linux-hardened/arch/powerpc/sysdev/fsl_rio.c
Randy Dunlap 9941d945f4 [RAPIDIO] fix current kernel-doc notation
Fix current (-git16) missing docbook/kernel-doc notation in RapidIO files.

Warning(linux-2.6.25-git16//include/linux/rio.h:187): No description found for parameter 'sys_size'
Warning(linux-2.6.25-git16//include/linux/rio.h:187): No description found for parameter 'phy_type'

Warning(linux-2.6.25-git16//arch/powerpc/sysdev/fsl_rio.c:188): No description found for parameter 'mport'
Warning(linux-2.6.25-git16//arch/powerpc/sysdev/fsl_rio.c:224): No description found for parameter 'mport'
Warning(linux-2.6.25-git16//arch/powerpc/sysdev/fsl_rio.c:245): No description found for parameter 'mport'
Warning(linux-2.6.25-git16//arch/powerpc/sysdev/fsl_rio.c:270): No description found for parameter 'mport'
Warning(linux-2.6.25-git16//arch/powerpc/sysdev/fsl_rio.c:311): No description found for parameter 'mport'
Warning(linux-2.6.25-git16//arch/powerpc/sysdev/fsl_rio.c:996): No description found for parameter 'dev'

Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
2008-05-01 23:01:54 -05:00

1210 lines
32 KiB
C

/*
* Freescale MPC85xx/MPC86xx RapidIO support
*
* Copyright (C) 2007, 2008 Freescale Semiconductor, Inc.
* Zhang Wei <wei.zhang@freescale.com>
*
* Copyright 2005 MontaVista Software, Inc.
* Matt Porter <mporter@kernel.crashing.org>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/rio.h>
#include <linux/rio_drv.h>
#include <linux/of_platform.h>
#include <linux/delay.h>
#include <asm/io.h>
/* RapidIO definition irq, which read from OF-tree */
#define IRQ_RIO_BELL(m) (((struct rio_priv *)(m->priv))->bellirq)
#define IRQ_RIO_TX(m) (((struct rio_priv *)(m->priv))->txirq)
#define IRQ_RIO_RX(m) (((struct rio_priv *)(m->priv))->rxirq)
#define RIO_ATMU_REGS_OFFSET 0x10c00
#define RIO_P_MSG_REGS_OFFSET 0x11000
#define RIO_S_MSG_REGS_OFFSET 0x13000
#define RIO_ESCSR 0x158
#define RIO_CCSR 0x15c
#define RIO_ISR_AACR 0x10120
#define RIO_ISR_AACR_AA 0x1 /* Accept All ID */
#define RIO_MAINT_WIN_SIZE 0x400000
#define RIO_DBELL_WIN_SIZE 0x1000
#define RIO_MSG_OMR_MUI 0x00000002
#define RIO_MSG_OSR_TE 0x00000080
#define RIO_MSG_OSR_QOI 0x00000020
#define RIO_MSG_OSR_QFI 0x00000010
#define RIO_MSG_OSR_MUB 0x00000004
#define RIO_MSG_OSR_EOMI 0x00000002
#define RIO_MSG_OSR_QEI 0x00000001
#define RIO_MSG_IMR_MI 0x00000002
#define RIO_MSG_ISR_TE 0x00000080
#define RIO_MSG_ISR_QFI 0x00000010
#define RIO_MSG_ISR_DIQI 0x00000001
#define RIO_MSG_DESC_SIZE 32
#define RIO_MSG_BUFFER_SIZE 4096
#define RIO_MIN_TX_RING_SIZE 2
#define RIO_MAX_TX_RING_SIZE 2048
#define RIO_MIN_RX_RING_SIZE 2
#define RIO_MAX_RX_RING_SIZE 2048
#define DOORBELL_DMR_DI 0x00000002
#define DOORBELL_DSR_TE 0x00000080
#define DOORBELL_DSR_QFI 0x00000010
#define DOORBELL_DSR_DIQI 0x00000001
#define DOORBELL_TID_OFFSET 0x02
#define DOORBELL_SID_OFFSET 0x04
#define DOORBELL_INFO_OFFSET 0x06
#define DOORBELL_MESSAGE_SIZE 0x08
#define DBELL_SID(x) (*(u16 *)(x + DOORBELL_SID_OFFSET))
#define DBELL_TID(x) (*(u16 *)(x + DOORBELL_TID_OFFSET))
#define DBELL_INF(x) (*(u16 *)(x + DOORBELL_INFO_OFFSET))
struct rio_atmu_regs {
u32 rowtar;
u32 rowtear;
u32 rowbar;
u32 pad2;
u32 rowar;
u32 pad3[3];
};
struct rio_msg_regs {
u32 omr;
u32 osr;
u32 pad1;
u32 odqdpar;
u32 pad2;
u32 osar;
u32 odpr;
u32 odatr;
u32 odcr;
u32 pad3;
u32 odqepar;
u32 pad4[13];
u32 imr;
u32 isr;
u32 pad5;
u32 ifqdpar;
u32 pad6;
u32 ifqepar;
u32 pad7[226];
u32 odmr;
u32 odsr;
u32 res0[4];
u32 oddpr;
u32 oddatr;
u32 res1[3];
u32 odretcr;
u32 res2[12];
u32 dmr;
u32 dsr;
u32 pad8;
u32 dqdpar;
u32 pad9;
u32 dqepar;
u32 pad10[26];
u32 pwmr;
u32 pwsr;
u32 pad11;
u32 pwqbar;
};
struct rio_tx_desc {
u32 res1;
u32 saddr;
u32 dport;
u32 dattr;
u32 res2;
u32 res3;
u32 dwcnt;
u32 res4;
};
struct rio_dbell_ring {
void *virt;
dma_addr_t phys;
};
struct rio_msg_tx_ring {
void *virt;
dma_addr_t phys;
void *virt_buffer[RIO_MAX_TX_RING_SIZE];
dma_addr_t phys_buffer[RIO_MAX_TX_RING_SIZE];
int tx_slot;
int size;
void *dev_id;
};
struct rio_msg_rx_ring {
void *virt;
dma_addr_t phys;
void *virt_buffer[RIO_MAX_RX_RING_SIZE];
int rx_slot;
int size;
void *dev_id;
};
struct rio_priv {
void __iomem *regs_win;
struct rio_atmu_regs __iomem *atmu_regs;
