linux-hardened/drivers/pci/hotplug/ibmphp_ebda.c
Steven Rostedt ac3abf2c37 PCI hotplug: ibmphp: Add check to prevent reading beyond mapped area
While testing various randconfigs with ktest.pl, I hit the following panic:

BUG: unable to handle kernel paging request at f7e54b03
IP: [<c0d63409>] ibmphp_access_ebda+0x101/0x19bb

Adding printks, I found that the loop that reads the ebda blocks
can move out of the mapped section.

ibmphp_access_ebda: start=f7e44c00 size=5120 end=f7e46000
ibmphp_access_ebda: io_mem=f7e44d80 offset=384
ibmphp_access_ebda: io_mem=f7e54b03 offset=65283

The start of the iomap was at f7e44c00 and had a size of 5120,
making the end f7e46000. We start with an offset of 0x180 or
384, giving the first read at 0xf7e44d80. Reading that location
yields 65283, which is much bigger than the 5120 that was allocated
and makes the next read at f7e54b03 which is outside the mapped area.

Perhaps this is a bug in the driver, or buggy hardware, but this patch
is more about not crashing my box on start up and just giving a warning
if it detects this error.

This patch at least lets my box boot with just a warning.

Cc: Chandru Siddalingappa <chandru@linux.vnet.ibm.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
2010-11-11 09:34:31 -08:00

1211 lines
35 KiB
C

/*
* IBM Hot Plug Controller Driver
*
* Written By: Tong Yu, IBM Corporation
*
* Copyright (C) 2001,2003 Greg Kroah-Hartman (greg@kroah.com)
* Copyright (C) 2001-2003 IBM Corp.
*
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Send feedback to <gregkh@us.ibm.com>
*
*/
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/pci.h>
#include <linux/list.h>
#include <linux/init.h>
#include "ibmphp.h"
/*
* POST builds data blocks(in this data block definition, a char-1
* byte, short(or word)-2 byte, long(dword)-4 byte) in the Extended
* BIOS Data Area which describe the configuration of the hot-plug
* controllers and resources used by the PCI Hot-Plug devices.
*
* This file walks EBDA, maps data block from physical addr,
* reconstruct linked lists about all system resource(MEM, PFM, IO)
* already assigned by POST, as well as linked lists about hot plug
* controllers (ctlr#, slot#, bus&slot features...)
*/
/* Global lists */
LIST_HEAD (ibmphp_ebda_pci_rsrc_head);
LIST_HEAD (ibmphp_slot_head);
/* Local variables */
static struct ebda_hpc_list *hpc_list_ptr;
static struct ebda_rsrc_list *rsrc_list_ptr;
static struct rio_table_hdr *rio_table_ptr = NULL;
static LIST_HEAD (ebda_hpc_head);
static LIST_HEAD (bus_info_head);
static LIST_HEAD (rio_vg_head);
static LIST_HEAD (rio_lo_head);
static LIST_HEAD (opt_vg_head);
static LIST_HEAD (opt_lo_head);
static void __iomem *io_mem;
/* Local functions */
static int ebda_rsrc_controller (void);
static int ebda_rsrc_rsrc (void);
static int ebda_rio_table (void);
static struct ebda_hpc_list * __init alloc_ebda_hpc_list (void)
{
return kzalloc(sizeof(struct ebda_hpc_list), GFP_KERNEL);
}
static struct controller *alloc_ebda_hpc (u32 slot_count, u32 bus_count)
{
struct controller *controller;
struct ebda_hpc_slot *slots;
struct ebda_hpc_bus *buses;
controller = kzalloc(sizeof(struct controller), GFP_KERNEL);
if (!controller)
goto error;
slots = kcalloc(slot_count, sizeof(struct ebda_hpc_slot), GFP_KERNEL);
if (!slots)
goto error_contr;
controller->slots = slots;
buses = kcalloc(bus_count, sizeof(struct ebda_hpc_bus), GFP_KERNEL);
if (!buses)
goto error_slots;
controller->buses = buses;
return controller;
error_slots:
kfree(controller->slots);
error_contr:
kfree(controller);
error:
return NULL;
}
static void free_ebda_hpc (struct controller *controller)
{
kfree (controller->slots);
kfree (controller->buses);
kfree (controller);
}
static struct ebda_rsrc_list * __init alloc_ebda_rsrc_list (void)
{
return kzalloc(sizeof(struct ebda_rsrc_list), GFP_KERNEL);
}
static struct ebda_pci_rsrc *alloc_ebda_pci_rsrc (void)
{
return kzalloc(sizeof(struct ebda_pci_rsrc), GFP_KERNEL);
}
static void __init print_bus_info (void)
{
struct bus_info *ptr;
list_for_each_entry(ptr, &bus_info_head, bus_info_list) {
debug ("%s - slot_min = %x\n", __func__, ptr->slot_min);
debug ("%s - slot_max = %x\n", __func__, ptr->slot_max);
debug ("%s - slot_count = %x\n", __func__, ptr->slot_count);
debug ("%s - bus# = %x\n", __func__, ptr->busno);
