flush(endpoint_t * ep)
|
|
{
|
|
// First, flush all packets
|
|
flush_pkt_list(&ep->inlist);
|
|
flush_pkt_list(&ep->outlist);
|
|
|
|
// Now flush the endpoint's h/w FIFO(s)
|
|
flush_write_fifo(ep);
|
|
flush_read_fifo(ep);
|
|
}
|
|
|
|
/* EP spinlock must be held when calling. */
|
|
static void
|
|
endpoint_stall(endpoint_t * ep)
|
|
{
|
|
u32 cs;
|
|
|
|
warn("%s", __FUNCTION__);
|
|
|
|
cs = au_readl(ep->reg->ctrl_stat) | USBDEV_CS_STALL;
|
|
au_writel(cs, ep->reg->ctrl_stat);
|
|
}
|
|
|
|
/* EP spinlock must be held when calling. */
|
|
static void
|
|
endpoint_unstall(endpoint_t * ep)
|
|
{
|
|
u32 cs;
|
|
|
|
warn("%s", __FUNCTION__);
|
|
|
|
cs = au_readl(ep->reg->ctrl_stat) & ~USBDEV_CS_STALL;
|
|
au_writel(cs, ep->reg->ctrl_stat);
|
|
}
|
|
|
|
static void
|
|
endpoint_reset_datatoggle(endpoint_t * ep)
|
|
{
|
|
// FIXME: is this possible?
|
|
}
|
|
|
|
|
|
/* EP spinlock must be held when calling. */
|
|
static int
|
|
endpoint_fifo_read(endpoint_t * ep)
|
|
{
|
|
int read_count = 0;
|
|
u8 *bufptr;
|
|
usbdev_pkt_t *pkt = ep->outlist.tail;
|
|
|
|
if (!pkt)
|
|
return -EINVAL;
|
|
|
|
bufptr = &pkt->payload[pkt->size];
|
|
while (au_readl(ep->reg->read_fifo_status) & USBDEV_FSTAT_FCNT_MASK) {
|
|
*bufptr++ = au_readl(ep->reg->read_fifo) & 0xff;
|
|
read_count++;
|
|
pkt->size++;
|
|
}
|
|
|
|
return read_count;
|
|
}
|
|
|
|
#if 0
|
|
/* EP spinlock must be held when calling. */
|
|
static int
|
|
endpoint_fifo_write(endpoint_t * ep, int index)
|
|
{
|
|
int write_count = 0;
|
|
u8 *bufptr;
|
|
usbdev_pkt_t *pkt = ep->inlist.head;
|
|
|
|
if (!pkt)
|
|
return -EINVAL;
|
|
|
|
bufptr = &pkt->payload[index];
|
|
while ((au_readl(ep->reg->write_fifo_status) &
|
|
USBDEV_FSTAT_FCNT_MASK) < EP_FIFO_DEPTH) {
|
|
if (bufptr < pkt->payload + pkt->size) {
|
|
au_writel(*bufptr++, ep->reg->write_fifo);
|
|
write_count++;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return write_count;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* This routine is called to restart transmission of a packet.
|
|
* The endpoint's TSIZE must be set to the new packet's size,
|
|
* and DMA to the write FIFO needs to be restarted.
|
|
* EP spinlock must be held when calling.
|
|
*/
|
|
static void
|
|
kickstart_send_packet(endpoint_t * ep)
|
|
{
|
|
u32 cs;
|
|
usbdev_pkt_t *pkt = ep->inlist.head;
|
|
|
|
vdbg("%s: ep%d, pkt=%p", __FUNCTION__, ep->address, pkt);
|
|
|
|
if (!pkt) {
|
|
err("%s: head=NULL! list->count=%d", __FUNCTION__,
|
|
ep->inlist.count);
|
|
return;
|
|
}
|
|
|
|
dma_cache_wback_inv((unsigned long)pkt->payload, pkt->size);
|
|
|
|
/*
|
|
* make sure FIFO is empty
|
|
*/
|
|
flush_write_fifo(ep);
|
|
|
|
cs = au_readl(ep->reg->ctrl_stat) & USBDEV_CS_STALL;
|
|
cs |= (pkt->size << USBDEV_CS_TSIZE_BIT);
|
|
au_writel(cs, ep->reg->ctrl_stat);
|
|
|
|
if (get_dma_active_buffer(ep->indma) == 1) {
|
|
set_dma_count1(ep->indma, pkt->size);
|
|
set_dma_addr1(ep->indma, virt_to_phys(pkt->payload));
|
|
enable_dma_buffer1(ep->indma); // reenable
|
|
} else {
|
|
set_dma_count0(ep->indma, pkt->size);
|
|
set_dma_addr0(ep->indma, virt_to_phys(pkt->payload));
|
|
enable_dma_buffer0(ep->indma); // reenable
|
|
}
|
|
if (dma_halted(ep->indma))
|
|
start_dma(ep->indma);
|
|
}
|
|
|
|
|
|
/*
|
|
* This routine is called when a packet in the inlist has been
|
|
* completed. Frees the completed packet and starts sending the
|
|
* next. EP spinlock must be held when calling.
|
|
*/
|
|
static usbdev_pkt_t *
|
|
send_packet_complete(endpoint_t * ep)
|
|
{
|
|
usbdev_pkt_t *pkt = unlink_head(&ep->inlist);
|
|
|
|
if (pkt) {
|
|
pkt->status =
|
|
(au_readl(ep->reg->ctrl_stat) & USBDEV_CS_NAK) ?
|
|
PKT_STATUS_NAK : PKT_STATUS_ACK;
|
|
|
|
vdbg("%s: ep%d, %s pkt=%p, list count=%d", __FUNCTION__,
|
|
ep->address, (pkt->status & PKT_STATUS_NAK) ?
|
|
"NAK" : "ACK", pkt, ep->inlist.count);
|
|
}
|
|
|
|
/*
|
|
* The write fifo should already be drained if things are
|
|
* working right, but flush it anyway just in case.