struct rio_atmu_regs __iomem *maint_atmu_regs;
struct rio_atmu_regs __iomem *dbell_atmu_regs;
void __iomem *dbell_win;
void __iomem *maint_win;
struct rio_msg_regs __iomem *msg_regs;
struct rio_dbell_ring dbell_ring;
struct rio_msg_tx_ring msg_tx_ring;
struct rio_msg_rx_ring msg_rx_ring;
int bellirq;
int txirq;
int rxirq;
};
/**
* fsl_rio_doorbell_send - Send a MPC85xx doorbell message
* @mport: RapidIO master port info
* @index: ID of RapidIO interface
* @destid: Destination ID of target device
* @data: 16-bit info field of RapidIO doorbell message
*
* Sends a MPC85xx doorbell message. Returns %0 on success or
* %-EINVAL on failure.
*/
static int fsl_rio_doorbell_send(struct rio_mport *mport,
int index, u16 destid, u16 data)
{
struct rio_priv *priv = mport->priv;
pr_debug("fsl_doorbell_send: index %d destid %4.4x data %4.4x\n",
index, destid, data);
switch (mport->phy_type) {
case RIO_PHY_PARALLEL:
out_be32(&priv->dbell_atmu_regs->rowtar, destid << 22);
out_be16(priv->dbell_win, data);
break;
case RIO_PHY_SERIAL:
/* In the serial version silicons, such as MPC8548, MPC8641,
* below operations is must be.
*/
out_be32(&priv->msg_regs->odmr, 0x00000000);
out_be32(&priv->msg_regs->odretcr, 0x00000004);
out_be32(&priv->msg_regs->oddpr, destid << 16);
out_be32(&priv->msg_regs->oddatr, data);
out_be32(&priv->msg_regs->odmr, 0x00000001);
break;
}
return 0;
}
/**
* fsl_local_config_read - Generate a MPC85xx local config space read
* @mport: RapidIO master port info
* @index: ID of RapdiIO interface
* @offset: Offset into configuration space
* @len: Length (in bytes) of the maintenance transaction
* @data: Value to be read into
*
* Generates a MPC85xx local configuration space read. Returns %0 on
* success or %-EINVAL on failure.
*/
static int fsl_local_config_read(struct rio_mport *mport,
int index, u32 offset, int len, u32 *data)
{
struct rio_priv *priv = mport->priv;
pr_debug("fsl_local_config_read: index %d offset %8.8x\n", index,
offset);
*data = in_be32(priv->regs_win + offset);
return 0;
}
/**
* fsl_local_config_write - Generate a MPC85xx local config space write
* @mport: RapidIO master port info
* @index: ID of RapdiIO interface
* @offset: Offset into configuration space
* @len: Length (in bytes) of the maintenance transaction
* @data: Value to be written
*
* Generates a MPC85xx local configuration space write. Returns %0 on
* success or %-EINVAL on failure.
*/
static int fsl_local_config_write(struct rio_mport *mport,
int index, u32 offset, int len, u32 data)
{
struct rio_priv *priv = mport->priv;
pr_debug
("fsl_local_config_write: index %d offset %8.8x data %8.8x\n",
index, offset, data);
out_be32(priv->regs_win + offset, data);
return 0;
}
/**
* fsl_rio_config_read - Generate a MPC85xx read maintenance transaction
* @mport: RapidIO master port info
* @index: ID of RapdiIO interface
* @destid: Destination ID of transaction
* @hopcount: Number of hops to target device
* @offset: Offset into configuration space
* @len: Length (in bytes) of the maintenance transaction
* @val: Location to be read into
*
* Generates a MPC85xx read maintenance transaction. Returns %0 on
* success or %-EINVAL on failure.
*/
static int
fsl_rio_config_read(struct rio_mport *mport, int index, u16 destid,
u8 hopcount, u32 offset, int len, u32 *val)
{
struct rio_priv *priv = mport->priv;
u8 *data;
pr_debug
("fsl_rio_config_read: index %d destid %d hopcount %d offset %8.8x len %d\n",
index, destid, hopcount, offset, len);
out_be32(&priv->maint_atmu_regs->rowtar,
(destid << 22) | (hopcount << 12) | ((offset & ~0x3) >> 9));
data = (u8 *) priv->maint_win + offset;
switch (len) {
case 1:
*val = in_8((u8 *) data);
break;
case 2:
*val = in_be16((u16 *) data);
break;
default:
*val = in_be32((u32 *) data);
break;
}
return 0;
}
/**
* fsl_rio_config_write - Generate a MPC85xx write maintenance transaction
* @mport: RapidIO master port info
* @index: ID of RapdiIO interface
* @destid: Destination ID of transaction
* @hopcount: Number of hops to target device
* @offset: Offset into configuration space
* @len: Length (in bytes) of the maintenance transaction
* @val: Value to be written
*
* Generates an MPC85xx write maintenance transaction. Returns %0 on
* success or %-EINVAL on failure.