debug ("%s - current_speed = %x\n", __func__, ptr->current_speed);
debug ("%s - controller_id = %x\n", __func__, ptr->controller_id);
debug ("%s - slots_at_33_conv = %x\n", __func__, ptr->slots_at_33_conv);
debug ("%s - slots_at_66_conv = %x\n", __func__, ptr->slots_at_66_conv);
debug ("%s - slots_at_66_pcix = %x\n", __func__, ptr->slots_at_66_pcix);
debug ("%s - slots_at_100_pcix = %x\n", __func__, ptr->slots_at_100_pcix);
debug ("%s - slots_at_133_pcix = %x\n", __func__, ptr->slots_at_133_pcix);
}
}
static void print_lo_info (void)
{
struct rio_detail *ptr;
debug ("print_lo_info ----\n");
list_for_each_entry(ptr, &rio_lo_head, rio_detail_list) {
debug ("%s - rio_node_id = %x\n", __func__, ptr->rio_node_id);
debug ("%s - rio_type = %x\n", __func__, ptr->rio_type);
debug ("%s - owner_id = %x\n", __func__, ptr->owner_id);
debug ("%s - first_slot_num = %x\n", __func__, ptr->first_slot_num);
debug ("%s - wpindex = %x\n", __func__, ptr->wpindex);
debug ("%s - chassis_num = %x\n", __func__, ptr->chassis_num);
}
}
static void print_vg_info (void)
{
struct rio_detail *ptr;
debug ("%s ---\n", __func__);
list_for_each_entry(ptr, &rio_vg_head, rio_detail_list) {
debug ("%s - rio_node_id = %x\n", __func__, ptr->rio_node_id);
debug ("%s - rio_type = %x\n", __func__, ptr->rio_type);
debug ("%s - owner_id = %x\n", __func__, ptr->owner_id);
debug ("%s - first_slot_num = %x\n", __func__, ptr->first_slot_num);
debug ("%s - wpindex = %x\n", __func__, ptr->wpindex);
debug ("%s - chassis_num = %x\n", __func__, ptr->chassis_num);
}
}
static void __init print_ebda_pci_rsrc (void)
{
struct ebda_pci_rsrc *ptr;
list_for_each_entry(ptr, &ibmphp_ebda_pci_rsrc_head, ebda_pci_rsrc_list) {
debug ("%s - rsrc type: %x bus#: %x dev_func: %x start addr: %x end addr: %x\n",
__func__, ptr->rsrc_type ,ptr->bus_num, ptr->dev_fun,ptr->start_addr, ptr->end_addr);
}
}
static void __init print_ibm_slot (void)
{
struct slot *ptr;
list_for_each_entry(ptr, &ibmphp_slot_head, ibm_slot_list) {
debug ("%s - slot_number: %x\n", __func__, ptr->number);
}
}
static void __init print_opt_vg (void)
{
struct opt_rio *ptr;
debug ("%s ---\n", __func__);
list_for_each_entry(ptr, &opt_vg_head, opt_rio_list) {
debug ("%s - rio_type %x\n", __func__, ptr->rio_type);
debug ("%s - chassis_num: %x\n", __func__, ptr->chassis_num);
debug ("%s - first_slot_num: %x\n", __func__, ptr->first_slot_num);
debug ("%s - middle_num: %x\n", __func__, ptr->middle_num);
}
}
static void __init print_ebda_hpc (void)
{
struct controller *hpc_ptr;
u16 index;
list_for_each_entry(hpc_ptr, &ebda_hpc_head, ebda_hpc_list) {
for (index = 0; index < hpc_ptr->slot_count; index++) {
debug ("%s - physical slot#: %x\n", __func__, hpc_ptr->slots[index].slot_num);
debug ("%s - pci bus# of the slot: %x\n", __func__, hpc_ptr->slots[index].slot_bus_num);
debug ("%s - index into ctlr addr: %x\n", __func__, hpc_ptr->slots[index].ctl_index);
debug ("%s - cap of the slot: %x\n", __func__, hpc_ptr->slots[index].slot_cap);
}
for (index = 0; index < hpc_ptr->bus_count; index++) {
debug ("%s - bus# of each bus controlled by this ctlr: %x\n", __func__, hpc_ptr->buses[index].bus_num);
}
debug ("%s - type of hpc: %x\n", __func__, hpc_ptr->ctlr_type);
switch (hpc_ptr->ctlr_type) {
case 1:
debug ("%s - bus: %x\n", __func__, hpc_ptr->u.pci_ctlr.bus);
debug ("%s - dev_fun: %x\n", __func__, hpc_ptr->u.pci_ctlr.dev_fun);
debug ("%s - irq: %x\n", __func__, hpc_ptr->irq);
break;
case 0:
debug ("%s - io_start: %x\n", __func__, hpc_ptr->u.isa_ctlr.io_start);
debug ("%s - io_end: %x\n", __func__, hpc_ptr->u.isa_ctlr.io_end);
debug ("%s - irq: %x\n", __func__, hpc_ptr->irq);
break;
case 2:
case 4:
debug ("%s - wpegbbar: %lx\n", __func__, hpc_ptr->u.wpeg_ctlr.wpegbbar);
debug ("%s - i2c_addr: %x\n", __func__, hpc_ptr->u.wpeg_ctlr.i2c_addr);
debug ("%s - irq: %x\n", __func__, hpc_ptr->irq);
break;
}
}
}
int __init ibmphp_access_ebda (void)
{
u8 format, num_ctlrs, rio_complete, hs_complete, ebda_sz;
u16 ebda_seg, num_entries, next_offset, offset, blk_id, sub_addr, re, rc_id, re_id, base;
int rc = 0;
rio_complete = 0;
hs_complete = 0;
io_mem = ioremap ((0x40 << 4) + 0x0e, 2);
if (!io_mem )
return -ENOMEM;
ebda_seg = readw (io_mem);
iounmap (io_mem);
debug ("returned ebda segment: %x\n", ebda_seg);
io_mem = ioremap(ebda_seg<<4, 1);
if (!io_mem)
return -ENOMEM;
ebda_sz = readb(io_mem);