|
|
*/
|
|
flush_write_fifo(ep);
|
|
|
|
// begin transmitting next packet in the inlist
|
|
if (ep->inlist.count) {
|
|
kickstart_send_packet(ep);
|
|
}
|
|
|
|
return pkt;
|
|
}
|
|
|
|
/*
|
|
* Add a new packet to the tail of the given ep's packet
|
|
* inlist. The transmit complete interrupt frees packets from
|
|
* the head of this list. EP spinlock must be held when calling.
|
|
*/
|
|
static int
|
|
send_packet(struct usb_dev* dev, usbdev_pkt_t *pkt, int async)
|
|
{
|
|
pkt_list_t *list;
|
|
endpoint_t* ep;
|
|
|
|
if (!pkt || !(ep = epaddr_to_ep(dev, pkt->ep_addr)))
|
|
return -EINVAL;
|
|
|
|
if (!pkt->size)
|
|
return 0;
|
|
|
|
list = &ep->inlist;
|
|
|
|
if (!async && list->count) {
|
|
halt_dma(ep->indma);
|
|
flush_pkt_list(list);
|
|
}
|
|
|
|
link_tail(ep, list, pkt);
|
|
|
|
vdbg("%s: ep%d, pkt=%p, size=%d, list count=%d", __FUNCTION__,
|
|
ep->address, pkt, pkt->size, list->count);
|
|
|
|
if (list->count == 1) {
|
|
/*
|
|
* if the packet count is one, it means the list was empty,
|
|
* and no more data will go out this ep until we kick-start
|
|
* it again.
|
|
*/
|
|
kickstart_send_packet(ep);
|
|
}
|
|
|
|
return pkt->size;
|
|
}
|
|
|
|
/*
|
|
* This routine is called to restart reception of a packet.
|
|
* EP spinlock must be held when calling.
|
|
*/
|
|
static void
|
|
kickstart_receive_packet(endpoint_t * ep)
|
|
{
|
|
usbdev_pkt_t *pkt;
|
|
|
|
// get and link a new packet for next reception
|
|
if (!(pkt = add_packet(ep, &ep->outlist, ep->max_pkt_size))) {
|
|
err("%s: could not alloc new packet", __FUNCTION__);
|
|
return;
|
|
}
|
|
|
|
if (get_dma_active_buffer(ep->outdma) == 1) {
|
|
clear_dma_done1(ep->outdma);
|
|
set_dma_count1(ep->outdma, ep->max_pkt_size);
|
|
set_dma_count0(ep->outdma, 0);
|
|
set_dma_addr1(ep->outdma, virt_to_phys(pkt->payload));
|
|
enable_dma_buffer1(ep->outdma); // reenable
|
|
} else {
|
|
clear_dma_done0(ep->outdma);
|
|
set_dma_count0(ep->outdma, ep->max_pkt_size);
|
|
set_dma_count1(ep->outdma, 0);
|
|
set_dma_addr0(ep->outdma, virt_to_phys(pkt->payload));
|
|
enable_dma_buffer0(ep->outdma); // reenable
|
|
}
|
|
if (dma_halted(ep->outdma))
|
|
start_dma(ep->outdma);
|
|
}
|
|
|
|
|
|
/*
|
|
* This routine is called when a packet in the outlist has been
|
|
* completed (received) and we need to prepare for a new packet
|
|
* to be received. Halts DMA and computes the packet size from the
|
|
* remaining DMA counter. Then prepares a new packet for reception
|
|
* and restarts DMA. FIXME: what if another packet comes in
|
|
* on top of the completed packet? Counter would be wrong.
|
|
* EP spinlock must be held when calling.
|
|
*/
|
|
static usbdev_pkt_t *
|
|
receive_packet_complete(endpoint_t * ep)
|
|
{
|
|
usbdev_pkt_t *pkt = ep->outlist.tail;
|
|
u32 cs;
|
|
|
|
halt_dma(ep->outdma);
|
|
|
|
cs = au_readl(ep->reg->ctrl_stat);
|
|
|
|
if (!pkt)
|
|
return NULL;
|
|
|
|
pkt->size = ep->max_pkt_size - get_dma_residue(ep->outdma);
|
|
if (pkt->size)
|
|
dma_cache_inv((unsigned long)pkt->payload, pkt->size);
|
|
/*
|
|
* need to pull out any remaining bytes in the FIFO.
|
|
*/
|
|
endpoint_fifo_read(ep);
|
|
/*
|
|
* should be drained now, but flush anyway just in case.
|
|
*/
|
|
flush_read_fifo(ep);
|
|
|
|
pkt->status = (cs & USBDEV_CS_NAK) ? PKT_STATUS_NAK : PKT_STATUS_ACK;
|
|
if (ep->address == 0 && (cs & USBDEV_CS_SU))
|
|
pkt->status |= PKT_STATUS_SU;
|
|
|
|
vdbg("%s: ep%d, %s pkt=%p, size=%d", __FUNCTION__,
|
|
ep->address, (pkt->status & PKT_STATUS_NAK) ?
|
|
"NAK" : "ACK", pkt, pkt->size);
|
|
|
|
kickstart_receive_packet(ep);
|
|
|
|
return pkt;
|
|
}
|
|
|
|
|
|
/*
|
|
****************************************************************************
|
|
* Here starts the standard device request handlers. They are
|
|
* all called by do_setup() via a table of function pointers.