*/
static int
fsl_rio_config_write(struct rio_mport *mport, int index, u16 destid,
u8 hopcount, u32 offset, int len, u32 val)
{
struct rio_priv *priv = mport->priv;
u8 *data;
pr_debug
("fsl_rio_config_write: index %d destid %d hopcount %d offset %8.8x len %d val %8.8x\n",
index, destid, hopcount, offset, len, val);
out_be32(&priv->maint_atmu_regs->rowtar,
(destid << 22) | (hopcount << 12) | ((offset & ~0x3) >> 9));
data = (u8 *) priv->maint_win + offset;
switch (len) {
case 1:
out_8((u8 *) data, val);
break;
case 2:
out_be16((u16 *) data, val);
break;
default:
out_be32((u32 *) data, val);
break;
}
return 0;
}
/**
* rio_hw_add_outb_message - Add message to the MPC85xx outbound message queue
* @mport: Master port with outbound message queue
* @rdev: Target of outbound message
* @mbox: Outbound mailbox
* @buffer: Message to add to outbound queue
* @len: Length of message
*
* Adds the @buffer message to the MPC85xx outbound message queue. Returns
* %0 on success or %-EINVAL on failure.
*/
int
rio_hw_add_outb_message(struct rio_mport *mport, struct rio_dev *rdev, int mbox,
void *buffer, size_t len)
{
struct rio_priv *priv = mport->priv;
u32 omr;
struct rio_tx_desc *desc = (struct rio_tx_desc *)priv->msg_tx_ring.virt
+ priv->msg_tx_ring.tx_slot;
int ret = 0;
pr_debug
("RIO: rio_hw_add_outb_message(): destid %4.4x mbox %d buffer %8.8x len %8.8x\n",
rdev->destid, mbox, (int)buffer, len);
if ((len < 8) || (len > RIO_MAX_MSG_SIZE)) {
ret = -EINVAL;
goto out;
}
/* Copy and clear rest of buffer */
memcpy(priv->msg_tx_ring.virt_buffer[priv->msg_tx_ring.tx_slot], buffer,
len);
if (len < (RIO_MAX_MSG_SIZE - 4))
memset(priv->msg_tx_ring.virt_buffer[priv->msg_tx_ring.tx_slot]
+ len, 0, RIO_MAX_MSG_SIZE - len);
switch (mport->phy_type) {
case RIO_PHY_PARALLEL:
/* Set mbox field for message */
desc->dport = mbox & 0x3;
/* Enable EOMI interrupt, set priority, and set destid */
desc->dattr = 0x28000000 | (rdev->destid << 2);
break;
case RIO_PHY_SERIAL:
/* Set mbox field for message, and set destid */
desc->dport = (rdev->destid << 16) | (mbox & 0x3);
/* Enable EOMI interrupt and priority */
desc->dattr = 0x28000000;
break;
}
/* Set transfer size aligned to next power of 2 (in double words) */
desc->dwcnt = is_power_of_2(len) ? len : 1 << get_bitmask_order(len);
/* Set snooping and source buffer address */
desc->saddr = 0x00000004
| priv->msg_tx_ring.phys_buffer[priv->msg_tx_ring.tx_slot];
/* Increment enqueue pointer */
omr = in_be32(&priv->msg_regs->omr);
out_be32(&priv->msg_regs->omr, omr | RIO_MSG_OMR_MUI);
/* Go to next descriptor */
if (++priv->msg_tx_ring.tx_slot == priv->msg_tx_ring.size)
priv->msg_tx_ring.tx_slot = 0;
out:
return ret;
}
EXPORT_SYMBOL_GPL(rio_hw_add_outb_message);
/**
* fsl_rio_tx_handler - MPC85xx outbound message interrupt handler
* @irq: Linux interrupt number
* @dev_instance: Pointer to interrupt-specific data
*
* Handles outbound message interrupts. Executes a register outbound
* mailbox event handler and acks the interrupt occurrence.
*/
static irqreturn_t
fsl_rio_tx_handler(int irq, void *dev_instance)
{
int osr;
struct rio_mport *port = (struct rio_mport *)dev_instance;
struct rio_priv *priv = port->priv;
osr = in_be32(&priv->msg_regs->osr);
if (osr & RIO_MSG_OSR_TE) {
pr_info("RIO: outbound message transmission error\n");
out_be32(&priv->msg_regs->osr, RIO_MSG_OSR_TE);
goto out;
}
if (osr & RIO_MSG_OSR_QOI) {
pr_info("RIO: outbound message queue overflow\n");
out_be32(&priv->msg_regs->osr, RIO_MSG_OSR_QOI);
goto out;
}
if (osr & RIO_MSG_OSR_EOMI) {
u32 dqp = in_be32(&priv->msg_regs->odqdpar);
int slot = (dqp - priv->msg_tx_ring.phys) >> 5;
port->outb_msg[0].mcback(port, priv->msg_tx_ring.dev_id, -1,
slot);
/* Ack the end-of-message interrupt */
out_be32(&priv->msg_regs->osr, RIO_MSG_OSR_EOMI);
}
out:
return IRQ_HANDLED;
}
/**
* rio_open_outb_mbox - Initialize MPC85xx outbound mailbox
* @mport: Master port implementing the outbound message unit
* @dev_id: Device specific pointer to pass on event
* @mbox: Mailbox to open
* @entries: Number of entries in the outbound mailbox ring
*
* Initializes buffer ring, request the outbound message interrupt,
* and enables the outbound message unit. Returns %0 on success and
* %-EINVAL or %-ENOMEM on failure.