iounmap(io_mem);
debug("ebda size: %d(KiB)\n", ebda_sz);
if (ebda_sz == 0)
return -ENOMEM;
io_mem = ioremap(ebda_seg<<4, (ebda_sz * 1024));
if (!io_mem )
return -ENOMEM;
next_offset = 0x180;
for (;;) {
offset = next_offset;
/* Make sure what we read is still in the mapped section */
if (WARN(offset > (ebda_sz * 1024 - 4),
"ibmphp_ebda: next read is beyond ebda_sz\n"))
break;
next_offset = readw (io_mem + offset); /* offset of next blk */
offset += 2;
if (next_offset == 0) /* 0 indicate it's last blk */
break;
blk_id = readw (io_mem + offset); /* this blk id */
offset += 2;
/* check if it is hot swap block or rio block */
if (blk_id != 0x4853 && blk_id != 0x4752)
continue;
/* found hs table */
if (blk_id == 0x4853) {
debug ("now enter hot swap block---\n");
debug ("hot blk id: %x\n", blk_id);
format = readb (io_mem + offset);
offset += 1;
if (format != 4)
goto error_nodev;
debug ("hot blk format: %x\n", format);
/* hot swap sub blk */
base = offset;
sub_addr = base;
re = readw (io_mem + sub_addr); /* next sub blk */
sub_addr += 2;
rc_id = readw (io_mem + sub_addr); /* sub blk id */
sub_addr += 2;
if (rc_id != 0x5243)
goto error_nodev;
/* rc sub blk signature */
num_ctlrs = readb (io_mem + sub_addr);
sub_addr += 1;
hpc_list_ptr = alloc_ebda_hpc_list ();
if (!hpc_list_ptr) {
rc = -ENOMEM;
goto out;
}
hpc_list_ptr->format = format;
hpc_list_ptr->num_ctlrs = num_ctlrs;
hpc_list_ptr->phys_addr = sub_addr; /* offset of RSRC_CONTROLLER blk */
debug ("info about hpc descriptor---\n");
debug ("hot blk format: %x\n", format);
debug ("num of controller: %x\n", num_ctlrs);
debug ("offset of hpc data structure enteries: %x\n ", sub_addr);
sub_addr = base + re; /* re sub blk */
/* FIXME: rc is never used/checked */
rc = readw (io_mem + sub_addr); /* next sub blk */
sub_addr += 2;
re_id = readw (io_mem + sub_addr); /* sub blk id */
sub_addr += 2;
if (re_id != 0x5245)
goto error_nodev;
/* signature of re */
num_entries = readw (io_mem + sub_addr);
sub_addr += 2; /* offset of RSRC_ENTRIES blk */
rsrc_list_ptr = alloc_ebda_rsrc_list ();
if (!rsrc_list_ptr ) {
rc = -ENOMEM;
goto out;
}
rsrc_list_ptr->format = format;
rsrc_list_ptr->num_entries = num_entries;
rsrc_list_ptr->phys_addr = sub_addr;
debug ("info about rsrc descriptor---\n");
debug ("format: %x\n", format);
debug ("num of rsrc: %x\n", num_entries);
debug ("offset of rsrc data structure enteries: %x\n ", sub_addr);
hs_complete = 1;
} else {
/* found rio table, blk_id == 0x4752 */
debug ("now enter io table ---\n");
debug ("rio blk id: %x\n", blk_id);
rio_table_ptr = kzalloc(sizeof(struct rio_table_hdr), GFP_KERNEL);
if (!rio_table_ptr)
return -ENOMEM;
rio_table_ptr->ver_num = readb (io_mem + offset);
rio_table_ptr->scal_count = readb (io_mem + offset + 1);
rio_table_ptr->riodev_count = readb (io_mem + offset + 2);
rio_table_ptr->offset = offset +3 ;
debug("info about rio table hdr ---\n");
debug("ver_num: %x\nscal_count: %x\nriodev_count: %x\noffset of rio table: %x\n ",
rio_table_ptr->ver_num, rio_table_ptr->scal_count,
rio_table_ptr->riodev_count, rio_table_ptr->offset);
rio_complete = 1;
}
}
if (!hs_complete && !rio_complete)
goto error_nodev;
if (rio_table_ptr) {
if (rio_complete && rio_table_ptr->ver_num == 3) {
rc = ebda_rio_table ();
if (rc)
goto out;
}
}
rc = ebda_rsrc_controller ();
if (rc)
goto out;
rc = ebda_rsrc_rsrc ();
goto out;
error_nodev:
rc = -ENODEV;
out:
iounmap (io_mem);
return rc;
}
/*
* map info of scalability details and rio details from physical address
*/
static int __init ebda_rio_table (void)
{
u16 offset;
u8 i;
struct rio_detail *rio_detail_ptr;
offset = rio_table_ptr->offset;
offset += 12 * rio_table_ptr->scal_count;
// we do concern about rio details
for (i = 0; i < rio_table_ptr->riodev_count; i++) {
rio_detail_ptr = kzalloc(sizeof(struct rio_detail), GFP_KERNEL);
if (!rio_detail_ptr)
return -ENOMEM;
rio_detail_ptr->rio_node_id = readb (io_mem + offset);
rio_detail_ptr->bbar = readl (io_mem + offset + 1);
rio_detail_ptr->rio_type = readb (io_mem + offset + 5);
rio_detail_ptr->owner_id = readb (io_mem + offset + 6);
rio_detail_ptr->port0_node_connect = readb (io_mem + offset + 7);
rio_detail_ptr->port0_port_connect = readb (io_mem + offset + 8);
rio_detail_ptr->port1_node_connect = readb (io_mem + offset + 9);
rio_detail_ptr->port1_port_connect = readb (io_mem + offset + 10);