|
|
****************************************************************************
|
|
*/
|
|
|
|
static ep0_stage_t
|
|
do_get_status(struct usb_dev* dev, struct usb_ctrlrequest* setup)
|
|
{
|
|
switch (setup->bRequestType) {
|
|
case 0x80: // Device
|
|
// FIXME: send device status
|
|
break;
|
|
case 0x81: // Interface
|
|
// FIXME: send interface status
|
|
break;
|
|
case 0x82: // End Point
|
|
// FIXME: send endpoint status
|
|
break;
|
|
default:
|
|
// Invalid Command
|
|
endpoint_stall(&dev->ep[0]); // Stall End Point 0
|
|
break;
|
|
}
|
|
|
|
return STATUS_STAGE;
|
|
}
|
|
|
|
static ep0_stage_t
|
|
do_clear_feature(struct usb_dev* dev, struct usb_ctrlrequest* setup)
|
|
{
|
|
switch (setup->bRequestType) {
|
|
case 0x00: // Device
|
|
if ((le16_to_cpu(setup->wValue) & 0xff) == 1)
|
|
dev->remote_wakeup_en = 0;
|
|
else
|
|
endpoint_stall(&dev->ep[0]);
|
|
break;
|
|
case 0x02: // End Point
|
|
if ((le16_to_cpu(setup->wValue) & 0xff) == 0) {
|
|
endpoint_t *ep =
|
|
epaddr_to_ep(dev,
|
|
le16_to_cpu(setup->wIndex) & 0xff);
|
|
|
|
endpoint_unstall(ep);
|
|
endpoint_reset_datatoggle(ep);
|
|
} else
|
|
endpoint_stall(&dev->ep[0]);
|
|
break;
|
|
}
|
|
|
|
return SETUP_STAGE;
|
|
}
|
|
|
|
static ep0_stage_t
|
|
do_reserved(struct usb_dev* dev, struct usb_ctrlrequest* setup)
|
|
{
|
|
// Invalid request, stall End Point 0
|
|
endpoint_stall(&dev->ep[0]);
|
|
return SETUP_STAGE;
|
|
}
|
|
|
|
static ep0_stage_t
|
|
do_set_feature(struct usb_dev* dev, struct usb_ctrlrequest* setup)
|
|
{
|
|
switch (setup->bRequestType) {
|
|
case 0x00: // Device
|
|
if ((le16_to_cpu(setup->wValue) & 0xff) == 1)
|
|
dev->remote_wakeup_en = 1;
|
|
else
|
|
endpoint_stall(&dev->ep[0]);
|
|
break;
|
|
case 0x02: // End Point
|
|
if ((le16_to_cpu(setup->wValue) & 0xff) == 0) {
|
|
endpoint_t *ep =
|
|
epaddr_to_ep(dev,
|
|
le16_to_cpu(setup->wIndex) & 0xff);
|
|
|
|
endpoint_stall(ep);
|
|
} else
|
|
endpoint_stall(&dev->ep[0]);
|
|
break;
|
|
}
|
|
|
|
return SETUP_STAGE;
|
|
}
|
|
|
|
static ep0_stage_t
|
|
do_set_address(struct usb_dev* dev, struct usb_ctrlrequest* setup)
|
|
{
|
|
int new_state = dev->state;
|
|
int new_addr = le16_to_cpu(setup->wValue);
|
|
|
|
dbg("%s: our address=%d", __FUNCTION__, new_addr);
|
|
|
|
if (new_addr > 127) {
|
|
// usb spec doesn't tell us what to do, so just go to
|
|
// default state
|
|
new_state = DEFAULT;
|
|
dev->address = 0;
|
|
} else if (dev->address != new_addr) {
|
|
dev->address = new_addr;
|
|
new_state = ADDRESS;
|
|
}
|
|
|
|
if (dev->state != new_state) {
|
|
dev->state = new_state;
|
|
/* inform function layer of usbdev state change */
|
|
dev->func_cb(CB_NEW_STATE, dev->state, dev->cb_data);
|
|
}
|
|
|
|
return SETUP_STAGE;
|
|
}
|
|
|
|
static ep0_stage_t
|
|
do_get_descriptor(struct usb_dev* dev, struct usb_ctrlrequest* setup)
|
|
{
|
|
int strnum, desc_len = le16_to_cpu(setup->wLength);
|
|
|
|
switch (le16_to_cpu(setup->wValue) >> 8) {
|
|
case USB_DT_DEVICE:
|
|
// send device descriptor!
|
|
desc_len = desc_len > dev->dev_desc->bLength ?
|
|
dev->dev_desc->bLength : desc_len;
|
|
dbg("sending device desc, size=%d", desc_len);
|
|
send_packet(dev, alloc_packet(&dev->ep[0], desc_len,
|
|
dev->dev_desc), 0);
|
|
break;
|
|
case USB_DT_CONFIG:
|
|
// If the config descr index in low-byte of
|
|
// setup->wValue is valid, send config descr,
|
|
// otherwise stall ep0.
|
|
if ((le16_to_cpu(setup->wValue) & 0xff) == 0) {
|
|
// send config descriptor!
|
|
if (desc_len <= USB_DT_CONFIG_SIZE) {
|
|
dbg("sending partial config desc, size=%d",
|
|
desc_len);
|
|
send_packet(dev,
|
|
alloc_packet(&dev->ep[0],
|
|
desc_len,
|
|
dev->conf_desc),
|
|
0);
|
|
} else {
|
|
int len = le16_to_cpu(dev->conf_desc->wTotalLength);
|
|
dbg("sending whole config desc,"
|
|
" size=%d, our size=%d", desc_len, len);
|
|
desc_len = desc_len > len ? len : desc_len;
|
|
send_packet(dev,
|
|
alloc_packet(&dev->ep[0],
|
|
desc_len,
|
|
dev->full_conf_desc),
|
|
0);
|
|
}
|
|
} else
|
|
endpoint_stall(&dev->ep[0]);
|
|
break;
|
|
case USB_DT_STRING:
|
|
// If the string descr index in low-byte of setup->wValue
|
|
// is valid, send string descr, otherwise stall ep0.
|
|
strnum = le16_to_cpu(setup->wValue) & 0xff;
|
|
if (strnum >= 0 && strnum < 6) {
|
|
struct usb_string_descriptor *desc =
|
|
dev->str_desc[strnum];
|
|
desc_len = desc_len > desc->bLength ?