*/
int rio_open_outb_mbox(struct rio_mport *mport, void *dev_id, int mbox, int entries)
{
int i, j, rc = 0;
struct rio_priv *priv = mport->priv;
if ((entries < RIO_MIN_TX_RING_SIZE) ||
(entries > RIO_MAX_TX_RING_SIZE) || (!is_power_of_2(entries))) {
rc = -EINVAL;
goto out;
}
/* Initialize shadow copy ring */
priv->msg_tx_ring.dev_id = dev_id;
priv->msg_tx_ring.size = entries;
for (i = 0; i < priv->msg_tx_ring.size; i++) {
priv->msg_tx_ring.virt_buffer[i] =
dma_alloc_coherent(NULL, RIO_MSG_BUFFER_SIZE,
&priv->msg_tx_ring.phys_buffer[i], GFP_KERNEL);
if (!priv->msg_tx_ring.virt_buffer[i]) {
rc = -ENOMEM;
for (j = 0; j < priv->msg_tx_ring.size; j++)
if (priv->msg_tx_ring.virt_buffer[j])
dma_free_coherent(NULL,
RIO_MSG_BUFFER_SIZE,
priv->msg_tx_ring.
virt_buffer[j],
priv->msg_tx_ring.
phys_buffer[j]);
goto out;
}
}
/* Initialize outbound message descriptor ring */
priv->msg_tx_ring.virt = dma_alloc_coherent(NULL,
priv->msg_tx_ring.size * RIO_MSG_DESC_SIZE,
&priv->msg_tx_ring.phys, GFP_KERNEL);
if (!priv->msg_tx_ring.virt) {
rc = -ENOMEM;
goto out_dma;
}
memset(priv->msg_tx_ring.virt, 0,
priv->msg_tx_ring.size * RIO_MSG_DESC_SIZE);
priv->msg_tx_ring.tx_slot = 0;
/* Point dequeue/enqueue pointers at first entry in ring */
out_be32(&priv->msg_regs->odqdpar, priv->msg_tx_ring.phys);
out_be32(&priv->msg_regs->odqepar, priv->msg_tx_ring.phys);
/* Configure for snooping */
out_be32(&priv->msg_regs->osar, 0x00000004);
/* Clear interrupt status */
out_be32(&priv->msg_regs->osr, 0x000000b3);
/* Hook up outbound message handler */
rc = request_irq(IRQ_RIO_TX(mport), fsl_rio_tx_handler, 0,
"msg_tx", (void *)mport);
if (rc < 0)
goto out_irq;
/*
* Configure outbound message unit
* Snooping
* Interrupts (all enabled, except QEIE)
* Chaining mode
* Disable
*/
out_be32(&priv->msg_regs->omr, 0x00100220);
/* Set number of entries */
out_be32(&priv->msg_regs->omr,
in_be32(&priv->msg_regs->omr) |
((get_bitmask_order(entries) - 2) << 12));
/* Now enable the unit */
out_be32(&priv->msg_regs->omr, in_be32(&priv->msg_regs->omr) | 0x1);
out:
return rc;
out_irq:
dma_free_coherent(NULL, priv->msg_tx_ring.size * RIO_MSG_DESC_SIZE,
priv->msg_tx_ring.virt, priv->msg_tx_ring.phys);
out_dma:
for (i = 0; i < priv->msg_tx_ring.size; i++)
dma_free_coherent(NULL, RIO_MSG_BUFFER_SIZE,
priv->msg_tx_ring.virt_buffer[i],
priv->msg_tx_ring.phys_buffer[i]);
return rc;
}
/**
* rio_close_outb_mbox - Shut down MPC85xx outbound mailbox
* @mport: Master port implementing the outbound message unit
* @mbox: Mailbox to close
*
* Disables the outbound message unit, free all buffers, and
* frees the outbound message interrupt.
*/
void rio_close_outb_mbox(struct rio_mport *mport, int mbox)
{
struct rio_priv *priv = mport->priv;
/* Disable inbound message unit */
out_be32(&priv->msg_regs->omr, 0);
/* Free ring */
dma_free_coherent(NULL, priv->msg_tx_ring.size * RIO_MSG_DESC_SIZE,
priv->msg_tx_ring.virt, priv->msg_tx_ring.phys);
/* Free interrupt */
free_irq(IRQ_RIO_TX(mport), (void *)mport);
}
/**
* fsl_rio_rx_handler - MPC85xx inbound message interrupt handler
* @irq: Linux interrupt number
* @dev_instance: Pointer to interrupt-specific data
*
* Handles inbound message interrupts. Executes a registered inbound
* mailbox event handler and acks the interrupt occurrence.