rio_detail_ptr->first_slot_num = readb (io_mem + offset + 11);
rio_detail_ptr->status = readb (io_mem + offset + 12);
rio_detail_ptr->wpindex = readb (io_mem + offset + 13);
rio_detail_ptr->chassis_num = readb (io_mem + offset + 14);
// debug ("rio_node_id: %x\nbbar: %x\nrio_type: %x\nowner_id: %x\nport0_node: %x\nport0_port: %x\nport1_node: %x\nport1_port: %x\nfirst_slot_num: %x\nstatus: %x\n", rio_detail_ptr->rio_node_id, rio_detail_ptr->bbar, rio_detail_ptr->rio_type, rio_detail_ptr->owner_id, rio_detail_ptr->port0_node_connect, rio_detail_ptr->port0_port_connect, rio_detail_ptr->port1_node_connect, rio_detail_ptr->port1_port_connect, rio_detail_ptr->first_slot_num, rio_detail_ptr->status);
//create linked list of chassis
if (rio_detail_ptr->rio_type == 4 || rio_detail_ptr->rio_type == 5)
list_add (&rio_detail_ptr->rio_detail_list, &rio_vg_head);
//create linked list of expansion box
else if (rio_detail_ptr->rio_type == 6 || rio_detail_ptr->rio_type == 7)
list_add (&rio_detail_ptr->rio_detail_list, &rio_lo_head);
else
// not in my concern
kfree (rio_detail_ptr);
offset += 15;
}
print_lo_info ();
print_vg_info ();
return 0;
}
/*
* reorganizing linked list of chassis
*/
static struct opt_rio *search_opt_vg (u8 chassis_num)
{
struct opt_rio *ptr;
list_for_each_entry(ptr, &opt_vg_head, opt_rio_list) {
if (ptr->chassis_num == chassis_num)
return ptr;
}
return NULL;
}
static int __init combine_wpg_for_chassis (void)
{
struct opt_rio *opt_rio_ptr = NULL;
struct rio_detail *rio_detail_ptr = NULL;
list_for_each_entry(rio_detail_ptr, &rio_vg_head, rio_detail_list) {
opt_rio_ptr = search_opt_vg (rio_detail_ptr->chassis_num);
if (!opt_rio_ptr) {
opt_rio_ptr = kzalloc(sizeof(struct opt_rio), GFP_KERNEL);
if (!opt_rio_ptr)
return -ENOMEM;
opt_rio_ptr->rio_type = rio_detail_ptr->rio_type;
opt_rio_ptr->chassis_num = rio_detail_ptr->chassis_num;
opt_rio_ptr->first_slot_num = rio_detail_ptr->first_slot_num;
opt_rio_ptr->middle_num = rio_detail_ptr->first_slot_num;
list_add (&opt_rio_ptr->opt_rio_list, &opt_vg_head);
} else {
opt_rio_ptr->first_slot_num = min (opt_rio_ptr->first_slot_num, rio_detail_ptr->first_slot_num);
opt_rio_ptr->middle_num = max (opt_rio_ptr->middle_num, rio_detail_ptr->first_slot_num);
}
}
print_opt_vg ();
return 0;
}
/*
* reorganizing linked list of expansion box
*/
static struct opt_rio_lo *search_opt_lo (u8 chassis_num)
{
struct opt_rio_lo *ptr;
list_for_each_entry(ptr, &opt_lo_head, opt_rio_lo_list) {
if (ptr->chassis_num == chassis_num)
return ptr;
}
return NULL;
}
static int combine_wpg_for_expansion (void)
{
struct opt_rio_lo *opt_rio_lo_ptr = NULL;
struct rio_detail *rio_detail_ptr = NULL;
list_for_each_entry(rio_detail_ptr, &rio_lo_head, rio_detail_list) {
opt_rio_lo_ptr = search_opt_lo (rio_detail_ptr->chassis_num);
if (!opt_rio_lo_ptr) {
opt_rio_lo_ptr = kzalloc(sizeof(struct opt_rio_lo), GFP_KERNEL);
if (!opt_rio_lo_ptr)
return -ENOMEM;
opt_rio_lo_ptr->rio_type = rio_detail_ptr->rio_type;
opt_rio_lo_ptr->chassis_num = rio_detail_ptr->chassis_num;
opt_rio_lo_ptr->first_slot_num = rio_detail_ptr->first_slot_num;
opt_rio_lo_ptr->middle_num = rio_detail_ptr->first_slot_num;
opt_rio_lo_ptr->pack_count = 1;
list_add (&opt_rio_lo_ptr->opt_rio_lo_list, &opt_lo_head);
} else {
opt_rio_lo_ptr->first_slot_num = min (opt_rio_lo_ptr->first_slot_num, rio_detail_ptr->first_slot_num);
opt_rio_lo_ptr->middle_num = max (opt_rio_lo_ptr->middle_num, rio_detail_ptr->first_slot_num);
opt_rio_lo_ptr->pack_count = 2;
}
}
return 0;
}
/* Since we don't know the max slot number per each chassis, hence go
* through the list of all chassis to find out the range
* Arguments: slot_num, 1st slot number of the chassis we think we are on,
* var (0 = chassis, 1 = expansion box)
*/
static int first_slot_num (u8 slot_num, u8 first_slot, u8 var)
{
struct opt_rio *opt_vg_ptr = NULL;
struct opt_rio_lo *opt_lo_ptr = NULL;
int rc = 0;
if (!var) {
list_for_each_entry(opt_vg_ptr, &opt_vg_head, opt_rio_list) {
if ((first_slot < opt_vg_ptr->first_slot_num) && (slot_num >= opt_vg_ptr->first_slot_num)) {
rc = -ENODEV;
break;
}
}
} else {
list_for_each_entry(opt_lo_ptr, &opt_lo_head, opt_rio_lo_list) {
if ((first_slot < opt_lo_ptr->first_slot_num) && (slot_num >= opt_lo_ptr->first_slot_num)) {
rc = -ENODEV;
break;
}
}
}
return rc;
}