|
|
desc->bLength : desc_len;
|
|
dbg("sending string desc %d", strnum);
|
|
send_packet(dev,
|
|
alloc_packet(&dev->ep[0], desc_len,
|
|
desc), 0);
|
|
} else
|
|
endpoint_stall(&dev->ep[0]);
|
|
break;
|
|
default:
|
|
// Invalid request
|
|
err("invalid get desc=%d, stalled",
|
|
le16_to_cpu(setup->wValue) >> 8);
|
|
endpoint_stall(&dev->ep[0]); // Stall endpoint 0
|
|
break;
|
|
}
|
|
|
|
return STATUS_STAGE;
|
|
}
|
|
|
|
static ep0_stage_t
|
|
do_set_descriptor(struct usb_dev* dev, struct usb_ctrlrequest* setup)
|
|
{
|
|
// TODO: implement
|
|
// there will be an OUT data stage (the descriptor to set)
|
|
return DATA_STAGE;
|
|
}
|
|
|
|
static ep0_stage_t
|
|
do_get_configuration(struct usb_dev* dev, struct usb_ctrlrequest* setup)
|
|
{
|
|
// send dev->configuration
|
|
dbg("sending config");
|
|
send_packet(dev, alloc_packet(&dev->ep[0], 1, &dev->configuration),
|
|
0);
|
|
return STATUS_STAGE;
|
|
}
|
|
|
|
static ep0_stage_t
|
|
do_set_configuration(struct usb_dev* dev, struct usb_ctrlrequest* setup)
|
|
{
|
|
// set active config to low-byte of setup->wValue
|
|
dev->configuration = le16_to_cpu(setup->wValue) & 0xff;
|
|
dbg("set config, config=%d", dev->configuration);
|
|
if (!dev->configuration && dev->state > DEFAULT) {
|
|
dev->state = ADDRESS;
|
|
/* inform function layer of usbdev state change */
|
|
dev->func_cb(CB_NEW_STATE, dev->state, dev->cb_data);
|
|
} else if (dev->configuration == 1) {
|
|
dev->state = CONFIGURED;
|
|
/* inform function layer of usbdev state change */
|
|
dev->func_cb(CB_NEW_STATE, dev->state, dev->cb_data);
|
|
} else {
|
|
// FIXME: "respond with request error" - how?
|
|
}
|
|
|
|
return SETUP_STAGE;
|
|
}
|
|
|
|
static ep0_stage_t
|
|
do_get_interface(struct usb_dev* dev, struct usb_ctrlrequest* setup)
|
|
{
|
|
// interface must be zero.
|
|
if ((le16_to_cpu(setup->wIndex) & 0xff) || dev->state == ADDRESS) {
|
|
// FIXME: respond with "request error". how?
|
|
} else if (dev->state == CONFIGURED) {
|
|
// send dev->alternate_setting
|
|
dbg("sending alt setting");
|
|
send_packet(dev, alloc_packet(&dev->ep[0], 1,
|
|
&dev->alternate_setting), 0);
|
|
}
|
|
|
|
return STATUS_STAGE;
|
|
|
|
}
|
|
|
|
static ep0_stage_t
|
|
do_set_interface(struct usb_dev* dev, struct usb_ctrlrequest* setup)
|
|
{
|
|
if (dev->state == ADDRESS) {
|
|
// FIXME: respond with "request error". how?
|
|
} else if (dev->state == CONFIGURED) {
|
|
dev->interface = le16_to_cpu(setup->wIndex) & 0xff;
|
|
dev->alternate_setting =
|
|
le16_to_cpu(setup->wValue) & 0xff;
|
|
// interface and alternate_setting must be zero
|
|
if (dev->interface || dev->alternate_setting) {
|
|
// FIXME: respond with "request error". how?
|
|
}
|
|
}
|
|
|
|
return SETUP_STAGE;
|
|
}
|
|
|
|
static ep0_stage_t
|
|
do_synch_frame(struct usb_dev* dev, struct usb_ctrlrequest* setup)
|
|
{
|
|
// TODO
|
|
return SETUP_STAGE;
|
|
}
|
|
|
|
typedef ep0_stage_t (*req_method_t)(struct usb_dev* dev,
|
|
struct usb_ctrlrequest* setup);
|
|
|
|
|
|
/* Table of the standard device request handlers */
|
|
static const req_method_t req_method[] = {
|
|
do_get_status,
|
|
do_clear_feature,
|
|
do_reserved,
|
|
do_set_feature,
|
|
do_reserved,
|
|
do_set_address,
|
|
do_get_descriptor,
|
|
do_set_descriptor,
|
|
do_get_configuration,
|
|
do_set_configuration,
|
|
do_get_interface,
|
|
do_set_interface,
|
|
do_synch_frame
|
|
};
|
|
|
|
|
|
// SETUP packet request dispatcher
|
|
static void
|
|
do_setup (struct usb_dev* dev, struct usb_ctrlrequest* setup)
|
|
{
|
|
req_method_t m;
|
|
|
|
dbg("%s: req %d %s", __FUNCTION__, setup->bRequestType,
|
|
get_std_req_name(setup->bRequestType));
|
|
|
|
if ((setup->bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD ||
|
|
(setup->bRequestType & USB_RECIP_MASK) != USB_RECIP_DEVICE) {
|
|
err("%s: invalid requesttype 0x%02x", __FUNCTION__,
|
|
setup->bRequestType);
|
|
return;
|
|
}
|
|
|
|
if ((setup->bRequestType & 0x80) == USB_DIR_OUT && setup->wLength)
|
|
dbg("%s: OUT phase! length=%d", __FUNCTION__, setup->wLength);
|
|
|
|
if (setup->bRequestType < sizeof(req_method)/sizeof(req_method_t))
|
|
m = req_method[setup->bRequestType];
|
|
else
|
|
m = do_reserved;
|
|
|
|
dev->ep0_stage = (*m)(dev, setup);
|
|
}
|
|
|
|
/*
|
|
* A SETUP, DATA0, or DATA1 packet has been received
|
|
* on the default control endpoint's fifo.