*/
static irqreturn_t
fsl_rio_rx_handler(int irq, void *dev_instance)
{
int isr;
struct rio_mport *port = (struct rio_mport *)dev_instance;
struct rio_priv *priv = port->priv;
isr = in_be32(&priv->msg_regs->isr);
if (isr & RIO_MSG_ISR_TE) {
pr_info("RIO: inbound message reception error\n");
out_be32((void *)&priv->msg_regs->isr, RIO_MSG_ISR_TE);
goto out;
}
/* XXX Need to check/dispatch until queue empty */
if (isr & RIO_MSG_ISR_DIQI) {
/*
* We implement *only* mailbox 0, but can receive messages
* for any mailbox/letter to that mailbox destination. So,
* make the callback with an unknown/invalid mailbox number
* argument.
*/
port->inb_msg[0].mcback(port, priv->msg_rx_ring.dev_id, -1, -1);
/* Ack the queueing interrupt */
out_be32(&priv->msg_regs->isr, RIO_MSG_ISR_DIQI);
}
out:
return IRQ_HANDLED;
}
/**
* rio_open_inb_mbox - Initialize MPC85xx inbound mailbox
* @mport: Master port implementing the inbound message unit
* @dev_id: Device specific pointer to pass on event
* @mbox: Mailbox to open
* @entries: Number of entries in the inbound mailbox ring
*
* Initializes buffer ring, request the inbound message interrupt,
* and enables the inbound message unit. Returns %0 on success
* and %-EINVAL or %-ENOMEM on failure.
*/
int rio_open_inb_mbox(struct rio_mport *mport, void *dev_id, int mbox, int entries)
{
int i, rc = 0;
struct rio_priv *priv = mport->priv;
if ((entries < RIO_MIN_RX_RING_SIZE) ||
(entries > RIO_MAX_RX_RING_SIZE) || (!is_power_of_2(entries))) {
rc = -EINVAL;
goto out;
}
/* Initialize client buffer ring */
priv->msg_rx_ring.dev_id = dev_id;
priv->msg_rx_ring.size = entries;
priv->msg_rx_ring.rx_slot = 0;
for (i = 0; i < priv->msg_rx_ring.size; i++)
priv->msg_rx_ring.virt_buffer[i] = NULL;
/* Initialize inbound message ring */
priv->msg_rx_ring.virt = dma_alloc_coherent(NULL,
priv->msg_rx_ring.size * RIO_MAX_MSG_SIZE,
&priv->msg_rx_ring.phys, GFP_KERNEL);
if (!priv->msg_rx_ring.virt) {
rc = -ENOMEM;
goto out;
}
/* Point dequeue/enqueue pointers at first entry in ring */
out_be32(&priv->msg_regs->ifqdpar, (u32) priv->msg_rx_ring.phys);
out_be32(&priv->msg_regs->ifqepar, (u32) priv->msg_rx_ring.phys);
/* Clear interrupt status */
out_be32(&priv->msg_regs->isr, 0x00000091);
/* Hook up inbound message handler */
rc = request_irq(IRQ_RIO_RX(mport), fsl_rio_rx_handler, 0,
"msg_rx", (void *)mport);
if (rc < 0) {
dma_free_coherent(NULL, RIO_MSG_BUFFER_SIZE,
priv->msg_tx_ring.virt_buffer[i],
priv->msg_tx_ring.phys_buffer[i]);
goto out;
}
/*
* Configure inbound message unit:
* Snooping
* 4KB max message size
* Unmask all interrupt sources
* Disable
*/
out_be32(&priv->msg_regs->imr, 0x001b0060);
/* Set number of queue entries */
setbits32(&priv->msg_regs->imr, (get_bitmask_order(entries) - 2) << 12);
/* Now enable the unit */
setbits32(&priv->msg_regs->imr, 0x1);
out:
return rc;
}
/**
* rio_close_inb_mbox - Shut down MPC85xx inbound mailbox
* @mport: Master port implementing the inbound message unit
* @mbox: Mailbox to close
*
* Disables the inbound message unit, free all buffers, and
* frees the inbound message interrupt.
*/
void rio_close_inb_mbox(struct rio_mport *mport, int mbox)
{
struct rio_priv *priv = mport->priv;
/* Disable inbound message unit */
out_be32(&priv->msg_regs->imr, 0);
/* Free ring */
dma_free_coherent(NULL, priv->msg_rx_ring.size * RIO_MAX_MSG_SIZE,
priv->msg_rx_ring.virt, priv->msg_rx_ring.phys);
/* Free interrupt */
free_irq(IRQ_RIO_RX(mport), (void *)mport);
}
/**
* rio_hw_add_inb_buffer - Add buffer to the MPC85xx inbound message queue
* @mport: Master port implementing the inbound message unit
* @mbox: Inbound mailbox number
* @buf: Buffer to add to inbound queue
*
* Adds the @buf buffer to the MPC85xx inbound message queue. Returns
* %0 on success or %-EINVAL on failure.