static struct opt_rio_lo * find_rxe_num (u8 slot_num)
{
struct opt_rio_lo *opt_lo_ptr;
list_for_each_entry(opt_lo_ptr, &opt_lo_head, opt_rio_lo_list) {
//check to see if this slot_num belongs to expansion box
if ((slot_num >= opt_lo_ptr->first_slot_num) && (!first_slot_num (slot_num, opt_lo_ptr->first_slot_num, 1)))
return opt_lo_ptr;
}
return NULL;
}
static struct opt_rio * find_chassis_num (u8 slot_num)
{
struct opt_rio *opt_vg_ptr;
list_for_each_entry(opt_vg_ptr, &opt_vg_head, opt_rio_list) {
//check to see if this slot_num belongs to chassis
if ((slot_num >= opt_vg_ptr->first_slot_num) && (!first_slot_num (slot_num, opt_vg_ptr->first_slot_num, 0)))
return opt_vg_ptr;
}
return NULL;
}
/* This routine will find out how many slots are in the chassis, so that
* the slot numbers for rxe100 would start from 1, and not from 7, or 6 etc
*/
static u8 calculate_first_slot (u8 slot_num)
{
u8 first_slot = 1;
struct slot * slot_cur;
list_for_each_entry(slot_cur, &ibmphp_slot_head, ibm_slot_list) {
if (slot_cur->ctrl) {
if ((slot_cur->ctrl->ctlr_type != 4) && (slot_cur->ctrl->ending_slot_num > first_slot) && (slot_num > slot_cur->ctrl->ending_slot_num))
first_slot = slot_cur->ctrl->ending_slot_num;
}
}
return first_slot + 1;
}
#define SLOT_NAME_SIZE 30
static char *create_file_name (struct slot * slot_cur)
{
struct opt_rio *opt_vg_ptr = NULL;
struct opt_rio_lo *opt_lo_ptr = NULL;
static char str[SLOT_NAME_SIZE];
int which = 0; /* rxe = 1, chassis = 0 */
u8 number = 1; /* either chassis or rxe # */
u8 first_slot = 1;
u8 slot_num;
u8 flag = 0;
if (!slot_cur) {
err ("Structure passed is empty\n");
return NULL;
}
slot_num = slot_cur->number;
memset (str, 0, sizeof(str));
if (rio_table_ptr) {
if (rio_table_ptr->ver_num == 3) {
opt_vg_ptr = find_chassis_num (slot_num);
opt_lo_ptr = find_rxe_num (slot_num);
}
}
if (opt_vg_ptr) {
if (opt_lo_ptr) {
if ((slot_num - opt_vg_ptr->first_slot_num) > (slot_num - opt_lo_ptr->first_slot_num)) {
number = opt_lo_ptr->chassis_num;
first_slot = opt_lo_ptr->first_slot_num;
which = 1; /* it is RXE */
} else {
first_slot = opt_vg_ptr->first_slot_num;
number = opt_vg_ptr->chassis_num;
which = 0;
}
} else {
first_slot = opt_vg_ptr->first_slot_num;
number = opt_vg_ptr->chassis_num;
which = 0;
}
++flag;
} else if (opt_lo_ptr) {
number = opt_lo_ptr->chassis_num;
first_slot = opt_lo_ptr->first_slot_num;
which = 1;
++flag;
} else if (rio_table_ptr) {
if (rio_table_ptr->ver_num == 3) {
/* if both NULL and we DO have correct RIO table in BIOS */
return NULL;
}
}
if (!flag) {
if (slot_cur->ctrl->ctlr_type == 4) {
first_slot = calculate_first_slot (slot_num);
which = 1;
} else {
which = 0;
}
}
sprintf(str, "%s%dslot%d",
which == 0 ? "chassis" : "rxe",
number, slot_num - first_slot + 1);
return str;
}
static int fillslotinfo(struct hotplug_slot *hotplug_slot)
{
struct slot *slot;
int rc = 0;
if (!hotplug_slot || !hotplug_slot->private)
return -EINVAL;
slot = hotplug_slot->private;
rc = ibmphp_hpc_readslot(slot, READ_ALLSTAT, NULL);
if (rc)
return rc;
// power - enabled:1 not:0
hotplug_slot->info->power_status = SLOT_POWER(slot->status);
// attention - off:0, on:1, blinking:2
hotplug_slot->info->attention_status = SLOT_ATTN(slot->status, slot->ext_status);
// latch - open:1 closed:0
hotplug_slot->info->latch_status = SLOT_LATCH(slot->status);
// pci board - present:1 not:0
if (SLOT_PRESENT (slot->status))
hotplug_slot->info->adapter_status = 1;
else
hotplug_slot->info->adapter_status = 0;
/*
if (slot->bus_on->supported_bus_mode
&& (slot->bus_on->supported_speed == BUS_SPEED_66))
hotplug_slot->info->max_bus_speed_status = BUS_SPEED_66PCIX;
else
hotplug_slot->info->max_bus_speed_status = slot->bus_on->supported_speed;
*/
return rc;
}
static void release_slot(struct hotplug_slot *hotplug_slot)
{
struct slot *slot;
if (!hotplug_slot || !hotplug_slot->private)
return;
slot = hotplug_slot->private;
kfree(slot->hotplug_slot->info);
kfree(slot->hotplug_slot);
slot->ctrl = NULL;
slot->bus_on = NULL;
/* we don't want to actually remove the resources, since free_resources will do just that */
ibmphp_unconfigure_card(&slot, -1);
kfree (slot);
}
static struct pci_driver ibmphp_driver;
/*
* map info (ctlr-id, slot count, slot#.. bus count, bus#, ctlr type...) of
* each hpc from physical address to a list of hot plug controllers based on
* hpc descriptors.