|
|
*/
|
|
static void
|
|
process_ep0_receive (struct usb_dev* dev)
|
|
{
|
|
endpoint_t *ep0 = &dev->ep[0];
|
|
usbdev_pkt_t *pkt;
|
|
|
|
spin_lock(&ep0->lock);
|
|
|
|
// complete packet and prepare a new packet
|
|
pkt = receive_packet_complete(ep0);
|
|
if (!pkt) {
|
|
// FIXME: should put a warn/err here.
|
|
spin_unlock(&ep0->lock);
|
|
return;
|
|
}
|
|
|
|
// unlink immediately from endpoint.
|
|
unlink_head(&ep0->outlist);
|
|
|
|
// override current stage if h/w says it's a setup packet
|
|
if (pkt->status & PKT_STATUS_SU)
|
|
dev->ep0_stage = SETUP_STAGE;
|
|
|
|
switch (dev->ep0_stage) {
|
|
case SETUP_STAGE:
|
|
vdbg("SU bit is %s in setup stage",
|
|
(pkt->status & PKT_STATUS_SU) ? "set" : "not set");
|
|
|
|
if (pkt->size == sizeof(struct usb_ctrlrequest)) {
|
|
#ifdef VDEBUG
|
|
if (pkt->status & PKT_STATUS_ACK)
|
|
vdbg("received SETUP");
|
|
else
|
|
vdbg("received NAK SETUP");
|
|
#endif
|
|
do_setup(dev, (struct usb_ctrlrequest*)pkt->payload);
|
|
} else
|
|
err("%s: wrong size SETUP received", __FUNCTION__);
|
|
break;
|
|
case DATA_STAGE:
|
|
/*
|
|
* this setup has an OUT data stage. Of the standard
|
|
* device requests, only set_descriptor has this stage,
|
|
* so this packet is that descriptor. TODO: drop it for
|
|
* now, set_descriptor not implemented.
|
|
*
|
|
* Need to place a byte in the write FIFO here, to prepare
|
|
* to send a zero-length DATA ack packet to the host in the
|
|
* STATUS stage.
|
|
*/
|
|
au_writel(0, ep0->reg->write_fifo);
|
|
dbg("received OUT stage DATAx on EP0, size=%d", pkt->size);
|
|
dev->ep0_stage = SETUP_STAGE;
|
|
break;
|
|
case STATUS_STAGE:
|
|
// this setup had an IN data stage, and host is ACK'ing
|
|
// the packet we sent during that stage.
|
|
if (pkt->size != 0)
|
|
warn("received non-zero ACK on EP0??");
|
|
#ifdef VDEBUG
|
|
else
|
|
vdbg("received ACK on EP0");
|
|
#endif
|
|
dev->ep0_stage = SETUP_STAGE;
|
|
break;
|
|
}
|
|
|
|
spin_unlock(&ep0->lock);
|
|
// we're done processing the packet, free it
|
|
kfree(pkt);
|
|
}
|
|
|
|
|
|
/*
|
|
* A DATA0/1 packet has been received on one of the OUT endpoints (4 or 5)
|
|
*/
|
|
static void
|
|
process_ep_receive (struct usb_dev* dev, endpoint_t *ep)
|
|
{
|
|
usbdev_pkt_t *pkt;
|
|
|
|
spin_lock(&ep->lock);
|
|
pkt = receive_packet_complete(ep);
|
|
spin_unlock(&ep->lock);
|
|
|
|
dev->func_cb(CB_PKT_COMPLETE, (unsigned long)pkt, dev->cb_data);
|
|
}
|
|
|
|
|
|
|
|
/* This ISR handles the receive complete and suspend events */
|
|
static void
|
|
req_sus_intr (int irq, void *dev_id, struct pt_regs *regs)
|
|
{
|
|
struct usb_dev *dev = (struct usb_dev *) dev_id;
|
|
u32 status;
|
|
|
|
status = au_readl(USBD_INTSTAT);
|
|
au_writel(status, USBD_INTSTAT); // ack'em
|
|
|
|
if (status & (1<<0))
|
|
process_ep0_receive(dev);
|
|
if (status & (1<<4))
|
|
process_ep_receive(dev, &dev->ep[4]);
|
|
if (status & (1<<5))
|
|
process_ep_receive(dev, &dev->ep[5]);
|
|
}
|
|
|
|
|
|
/* This ISR handles the DMA done events on EP0 */
|
|
static void
|
|
dma_done_ep0_intr(int irq, void *dev_id, struct pt_regs *regs)
|
|
{
|
|
struct usb_dev *dev = (struct usb_dev *) dev_id;
|
|
usbdev_pkt_t* pkt;
|
|
endpoint_t *ep0 = &dev->ep[0];
|
|
u32 cs0, buff_done;
|
|
|
|
spin_lock(&ep0->lock);
|
|
cs0 = au_readl(ep0->reg->ctrl_stat);
|
|
|
|
// first check packet transmit done
|
|
if ((buff_done = get_dma_buffer_done(ep0->indma)) != 0) {
|
|
// transmitted a DATAx packet during DATA stage
|
|
// on control endpoint 0
|
|
// clear DMA done bit
|
|
if (buff_done & DMA_D0)
|
|
clear_dma_done0(ep0->indma);
|
|
if (buff_done & DMA_D1)
|
|
clear_dma_done1(ep0->indma);
|
|
|
|
pkt = send_packet_complete(ep0);
|
|
kfree(pkt);
|
|
}
|
|
|
|
/*
|
|
* Now check packet receive done. Shouldn't get these,
|
|
* the receive packet complete intr should happen
|
|
* before the DMA done intr occurs.