*/
int rio_hw_add_inb_buffer(struct rio_mport *mport, int mbox, void *buf)
{
int rc = 0;
struct rio_priv *priv = mport->priv;
pr_debug("RIO: rio_hw_add_inb_buffer(), msg_rx_ring.rx_slot %d\n",
priv->msg_rx_ring.rx_slot);
if (priv->msg_rx_ring.virt_buffer[priv->msg_rx_ring.rx_slot]) {
printk(KERN_ERR
"RIO: error adding inbound buffer %d, buffer exists\n",
priv->msg_rx_ring.rx_slot);
rc = -EINVAL;
goto out;
}
priv->msg_rx_ring.virt_buffer[priv->msg_rx_ring.rx_slot] = buf;
if (++priv->msg_rx_ring.rx_slot == priv->msg_rx_ring.size)
priv->msg_rx_ring.rx_slot = 0;
out:
return rc;
}
EXPORT_SYMBOL_GPL(rio_hw_add_inb_buffer);
/**
* rio_hw_get_inb_message - Fetch inbound message from the MPC85xx message unit
* @mport: Master port implementing the inbound message unit
* @mbox: Inbound mailbox number
*
* Gets the next available inbound message from the inbound message queue.
* A pointer to the message is returned on success or NULL on failure.
*/
void *rio_hw_get_inb_message(struct rio_mport *mport, int mbox)
{
struct rio_priv *priv = mport->priv;
u32 phys_buf, virt_buf;
void *buf = NULL;
int buf_idx;
phys_buf = in_be32(&priv->msg_regs->ifqdpar);
/* If no more messages, then bail out */
if (phys_buf == in_be32(&priv->msg_regs->ifqepar))
goto out2;
virt_buf = (u32) priv->msg_rx_ring.virt + (phys_buf
- priv->msg_rx_ring.phys);
buf_idx = (phys_buf - priv->msg_rx_ring.phys) / RIO_MAX_MSG_SIZE;
buf = priv->msg_rx_ring.virt_buffer[buf_idx];
if (!buf) {
printk(KERN_ERR
"RIO: inbound message copy failed, no buffers\n");
goto out1;
}
/* Copy max message size, caller is expected to allocate that big */
memcpy(buf, (void *)virt_buf, RIO_MAX_MSG_SIZE);
/* Clear the available buffer */
priv->msg_rx_ring.virt_buffer[buf_idx] = NULL;
out1:
setbits32(&priv->msg_regs->imr, RIO_MSG_IMR_MI);
out2:
return buf;
}
EXPORT_SYMBOL_GPL(rio_hw_get_inb_message);
/**
* fsl_rio_dbell_handler - MPC85xx doorbell interrupt handler
* @irq: Linux interrupt number
* @dev_instance: Pointer to interrupt-specific data
*
* Handles doorbell interrupts. Parses a list of registered
* doorbell event handlers and executes a matching event handler.
*/
static irqreturn_t
fsl_rio_dbell_handler(int irq, void *dev_instance)
{
int dsr;
struct rio_mport *port = (struct rio_mport *)dev_instance;
struct rio_priv *priv = port->priv;
dsr = in_be32(&priv->msg_regs->dsr);
if (dsr & DOORBELL_DSR_TE) {
pr_info("RIO: doorbell reception error\n");
out_be32(&priv->msg_regs->dsr, DOORBELL_DSR_TE);
goto out;
}
if (dsr & DOORBELL_DSR_QFI) {
pr_info("RIO: doorbell queue full\n");
out_be32(&priv->msg_regs->dsr, DOORBELL_DSR_QFI);
goto out;
}
/* XXX Need to check/dispatch until queue empty */
if (dsr & DOORBELL_DSR_DIQI) {
u32 dmsg =
(u32) priv->dbell_ring.virt +
(in_be32(&priv->msg_regs->dqdpar) & 0xfff);
struct rio_dbell *dbell;
int found = 0;
pr_debug
("RIO: processing doorbell, sid %2.2x tid %2.2x info %4.4x\n",
DBELL_SID(dmsg), DBELL_TID(dmsg), DBELL_INF(dmsg));
list_for_each_entry(dbell, &port->dbells, node) {
if ((dbell->res->start <= DBELL_INF(dmsg)) &&
(dbell->res->end >= DBELL_INF(dmsg))) {
found = 1;
break;
}
}
if (found) {
dbell->dinb(port, dbell->dev_id, DBELL_SID(dmsg), DBELL_TID(dmsg),
DBELL_INF(dmsg));
} else {
pr_debug
("RIO: spurious doorbell, sid %2.2x tid %2.2x info %4.4x\n",
DBELL_SID(dmsg), DBELL_TID(dmsg), DBELL_INF(dmsg));
}
setbits32(&priv->msg_regs->dmr, DOORBELL_DMR_DI);
out_be32(&priv->msg_regs->dsr, DOORBELL_DSR_DIQI);
}
out:
return IRQ_HANDLED;
}
/**
* fsl_rio_doorbell_init - MPC85xx doorbell interface init
* @mport: Master port implementing the inbound doorbell unit
*
* Initializes doorbell unit hardware and inbound DMA buffer
* ring. Called from fsl_rio_setup(). Returns %0 on success
* or %-ENOMEM on failure.