*/
static int __init ebda_rsrc_controller (void)
{
u16 addr, addr_slot, addr_bus;
u8 ctlr_id, temp, bus_index;
u16 ctlr, slot, bus;
u16 slot_num, bus_num, index;
struct hotplug_slot *hp_slot_ptr;
struct controller *hpc_ptr;
struct ebda_hpc_bus *bus_ptr;
struct ebda_hpc_slot *slot_ptr;
struct bus_info *bus_info_ptr1, *bus_info_ptr2;
int rc;
struct slot *tmp_slot;
char name[SLOT_NAME_SIZE];
addr = hpc_list_ptr->phys_addr;
for (ctlr = 0; ctlr < hpc_list_ptr->num_ctlrs; ctlr++) {
bus_index = 1;
ctlr_id = readb (io_mem + addr);
addr += 1;
slot_num = readb (io_mem + addr);
addr += 1;
addr_slot = addr; /* offset of slot structure */
addr += (slot_num * 4);
bus_num = readb (io_mem + addr);
addr += 1;
addr_bus = addr; /* offset of bus */
addr += (bus_num * 9); /* offset of ctlr_type */
temp = readb (io_mem + addr);
addr += 1;
/* init hpc structure */
hpc_ptr = alloc_ebda_hpc (slot_num, bus_num);
if (!hpc_ptr ) {
rc = -ENOMEM;
goto error_no_hpc;
}
hpc_ptr->ctlr_id = ctlr_id;
hpc_ptr->ctlr_relative_id = ctlr;
hpc_ptr->slot_count = slot_num;
hpc_ptr->bus_count = bus_num;
debug ("now enter ctlr data struture ---\n");
debug ("ctlr id: %x\n", ctlr_id);
debug ("ctlr_relative_id: %x\n", hpc_ptr->ctlr_relative_id);
debug ("count of slots controlled by this ctlr: %x\n", slot_num);
debug ("count of buses controlled by this ctlr: %x\n", bus_num);
/* init slot structure, fetch slot, bus, cap... */
slot_ptr = hpc_ptr->slots;
for (slot = 0; slot < slot_num; slot++) {
slot_ptr->slot_num = readb (io_mem + addr_slot);
slot_ptr->slot_bus_num = readb (io_mem + addr_slot + slot_num);
slot_ptr->ctl_index = readb (io_mem + addr_slot + 2*slot_num);
slot_ptr->slot_cap = readb (io_mem + addr_slot + 3*slot_num);
// create bus_info lined list --- if only one slot per bus: slot_min = slot_max
bus_info_ptr2 = ibmphp_find_same_bus_num (slot_ptr->slot_bus_num);
if (!bus_info_ptr2) {
bus_info_ptr1 = kzalloc(sizeof(struct bus_info), GFP_KERNEL);
if (!bus_info_ptr1) {
rc = -ENOMEM;
goto error_no_hp_slot;
}
bus_info_ptr1->slot_min = slot_ptr->slot_num;
bus_info_ptr1->slot_max = slot_ptr->slot_num;
bus_info_ptr1->slot_count += 1;
bus_info_ptr1->busno = slot_ptr->slot_bus_num;
bus_info_ptr1->index = bus_index++;
bus_info_ptr1->current_speed = 0xff;
bus_info_ptr1->current_bus_mode = 0xff;
bus_info_ptr1->controller_id = hpc_ptr->ctlr_id;
list_add_tail (&bus_info_ptr1->bus_info_list, &bus_info_head);
} else {
bus_info_ptr2->slot_min = min (bus_info_ptr2->slot_min, slot_ptr->slot_num);
bus_info_ptr2->slot_max = max (bus_info_ptr2->slot_max, slot_ptr->slot_num);
bus_info_ptr2->slot_count += 1;
}
// end of creating the bus_info linked list
slot_ptr++;
addr_slot += 1;
}
/* init bus structure */
bus_ptr = hpc_ptr->buses;
for (bus = 0; bus < bus_num; bus++) {
bus_ptr->bus_num = readb (io_mem + addr_bus + bus);
bus_ptr->slots_at_33_conv = readb (io_mem + addr_bus + bus_num + 8 * bus);
bus_ptr->slots_at_66_conv = readb (io_mem + addr_bus + bus_num + 8 * bus + 1);
bus_ptr->slots_at_66_pcix = readb (io_mem + addr_bus + bus_num + 8 * bus + 2);
bus_ptr->slots_at_100_pcix = readb (io_mem + addr_bus + bus_num + 8 * bus + 3);
bus_ptr->slots_at_133_pcix = readb (io_mem + addr_bus + bus_num + 8 * bus + 4);
bus_info_ptr2 = ibmphp_find_same_bus_num (bus_ptr->bus_num);
if (bus_info_ptr2) {
bus_info_ptr2->slots_at_33_conv = bus_ptr->slots_at_33_conv;
bus_info_ptr2->slots_at_66_conv = bus_ptr->slots_at_66_conv;
bus_info_ptr2->slots_at_66_pcix = bus_ptr->slots_at_66_pcix;
bus_info_ptr2->slots_at_100_pcix = bus_ptr->slots_at_100_pcix;
bus_info_ptr2->slots_at_133_pcix = bus_ptr->slots_at_133_pcix;
}
bus_ptr++;
}
hpc_ptr->ctlr_type = temp;
switch (hpc_ptr->ctlr_type) {
case 1:
hpc_ptr->u.pci_ctlr.bus = readb (io_mem + addr);
hpc_ptr->u.pci_ctlr.dev_fun = readb (io_mem + addr + 1);
hpc_ptr->irq = readb (io_mem + addr + 2);
addr += 3;
debug ("ctrl bus = %x, ctlr devfun = %x, irq = %x\n",
hpc_ptr->u.pci_ctlr.bus,
hpc_ptr->u.pci_ctlr.dev_fun, hpc_ptr->irq);
break;
case 0:
hpc_ptr->u.isa_ctlr.io_start = readw (io_mem + addr);
hpc_ptr->u.isa_ctlr.io_end = readw (io_mem + addr + 2);
if (!request_region (hpc_ptr->u.isa_ctlr.io_start,
(hpc_ptr->u.isa_ctlr.io_end - hpc_ptr->u.isa_ctlr.io_start + 1),
"ibmphp")) {
rc = -ENODEV;
goto error_no_hp_slot;
}
hpc_ptr->irq = readb (io_mem + addr + 4);
addr += 5;
break;
case 2:
case 4:
hpc_ptr->u.wpeg_ctlr.wpegbbar = readl (io_mem + addr);
hpc_ptr->u.wpeg_ctlr.i2c_addr = readb (io_mem + addr + 4);
hpc_ptr->irq = readb (io_mem + addr + 5);
addr += 6;
break;
default:
rc = -ENODEV;
goto error_no_hp_slot;
}
//reorganize chassis' linked list
combine_wpg_for_chassis ();
combine_wpg_for_expansion ();
hpc_ptr->revision = 0xff;
hpc_ptr->options = 0xff;
hpc_ptr->starting_slot_num = hpc_ptr->slots[0].slot_num;
hpc_ptr->ending_slot_num = hpc_ptr->slots[slot_num-1].slot_num;
// register slots with hpc core as well as create linked list of ibm slot
for (index = 0; index < hpc_ptr->slot_count; index++) {
hp_slot_ptr = kzalloc(sizeof(*hp_slot_ptr), GFP_KERNEL);
if (!hp_slot_ptr) {
rc = -ENOMEM;
goto error_no_hp_slot;
}
hp_slot_ptr->info = kzalloc(sizeof(struct hotplug_slot_info), GFP_KERNEL);
if (!hp_slot_ptr->info) {
rc = -ENOMEM;
goto error_no_hp_info;
}
tmp_slot = kzalloc(sizeof(*tmp_slot), GFP_KERNEL);
if (!tmp_slot) {
rc = -ENOMEM;
goto error_no_slot;
}
tmp_slot->flag = 1;
tmp_slot->capabilities = hpc_ptr->slots[index].slot_cap;
if ((hpc_ptr->slots[index].slot_cap & EBDA_SLOT_133_MAX) == EBDA_SLOT_133_MAX)
tmp_slot->supported_speed = 3;
else if ((hpc_ptr->slots[index].slot_cap & EBDA_SLOT_100_MAX) == EBDA_SLOT_100_MAX)
tmp_slot->supported_speed = 2;
else if ((hpc_ptr->slots[index].slot_cap & EBDA_SLOT_66_MAX) == EBDA_SLOT_66_MAX)
tmp_slot->supported_speed = 1;
if ((hpc_ptr->slots[index].slot_cap & EBDA_SLOT_PCIX_CAP) == EBDA_SLOT_PCIX_CAP)
tmp_slot->supported_bus_mode = 1;
else
tmp_slot->supported_bus_mode = 0;
tmp_slot->bus = hpc_ptr->slots[index].slot_bus_num;
bus_info_ptr1 = ibmphp_find_same_bus_num (hpc_ptr->slots[index].slot_bus_num);
if (!bus_info_ptr1) {
kfree(tmp_slot);
rc = -ENODEV;
goto error;
}
tmp_slot->bus_on = bus_info_ptr1;
bus_info_ptr1 = NULL;
tmp_slot->ctrl = hpc_ptr;
tmp_slot->ctlr_index = hpc_ptr->slots[index].ctl_index;
tmp_slot->number = hpc_ptr->slots[index].slot_num;
tmp_slot->hotplug_slot = hp_slot_ptr;
hp_slot_ptr->private = tmp_slot;
hp_slot_ptr->release = release_slot;
rc = fillslotinfo(hp_slot_ptr);
if (rc)
goto error;
rc = ibmphp_init_devno ((struct slot **) &hp_slot_ptr->private);
if (rc)
goto error;
hp_slot_ptr->ops = &ibmphp_hotplug_slot_ops;
// end of registering ibm slot with hotplug core
list_add (& ((struct slot *)(hp_slot_ptr->private))->ibm_slot_list, &ibmphp_slot_head);
}
print_bus_info ();
list_add (&hpc_ptr->ebda_hpc_list, &ebda_hpc_head );
} /* each hpc */
list_for_each_entry(tmp_slot, &ibmphp_slot_head, ibm_slot_list) {
snprintf(name, SLOT_NAME_SIZE, "%s", create_file_name(tmp_slot));
pci_hp_register(tmp_slot->hotplug_slot,
pci_find_bus(0, tmp_slot->bus), tmp_slot->device, name);
}
print_ebda_hpc ();
print_ibm_slot ();
return 0;
error:
kfree (hp_slot_ptr->private);
error_no_slot:
kfree (hp_slot_ptr->info);
error_no_hp_info:
kfree (hp_slot_ptr);
error_no_hp_slot:
free_ebda_hpc (hpc_ptr);
error_no_hpc:
iounmap (io_mem);
return rc;
}
/*
* map info (bus, devfun, start addr, end addr..) of i/o, memory,
* pfm from the physical addr to a list of resource.