|
|
*/
|
|
if ((buff_done = get_dma_buffer_done(ep0->outdma)) != 0) {
|
|
// clear DMA done bit
|
|
if (buff_done & DMA_D0)
|
|
clear_dma_done0(ep0->outdma);
|
|
if (buff_done & DMA_D1)
|
|
clear_dma_done1(ep0->outdma);
|
|
|
|
//process_ep0_receive(dev);
|
|
}
|
|
|
|
spin_unlock(&ep0->lock);
|
|
}
|
|
|
|
/* This ISR handles the DMA done events on endpoints 2,3,4,5 */
|
|
static void
|
|
dma_done_ep_intr(int irq, void *dev_id, struct pt_regs *regs)
|
|
{
|
|
struct usb_dev *dev = (struct usb_dev *) dev_id;
|
|
int i;
|
|
|
|
for (i = 2; i < 6; i++) {
|
|
u32 buff_done;
|
|
usbdev_pkt_t* pkt;
|
|
endpoint_t *ep = &dev->ep[i];
|
|
|
|
if (!ep->active) continue;
|
|
|
|
spin_lock(&ep->lock);
|
|
|
|
if (ep->direction == USB_DIR_IN) {
|
|
buff_done = get_dma_buffer_done(ep->indma);
|
|
if (buff_done != 0) {
|
|
// transmitted a DATAx pkt on the IN ep
|
|
// clear DMA done bit
|
|
if (buff_done & DMA_D0)
|
|
clear_dma_done0(ep->indma);
|
|
if (buff_done & DMA_D1)
|
|
clear_dma_done1(ep->indma);
|
|
|
|
pkt = send_packet_complete(ep);
|
|
|
|
spin_unlock(&ep->lock);
|
|
dev->func_cb(CB_PKT_COMPLETE,
|
|
(unsigned long)pkt,
|
|
dev->cb_data);
|
|
spin_lock(&ep->lock);
|
|
}
|
|
} else {
|
|
/*
|
|
* Check packet receive done (OUT ep). Shouldn't get
|
|
* these, the rx packet complete intr should happen
|
|
* before the DMA done intr occurs.
|
|
*/
|
|
buff_done = get_dma_buffer_done(ep->outdma);
|
|
if (buff_done != 0) {
|
|
// received a DATAx pkt on the OUT ep
|
|
// clear DMA done bit
|
|
if (buff_done & DMA_D0)
|
|
clear_dma_done0(ep->outdma);
|
|
if (buff_done & DMA_D1)
|
|
clear_dma_done1(ep->outdma);
|
|
|
|
//process_ep_receive(dev, ep);
|
|
}
|
|
}
|
|
|
|
spin_unlock(&ep->lock);
|
|
}
|
|
}
|
|
|
|
|
|
/***************************************************************************
|
|
* Here begins the external interface functions
|
|
***************************************************************************
|
|
*/
|
|
|
|
/*
|
|
* allocate a new packet
|
|
*/
|
|
int
|
|
usbdev_alloc_packet(int ep_addr, int data_size, usbdev_pkt_t** pkt)
|
|
{
|
|
endpoint_t * ep = epaddr_to_ep(&usbdev, ep_addr);
|
|
usbdev_pkt_t* lpkt = NULL;
|
|
|
|
if (!ep || !ep->active || ep->address < 2)
|
|
return -ENODEV;
|
|
if (data_size > ep->max_pkt_size)
|
|
return -EINVAL;
|
|
|
|
lpkt = *pkt = alloc_packet(ep, data_size, NULL);
|
|
if (!lpkt)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* packet send
|
|
*/
|
|
int
|
|
usbdev_send_packet(int ep_addr, usbdev_pkt_t * pkt)
|
|
{
|
|
unsigned long flags;
|
|
int count;
|
|
endpoint_t * ep;
|
|
|
|
if (!pkt || !(ep = epaddr_to_ep(&usbdev, pkt->ep_addr)) ||
|
|
!ep->active || ep->address < 2)
|
|
return -ENODEV;
|
|
if (ep->direction != USB_DIR_IN)
|
|
return -EINVAL;
|
|
|
|
spin_lock_irqsave(&ep->lock, flags);
|
|
count = send_packet(&usbdev, pkt, 1);
|
|
spin_unlock_irqrestore(&ep->lock, flags);
|
|
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* packet receive
|
|
*/
|
|
int
|
|
usbdev_receive_packet(int ep_addr, usbdev_pkt_t** pkt)
|
|
{
|
|
unsigned long flags;
|
|
usbdev_pkt_t* lpkt = NULL;
|
|
endpoint_t *ep = epaddr_to_ep(&usbdev, ep_addr);
|
|
|
|
if (!ep || !ep->active || ep->address < 2)
|
|
return -ENODEV;
|
|
if (ep->direction != USB_DIR_OUT)
|
|
return -EINVAL;
|
|
|
|
spin_lock_irqsave(&ep->lock, flags);
|
|
if (ep->outlist.count > 1)
|
|
lpkt = unlink_head(&ep->outlist);
|
|
spin_unlock_irqrestore(&ep->lock, flags);
|
|
|
|
if (!lpkt) {
|
|
/* no packet available */
|
|
*pkt = NULL;
|
|
return -ENODATA;
|
|
}
|
|
|
|
*pkt = lpkt;
|
|
|
|
return lpkt->size;
|
|
}
|
|
|
|
|
|
/*
|
|
* return total queued byte count on the endpoint.