*/
static int fsl_rio_doorbell_init(struct rio_mport *mport)
{
struct rio_priv *priv = mport->priv;
int rc = 0;
/* Map outbound doorbell window immediately after maintenance window */
priv->dbell_win = ioremap(mport->iores.start + RIO_MAINT_WIN_SIZE,
RIO_DBELL_WIN_SIZE);
if (!priv->dbell_win) {
printk(KERN_ERR
"RIO: unable to map outbound doorbell window\n");
rc = -ENOMEM;
goto out;
}
/* Initialize inbound doorbells */
priv->dbell_ring.virt = dma_alloc_coherent(NULL, 512 *
DOORBELL_MESSAGE_SIZE, &priv->dbell_ring.phys, GFP_KERNEL);
if (!priv->dbell_ring.virt) {
printk(KERN_ERR "RIO: unable allocate inbound doorbell ring\n");
rc = -ENOMEM;
iounmap(priv->dbell_win);
goto out;
}
/* Point dequeue/enqueue pointers at first entry in ring */
out_be32(&priv->msg_regs->dqdpar, (u32) priv->dbell_ring.phys);
out_be32(&priv->msg_regs->dqepar, (u32) priv->dbell_ring.phys);
/* Clear interrupt status */
out_be32(&priv->msg_regs->dsr, 0x00000091);
/* Hook up doorbell handler */
rc = request_irq(IRQ_RIO_BELL(mport), fsl_rio_dbell_handler, 0,
"dbell_rx", (void *)mport);
if (rc < 0) {
iounmap(priv->dbell_win);
dma_free_coherent(NULL, 512 * DOORBELL_MESSAGE_SIZE,
priv->dbell_ring.virt, priv->dbell_ring.phys);
printk(KERN_ERR
"MPC85xx RIO: unable to request inbound doorbell irq");
goto out;
}
/* Configure doorbells for snooping, 512 entries, and enable */
out_be32(&priv->msg_regs->dmr, 0x00108161);
out:
return rc;
}
static char *cmdline = NULL;
static int fsl_rio_get_hdid(int index)
{
/* XXX Need to parse multiple entries in some format */
if (!cmdline)
return -1;
return simple_strtol(cmdline, NULL, 0);
}
static int fsl_rio_get_cmdline(char *s)
{
if (!s)
return 0;
cmdline = s;
return 1;
}
__setup("riohdid=", fsl_rio_get_cmdline);
static inline void fsl_rio_info(struct device *dev, u32 ccsr)
{
const char *str;
if (ccsr & 1) {
/* Serial phy */
switch (ccsr >> 30) {
case 0:
str = "1";
break;
case 1:
str = "4";
break;
default:
str = "Unknown";
break;;
}
dev_info(dev, "Hardware port width: %s\n", str);
switch ((ccsr >> 27) & 7) {
case 0:
str = "Single-lane 0";
break;
case 1:
str = "Single-lane 2";
break;
case 2:
str = "Four-lane";
break;
default:
str = "Unknown";
break;
}
dev_info(dev, "Training connection status: %s\n", str);
} else {
/* Parallel phy */
if (!(ccsr & 0x80000000))
dev_info(dev, "Output port operating in 8-bit mode\n");
if (!(ccsr & 0x08000000))
dev_info(dev, "Input port operating in 8-bit mode\n");
}
}
/**
* fsl_rio_setup - Setup Freescale PowerPC RapidIO interface
* @dev: of_device pointer
*
* Initializes MPC85xx RapidIO hardware interface, configures
* master port with system-specific info, and registers the
* master port with the RapidIO subsystem.
*/
int fsl_rio_setup(struct of_device *dev)
{
struct rio_ops *ops;
struct rio_mport *port;
struct rio_priv *priv;
int rc = 0;
const u32 *dt_range, *cell;
struct resource regs;
int rlen;
u32 ccsr;
u64 law_start, law_size;
int paw, aw, sw;
if (!dev->node) {
dev_err(&dev->dev, "Device OF-Node is NULL");
return -EFAULT;
}
rc = of_address_to_resource(dev->node, 0, &regs);
if (rc) {
dev_err(&dev->dev, "Can't get %s property 'reg'\n",
dev->node->full_name);
return -EFAULT;
}
dev_info(&dev->dev, "Of-device full name %s\n", dev->node->full_name);
dev_info(&dev->dev, "Regs start 0x%08x size 0x%08x\n", regs.start,
regs.end - regs.start + 1);
dt_range = of_get_property(dev->node, "ranges", &rlen);
if (!dt_range) {
dev_err(&dev->dev, "Can't get %s property 'ranges'\n",
dev->node->full_name);
return -EFAULT;
}
/* Get node address wide */
cell = of_get_property(dev->node, "#address-cells", NULL);
if (cell)
aw = *cell;
else
aw = of_n_addr_cells(dev->node);
/* Get node size wide */
cell = of_get_property(dev->node, "#size-cells", NULL);
if (cell)
sw = *cell;
else
sw = of_n_size_cells(dev->node);
/* Get parent address wide wide */
paw = of_n_addr_cells(dev->node);
law_start = of_read_number(dt_range + aw, paw);
law_size = of_read_number(dt_range + aw + paw, sw);
dev_info(&dev->dev, "LAW start 0x%016llx, size 0x%016llx.\n",
law_start, law_size);
ops = kmalloc(sizeof(struct rio_ops), GFP_KERNEL);
ops->lcread = fsl_local_config_read;
ops->lcwrite = fsl_local_config_write;