*/
static int __init ebda_rsrc_rsrc (void)
{
u16 addr;
short rsrc;
u8 type, rsrc_type;
struct ebda_pci_rsrc *rsrc_ptr;
addr = rsrc_list_ptr->phys_addr;
debug ("now entering rsrc land\n");
debug ("offset of rsrc: %x\n", rsrc_list_ptr->phys_addr);
for (rsrc = 0; rsrc < rsrc_list_ptr->num_entries; rsrc++) {
type = readb (io_mem + addr);
addr += 1;
rsrc_type = type & EBDA_RSRC_TYPE_MASK;
if (rsrc_type == EBDA_IO_RSRC_TYPE) {
rsrc_ptr = alloc_ebda_pci_rsrc ();
if (!rsrc_ptr) {
iounmap (io_mem);
return -ENOMEM;
}
rsrc_ptr->rsrc_type = type;
rsrc_ptr->bus_num = readb (io_mem + addr);
rsrc_ptr->dev_fun = readb (io_mem + addr + 1);
rsrc_ptr->start_addr = readw (io_mem + addr + 2);
rsrc_ptr->end_addr = readw (io_mem + addr + 4);
addr += 6;
debug ("rsrc from io type ----\n");
debug ("rsrc type: %x bus#: %x dev_func: %x start addr: %x end addr: %x\n",
rsrc_ptr->rsrc_type, rsrc_ptr->bus_num, rsrc_ptr->dev_fun, rsrc_ptr->start_addr, rsrc_ptr->end_addr);
list_add (&rsrc_ptr->ebda_pci_rsrc_list, &ibmphp_ebda_pci_rsrc_head);
}
if (rsrc_type == EBDA_MEM_RSRC_TYPE || rsrc_type == EBDA_PFM_RSRC_TYPE) {
rsrc_ptr = alloc_ebda_pci_rsrc ();
if (!rsrc_ptr ) {
iounmap (io_mem);
return -ENOMEM;
}
rsrc_ptr->rsrc_type = type;
rsrc_ptr->bus_num = readb (io_mem + addr);
rsrc_ptr->dev_fun = readb (io_mem + addr + 1);
rsrc_ptr->start_addr = readl (io_mem + addr + 2);
rsrc_ptr->end_addr = readl (io_mem + addr + 6);
addr += 10;
debug ("rsrc from mem or pfm ---\n");
debug ("rsrc type: %x bus#: %x dev_func: %x start addr: %x end addr: %x\n",
rsrc_ptr->rsrc_type, rsrc_ptr->bus_num, rsrc_ptr->dev_fun, rsrc_ptr->start_addr, rsrc_ptr->end_addr);
list_add (&rsrc_ptr->ebda_pci_rsrc_list, &ibmphp_ebda_pci_rsrc_head);
}
}
kfree (rsrc_list_ptr);
rsrc_list_ptr = NULL;
print_ebda_pci_rsrc ();
return 0;
}
u16 ibmphp_get_total_controllers (void)
{
return hpc_list_ptr->num_ctlrs;
}
struct slot *ibmphp_get_slot_from_physical_num (u8 physical_num)
{
struct slot *slot;
list_for_each_entry(slot, &ibmphp_slot_head, ibm_slot_list) {
if (slot->number == physical_num)
return slot;
}
return NULL;
}
/* To find:
* - the smallest slot number
* - the largest slot number
* - the total number of the slots based on each bus
* (if only one slot per bus slot_min = slot_max )
*/
struct bus_info *ibmphp_find_same_bus_num (u32 num)
{
struct bus_info *ptr;
list_for_each_entry(ptr, &bus_info_head, bus_info_list) {
if (ptr->busno == num)
return ptr;
}
return NULL;
}
/* Finding relative bus number, in order to map corresponding
* bus register
*/
int ibmphp_get_bus_index (u8 num)
{
struct bus_info *ptr;
list_for_each_entry(ptr, &bus_info_head, bus_info_list) {
if (ptr->busno == num)
return ptr->index;
}
return -ENODEV;
}
void ibmphp_free_bus_info_queue (void)
{
struct bus_info *bus_info;
struct list_head *list;
struct list_head *next;
list_for_each_safe (list, next, &bus_info_head ) {
bus_info = list_entry (list, struct bus_info, bus_info_list);
kfree (bus_info);
}
}
void ibmphp_free_ebda_hpc_queue (void)
{
struct controller *controller = NULL;
struct list_head *list;
struct list_head *next;
int pci_flag = 0;
list_for_each_safe (list, next, &ebda_hpc_head) {
controller = list_entry (list, struct controller, ebda_hpc_list);
if (controller->ctlr_type == 0)
release_region (controller->u.isa_ctlr.io_start, (controller->u.isa_ctlr.io_end - controller->u.isa_ctlr.io_start + 1));
else if ((controller->ctlr_type == 1) && (!pci_flag)) {
++pci_flag;
pci_unregister_driver (&ibmphp_driver);
}
free_ebda_hpc (controller);
}
}
void ibmphp_free_ebda_pci_rsrc_queue (void)
{
struct ebda_pci_rsrc *resource;
struct list_head *list;
struct list_head *next;
list_for_each_safe (list, next, &ibmphp_ebda_pci_rsrc_head) {
resource = list_entry (list, struct ebda_pci_rsrc, ebda_pci_rsrc_list);
kfree (resource);
resource = NULL;
}
}
static struct pci_device_id id_table[] = {
{
.vendor = PCI_VENDOR_ID_IBM,
.device = HPC_DEVICE_ID,
.subvendor = PCI_VENDOR_ID_IBM,
.subdevice = HPC_SUBSYSTEM_ID,
.class = ((PCI_CLASS_SYSTEM_PCI_HOTPLUG << 8) | 0x00),
}, {}
};
MODULE_DEVICE_TABLE(pci, id_table);
static int ibmphp_probe (struct pci_dev *, const struct pci_device_id *);
static struct pci_driver ibmphp_driver = {
.name = "ibmphp",
.id_table = id_table,
.probe = ibmphp_probe,
};
int ibmphp_register_pci (void)
{
struct controller *ctrl;
int rc = 0;
list_for_each_entry(ctrl, &ebda_hpc_head, ebda_hpc_list) {
if (ctrl->ctlr_type == 1) {
rc = pci_register_driver(&ibmphp_driver);
break;
}
}
return rc;
}
static int ibmphp_probe (struct pci_dev * dev, const struct pci_device_id *ids)
{
struct controller *ctrl;
debug ("inside ibmphp_probe\n");
list_for_each_entry(ctrl, &ebda_hpc_head, ebda_hpc_list) {
if (ctrl->ctlr_type == 1) {
if ((dev->devfn == ctrl->u.pci_ctlr.dev_fun) && (dev->bus->number == ctrl->u.pci_ctlr.bus)) {
ctrl->ctrl_dev = dev;
debug ("found device!!!\n");
debug ("dev->device = %x, dev->subsystem_device = %x\n", dev->device, dev->subsystem_device);
return 0;
}
}
}
return -ENODEV;
}