|
|
*/
|
|
int
|
|
usbdev_get_byte_count(int ep_addr)
|
|
{
|
|
unsigned long flags;
|
|
pkt_list_t *list;
|
|
usbdev_pkt_t *scan;
|
|
int count = 0;
|
|
endpoint_t * ep = epaddr_to_ep(&usbdev, ep_addr);
|
|
|
|
if (!ep || !ep->active || ep->address < 2)
|
|
return -ENODEV;
|
|
|
|
if (ep->direction == USB_DIR_IN) {
|
|
list = &ep->inlist;
|
|
|
|
spin_lock_irqsave(&ep->lock, flags);
|
|
for (scan = list->head; scan; scan = scan->next)
|
|
count += scan->size;
|
|
spin_unlock_irqrestore(&ep->lock, flags);
|
|
} else {
|
|
list = &ep->outlist;
|
|
|
|
spin_lock_irqsave(&ep->lock, flags);
|
|
if (list->count > 1) {
|
|
for (scan = list->head; scan != list->tail;
|
|
scan = scan->next)
|
|
count += scan->size;
|
|
}
|
|
spin_unlock_irqrestore(&ep->lock, flags);
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
|
|
void
|
|
usbdev_exit(void)
|
|
{
|
|
endpoint_t *ep;
|
|
int i;
|
|
|
|
au_writel(0, USBD_INTEN); // disable usb dev ints
|
|
au_writel(0, USBD_ENABLE); // disable usb dev
|
|
|
|
free_irq(AU1000_USB_DEV_REQ_INT, &usbdev);
|
|
free_irq(AU1000_USB_DEV_SUS_INT, &usbdev);
|
|
|
|
// free all control endpoint resources
|
|
ep = &usbdev.ep[0];
|
|
free_au1000_dma(ep->indma);
|
|
free_au1000_dma(ep->outdma);
|
|
endpoint_flush(ep);
|
|
|
|
// free ep resources
|
|
for (i = 2; i < 6; i++) {
|
|
ep = &usbdev.ep[i];
|
|
if (!ep->active) continue;
|
|
|
|
if (ep->direction == USB_DIR_IN) {
|
|
free_au1000_dma(ep->indma);
|
|
} else {
|
|
free_au1000_dma(ep->outdma);
|
|
}
|
|
endpoint_flush(ep);
|
|
}
|
|
|
|
kfree(usbdev.full_conf_desc);
|
|
}
|
|
|
|
int
|
|
usbdev_init(struct usb_device_descriptor* dev_desc,
|
|
struct usb_config_descriptor* config_desc,
|
|
struct usb_interface_descriptor* if_desc,
|
|
struct usb_endpoint_descriptor* ep_desc,
|
|
struct usb_string_descriptor* str_desc[],
|
|
void (*cb)(usbdev_cb_type_t, unsigned long, void *),
|
|
void* cb_data)
|
|
{
|
|
endpoint_t *ep0;
|
|
int i, ret=0;
|
|
u8* fcd;
|
|
|
|
if (dev_desc->bNumConfigurations > 1 ||
|
|
config_desc->bNumInterfaces > 1 ||
|
|
if_desc->bNumEndpoints > 4) {
|
|
err("Only one config, one i/f, and no more "
|
|
"than 4 ep's allowed");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (!cb) {
|
|
err("Function-layer callback required");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (dev_desc->bMaxPacketSize0 != USBDEV_EP0_MAX_PACKET_SIZE) {
|
|
warn("EP0 Max Packet size must be %d",
|
|
USBDEV_EP0_MAX_PACKET_SIZE);
|
|
dev_desc->bMaxPacketSize0 = USBDEV_EP0_MAX_PACKET_SIZE;
|
|
}
|
|
|
|
memset(&usbdev, 0, sizeof(struct usb_dev));
|
|
|
|
usbdev.state = DEFAULT;
|
|
usbdev.dev_desc = dev_desc;
|
|
usbdev.if_desc = if_desc;
|
|
usbdev.conf_desc = config_desc;
|
|
for (i=0; i<6; i++)
|
|
usbdev.str_desc[i] = str_desc[i];
|
|
usbdev.func_cb = cb;
|
|
usbdev.cb_data = cb_data;
|
|
|
|
/* Initialize default control endpoint */
|
|
ep0 = &usbdev.ep[0];
|
|
ep0->active = 1;
|
|
ep0->type = CONTROL_EP;
|
|
ep0->max_pkt_size = USBDEV_EP0_MAX_PACKET_SIZE;
|
|
spin_lock_init(&ep0->lock);
|
|
ep0->desc = NULL; // ep0 has no descriptor
|
|
ep0->address = 0;
|
|
ep0->direction = 0;
|
|
ep0->reg = &ep_reg[0];
|
|
|
|
/* Initialize the other requested endpoints */
|
|
for (i = 0; i < if_desc->bNumEndpoints; i++) {
|
|
struct usb_endpoint_descriptor* epd = &ep_desc[i];
|
|
endpoint_t *ep;
|
|
|
|
if ((epd->bEndpointAddress & 0x80) == USB_DIR_IN) {
|
|
ep = &usbdev.ep[2];
|
|
ep->address = 2;
|
|
if (ep->active) {
|
|
ep = &usbdev.ep[3];
|
|
ep->address = 3;
|
|
if (ep->active) {
|
|
err("too many IN ep's requested");
|
|
ret = -ENODEV;
|
|
goto out;
|
|
}
|
|
}
|
|
} else {
|
|
ep = &usbdev.ep[4];
|
|
ep->address = 4;
|
|
if (ep->active) {
|
|
ep = &usbdev.ep[5];
|
|
ep->address = 5;
|
|
if (ep->active) {
|
|
err("too many OUT ep's requested");
|
|
ret = -ENODEV;
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
|
|
ep->active = 1;
|
|
epd->bEndpointAddress &= ~0x0f;
|
|
epd->bEndpointAddress |= (u8)ep->address;
|
|
ep->direction = epd->bEndpointAddress & 0x80;
|
|
ep->type = epd->bmAttributes & 0x03;
|
|
ep->max_pkt_size = le16_to_cpu(epd->wMaxPacketSize);
|
|
spin_lock_init(&ep->lock);
|
|
ep->desc = epd;
|
|