ops->cread = fsl_rio_config_read;
ops->cwrite = fsl_rio_config_write;
ops->dsend = fsl_rio_doorbell_send;
port = kzalloc(sizeof(struct rio_mport), GFP_KERNEL);
port->id = 0;
port->index = 0;
priv = kzalloc(sizeof(struct rio_priv), GFP_KERNEL);
if (!priv) {
printk(KERN_ERR "Can't alloc memory for 'priv'\n");
rc = -ENOMEM;
goto err;
}
INIT_LIST_HEAD(&port->dbells);
port->iores.start = law_start;
port->iores.end = law_start + law_size;
port->iores.flags = IORESOURCE_MEM;
priv->bellirq = irq_of_parse_and_map(dev->node, 2);
priv->txirq = irq_of_parse_and_map(dev->node, 3);
priv->rxirq = irq_of_parse_and_map(dev->node, 4);
dev_info(&dev->dev, "bellirq: %d, txirq: %d, rxirq %d\n", priv->bellirq,
priv->txirq, priv->rxirq);
rio_init_dbell_res(&port->riores[RIO_DOORBELL_RESOURCE], 0, 0xffff);
rio_init_mbox_res(&port->riores[RIO_INB_MBOX_RESOURCE], 0, 0);
rio_init_mbox_res(&port->riores[RIO_OUTB_MBOX_RESOURCE], 0, 0);
strcpy(port->name, "RIO0 mport");
port->ops = ops;
port->host_deviceid = fsl_rio_get_hdid(port->id);
port->priv = priv;
rio_register_mport(port);
priv->regs_win = ioremap(regs.start, regs.end - regs.start + 1);
/* Probe the master port phy type */
ccsr = in_be32(priv->regs_win + RIO_CCSR);
port->phy_type = (ccsr & 1) ? RIO_PHY_SERIAL : RIO_PHY_PARALLEL;
dev_info(&dev->dev, "RapidIO PHY type: %s\n",
(port->phy_type == RIO_PHY_PARALLEL) ? "parallel" :
((port->phy_type == RIO_PHY_SERIAL) ? "serial" :
"unknown"));
/* Checking the port training status */
if (in_be32((priv->regs_win + RIO_ESCSR)) & 1) {
dev_err(&dev->dev, "Port is not ready. "
"Try to restart connection...\n");
switch (port->phy_type) {
case RIO_PHY_SERIAL:
/* Disable ports */
out_be32(priv->regs_win + RIO_CCSR, 0);
/* Set 1x lane */
setbits32(priv->regs_win + RIO_CCSR, 0x02000000);
/* Enable ports */
setbits32(priv->regs_win + RIO_CCSR, 0x00600000);
break;
case RIO_PHY_PARALLEL:
/* Disable ports */
out_be32(priv->regs_win + RIO_CCSR, 0x22000000);
/* Enable ports */
out_be32(priv->regs_win + RIO_CCSR, 0x44000000);
break;
}
msleep(100);
if (in_be32((priv->regs_win + RIO_ESCSR)) & 1) {
dev_err(&dev->dev, "Port restart failed.\n");
rc = -ENOLINK;
goto err;
}
dev_info(&dev->dev, "Port restart success!\n");
}
fsl_rio_info(&dev->dev, ccsr);
port->sys_size = (in_be32((priv->regs_win + RIO_PEF_CAR))
& RIO_PEF_CTLS) >> 4;
dev_info(&dev->dev, "RapidIO Common Transport System size: %d\n",
port->sys_size ? 65536 : 256);
priv->atmu_regs = (struct rio_atmu_regs *)(priv->regs_win
+ RIO_ATMU_REGS_OFFSET);
priv->maint_atmu_regs = priv->atmu_regs + 1;
priv->dbell_atmu_regs = priv->atmu_regs + 2;
priv->msg_regs = (struct rio_msg_regs *)(priv->regs_win +
((port->phy_type == RIO_PHY_SERIAL) ?
RIO_S_MSG_REGS_OFFSET : RIO_P_MSG_REGS_OFFSET));
/* Set to receive any dist ID for serial RapidIO controller. */
if (port->phy_type == RIO_PHY_SERIAL)
out_be32((priv->regs_win + RIO_ISR_AACR), RIO_ISR_AACR_AA);
/* Configure maintenance transaction window */
out_be32(&priv->maint_atmu_regs->rowbar, 0x000c0000);
out_be32(&priv->maint_atmu_regs->rowar, 0x80077015);
priv->maint_win = ioremap(law_start, RIO_MAINT_WIN_SIZE);
/* Configure outbound doorbell window */
out_be32(&priv->dbell_atmu_regs->rowbar, 0x000c0400);
out_be32(&priv->dbell_atmu_regs->rowar, 0x8004200b);
fsl_rio_doorbell_init(port);
return 0;
err:
if (priv)
iounmap(priv->regs_win);
kfree(ops);
kfree(priv);
kfree(port);
return rc;
}
/* The probe function for RapidIO peer-to-peer network.
*/
static int __devinit fsl_of_rio_rpn_probe(struct of_device *dev,
const struct of_device_id *match)
{
int rc;
printk(KERN_INFO "Setting up RapidIO peer-to-peer network %s\n",
dev->node->full_name);
rc = fsl_rio_setup(dev);
if (rc)
goto out;
/* Enumerate all registered ports */
rc = rio_init_mports();
out:
return rc;
};
static const struct of_device_id fsl_of_rio_rpn_ids[] = {
{
.compatible = "fsl,rapidio-delta",
},
{},
};
static struct of_platform_driver fsl_of_rio_rpn_driver = {
.name = "fsl-of-rio",
.match_table = fsl_of_rio_rpn_ids,
.probe = fsl_of_rio_rpn_probe,
};
static __init int fsl_of_rio_rpn_init(void)
{
return of_register_platform_driver(&fsl_of_rio_rpn_driver);
}
subsys_initcall(fsl_of_rio_rpn_init);