ep->reg = &ep_reg[ep->address];
|
|
}
|
|
|
|
/*
|
|
* initialize the full config descriptor
|
|
*/
|
|
usbdev.full_conf_desc = fcd = kmalloc(le16_to_cpu(config_desc->wTotalLength),
|
|
ALLOC_FLAGS);
|
|
if (!fcd) {
|
|
err("failed to alloc full config descriptor");
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
memcpy(fcd, config_desc, USB_DT_CONFIG_SIZE);
|
|
fcd += USB_DT_CONFIG_SIZE;
|
|
memcpy(fcd, if_desc, USB_DT_INTERFACE_SIZE);
|
|
fcd += USB_DT_INTERFACE_SIZE;
|
|
for (i = 0; i < if_desc->bNumEndpoints; i++) {
|
|
memcpy(fcd, &ep_desc[i], USB_DT_ENDPOINT_SIZE);
|
|
fcd += USB_DT_ENDPOINT_SIZE;
|
|
}
|
|
|
|
/* Now we're ready to enable the controller */
|
|
au_writel(0x0002, USBD_ENABLE);
|
|
udelay(100);
|
|
au_writel(0x0003, USBD_ENABLE);
|
|
udelay(100);
|
|
|
|
/* build and send config table based on ep descriptors */
|
|
for (i = 0; i < 6; i++) {
|
|
endpoint_t *ep;
|
|
if (i == 1)
|
|
continue; // skip dummy ep
|
|
ep = &usbdev.ep[i];
|
|
if (ep->active) {
|
|
au_writel((ep->address << 4) | 0x04, USBD_CONFIG);
|
|
au_writel(((ep->max_pkt_size & 0x380) >> 7) |
|
|
(ep->direction >> 4) | (ep->type << 4),
|
|
USBD_CONFIG);
|
|
au_writel((ep->max_pkt_size & 0x7f) << 1, USBD_CONFIG);
|
|
au_writel(0x00, USBD_CONFIG);
|
|
au_writel(ep->address, USBD_CONFIG);
|
|
} else {
|
|
u8 dir = (i==2 || i==3) ? DIR_IN : DIR_OUT;
|
|
au_writel((i << 4) | 0x04, USBD_CONFIG);
|
|
au_writel(((16 & 0x380) >> 7) | dir |
|
|
(BULK_EP << 4), USBD_CONFIG);
|
|
au_writel((16 & 0x7f) << 1, USBD_CONFIG);
|
|
au_writel(0x00, USBD_CONFIG);
|
|
au_writel(i, USBD_CONFIG);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Enable Receive FIFO Complete interrupts only. Transmit
|
|
* complete is being handled by the DMA done interrupts.
|
|
*/
|
|
au_writel(0x31, USBD_INTEN);
|
|
|
|
/*
|
|
* Controller is now enabled, request DMA and IRQ
|
|
* resources.
|
|
*/
|
|
|
|
/* request the USB device transfer complete interrupt */
|
|
if (request_irq(AU1000_USB_DEV_REQ_INT, req_sus_intr, IRQF_DISABLED,
|
|
"USBdev req", &usbdev)) {
|
|
err("Can't get device request intr");
|
|
ret = -ENXIO;
|
|
goto out;
|
|
}
|
|
/* request the USB device suspend interrupt */
|
|
if (request_irq(AU1000_USB_DEV_SUS_INT, req_sus_intr, IRQF_DISABLED,
|
|
"USBdev sus", &usbdev)) {
|
|
err("Can't get device suspend intr");
|
|
ret = -ENXIO;
|
|
goto out;
|
|
}
|
|
|
|
/* Request EP0 DMA and IRQ */
|
|
if ((ep0->indma = request_au1000_dma(ep_dma_id[0].id,
|
|
ep_dma_id[0].str,
|
|
dma_done_ep0_intr,
|
|
IRQF_DISABLED,
|
|
&usbdev)) < 0) {
|
|
err("Can't get %s DMA", ep_dma_id[0].str);
|
|
ret = -ENXIO;
|
|
goto out;
|
|
}
|
|
if ((ep0->outdma = request_au1000_dma(ep_dma_id[1].id,
|
|
ep_dma_id[1].str,
|
|
NULL, 0, NULL)) < 0) {
|
|
err("Can't get %s DMA", ep_dma_id[1].str);
|
|
ret = -ENXIO;
|
|
goto out;
|
|
}
|
|
|
|
// Flush the ep0 buffers and FIFOs
|
|
endpoint_flush(ep0);
|
|
// start packet reception on ep0
|
|
kickstart_receive_packet(ep0);
|
|
|
|
/* Request DMA and IRQ for the other endpoints */
|
|
for (i = 2; i < 6; i++) {
|
|
endpoint_t *ep = &usbdev.ep[i];
|
|
if (!ep->active)
|
|
continue;
|
|
|
|
// Flush the endpoint buffers and FIFOs
|
|
endpoint_flush(ep);
|
|
|
|
if (ep->direction == USB_DIR_IN) {
|
|
ep->indma =
|
|
request_au1000_dma(ep_dma_id[ep->address].id,
|
|
ep_dma_id[ep->address].str,
|
|
dma_done_ep_intr,
|
|
IRQF_DISABLED,
|
|
&usbdev);
|
|
if (ep->indma < 0) {
|
|
err("Can't get %s DMA",
|
|
ep_dma_id[ep->address].str);
|
|
ret = -ENXIO;
|
|
goto out;
|
|
}
|
|
} else {
|
|
ep->outdma =
|
|
request_au1000_dma(ep_dma_id[ep->address].id,
|
|
ep_dma_id[ep->address].str,
|
|
NULL, 0, NULL);
|
|
if (ep->outdma < 0) {
|
|
err("Can't get %s DMA",
|
|
ep_dma_id[ep->address].str);
|
|
ret = -ENXIO;
|
|
goto out;
|
|
}
|
|
|
|
// start packet reception on OUT endpoint
|
|
kickstart_receive_packet(ep);
|
|
}
|
|
}
|
|
|
|
out:
|
|
if (ret)
|
|
usbdev_exit();
|
|
return ret;
|
|
}
|
|
|
|
EXPORT_SYMBOL(usbdev_init);
|
|
EXPORT_SYMBOL(usbdev_exit);
|
|
EXPORT_SYMBOL(usbdev_alloc_packet);
|
|
EXPORT_SYMBOL(usbdev_receive_packet);
|
|
EXPORT_SYMBOL(usbdev_send_packet);
|
|
EXPORT_SYMBOL(usbdev_get_byte_count);
|