linux-hardened/drivers/clocksource/sh_tmu.c
Laurent Pinchart 6b96c15b03 clocksource: sh_tmu: Remove FSF mail address from GPL notice
Do not include the paragraph about writing to the Free Software
Foundation's mailing address from the sample GPL notice. The FSF has
changed addresses in the past, and may do so again. Linux already
includes a copy of the GPL.

Signed-off-by: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com>
2014-04-16 12:03:24 +02:00

708 lines
16 KiB
C

/*
* SuperH Timer Support - TMU
*
* Copyright (C) 2009 Magnus Damm
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/irq.h>
#include <linux/err.h>
#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <linux/sh_timer.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/pm_domain.h>
#include <linux/pm_runtime.h>
enum sh_tmu_model {
SH_TMU_LEGACY,
SH_TMU,
SH_TMU_SH3,
};
struct sh_tmu_device;
struct sh_tmu_channel {
struct sh_tmu_device *tmu;
unsigned int index;
void __iomem *base;
int irq;
unsigned long rate;
unsigned long periodic;
struct clock_event_device ced;
struct clocksource cs;
bool cs_enabled;
unsigned int enable_count;
};
struct sh_tmu_device {
struct platform_device *pdev;
void __iomem *mapbase;
struct clk *clk;
enum sh_tmu_model model;
struct sh_tmu_channel *channels;
unsigned int num_channels;
bool has_clockevent;
bool has_clocksource;
};
static DEFINE_RAW_SPINLOCK(sh_tmu_lock);
#define TSTR -1 /* shared register */
#define TCOR 0 /* channel register */
#define TCNT 1 /* channel register */
#define TCR 2 /* channel register */
#define TCR_UNF (1 << 8)
#define TCR_UNIE (1 << 5)
#define TCR_TPSC_CLK4 (0 << 0)
#define TCR_TPSC_CLK16 (1 << 0)
#define TCR_TPSC_CLK64 (2 << 0)
#define TCR_TPSC_CLK256 (3 << 0)
#define TCR_TPSC_CLK1024 (4 << 0)
#define TCR_TPSC_MASK (7 << 0)
static inline unsigned long sh_tmu_read(struct sh_tmu_channel *ch, int reg_nr)
{
unsigned long offs;
if (reg_nr == TSTR) {
switch (ch->tmu->model) {
case SH_TMU_LEGACY:
return ioread8(ch->tmu->mapbase);
case SH_TMU_SH3:
return ioread8(ch->tmu->mapbase + 2);
case SH_TMU:
return ioread8(ch->tmu->mapbase + 4);
}
}
offs = reg_nr << 2;
if (reg_nr == TCR)
return ioread16(ch->base + offs);
else
return ioread32(ch->base + offs);
}
static inline void sh_tmu_write(struct sh_tmu_channel *ch, int reg_nr,
unsigned long value)
{
unsigned long offs;
if (reg_nr == TSTR) {
switch (ch->tmu->model) {
case SH_TMU_LEGACY:
return iowrite8(value, ch->tmu->mapbase);
case SH_TMU_SH3:
return iowrite8(value, ch->tmu->mapbase + 2);
case SH_TMU:
return iowrite8(value, ch->tmu->mapbase + 4);
}
}
offs = reg_nr << 2;
if (reg_nr == TCR)
iowrite16(value, ch->base + offs);
else
iowrite32(value, ch->base + offs);
}
static void sh_tmu_start_stop_ch(struct sh_tmu_channel *ch, int start)
{
unsigned long flags, value;
/* start stop register shared by multiple timer channels */
raw_spin_lock_irqsave(&sh_tmu_lock, flags);
value = sh_tmu_read(ch, TSTR);
if (start)
value |= 1 << ch->index;
else
value &= ~(1 << ch->index);
sh_tmu_write(ch, TSTR, value);
raw_spin_unlock_irqrestore(&sh_tmu_lock, flags);
}
static int __sh_tmu_enable(struct sh_tmu_channel *ch)
{
int ret;
/* enable clock */
ret = clk_enable(ch->tmu->clk);
if (ret) {
dev_err(&ch->tmu->pdev->dev, "ch%u: cannot enable clock\n",
ch->index);
return ret;
}
/* make sure channel is disabled */
sh_tmu_start_stop_ch(ch, 0);
/* maximum timeout */
sh_tmu_write(ch, TCOR, 0xffffffff);
sh_tmu_write(ch, TCNT, 0xffffffff);
/* configure channel to parent clock / 4, irq off */
ch->rate = clk_get_rate(ch->tmu->clk) / 4;
sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
/* enable channel */
sh_tmu_start_stop_ch(ch, 1);
return 0;
}
static int sh_tmu_enable(struct sh_tmu_channel *ch)
{
if (ch->enable_count++ > 0)
return 0;
pm_runtime_get_sync(&ch->tmu->pdev->dev);
dev_pm_syscore_device(&ch->tmu->pdev->dev, true);
return __sh_tmu_enable(ch);
}
static void __sh_tmu_disable(struct sh_tmu_channel *ch)
{
/* disable channel */
sh_tmu_start_stop_ch(ch, 0);
/* disable interrupts in TMU block */
sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
/* stop clock */
clk_disable(ch->tmu->clk);
}
static void sh_tmu_disable(struct sh_tmu_channel *ch)
{
if (WARN_ON(ch->enable_count == 0))
return;
if (--ch->enable_count > 0)
return;
__sh_tmu_disable(ch);
dev_pm_syscore_device(&ch->tmu->pdev->dev, false);
pm_runtime_put(&ch->tmu->pdev->dev);
}
static void sh_tmu_set_next(struct sh_tmu_channel *ch, unsigned long delta,
int periodic)
{
/* stop timer */
sh_tmu_start_stop_ch(ch, 0);
/* acknowledge interrupt */
sh_tmu_read(ch, TCR);
/* enable interrupt */
sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4);
/* reload delta value in case of periodic timer */
if (periodic)
sh_tmu_write(ch, TCOR, delta);
else
sh_tmu_write(ch, TCOR, 0xffffffff);
sh_tmu_write(ch, TCNT, delta);
/* start timer */
sh_tmu_start_stop_ch(ch, 1);
}
static irqreturn_t sh_tmu_interrupt(int irq, void *dev_id)
{
struct sh_tmu_channel *ch = dev_id;
/* disable or acknowledge interrupt */
if (ch->ced.mode == CLOCK_EVT_MODE_ONESHOT)
sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
else
sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4);
/* notify clockevent layer */
ch->ced.event_handler(&ch->ced);
return IRQ_HANDLED;
}
static struct sh_tmu_channel *cs_to_sh_tmu(struct clocksource *cs)
{
return container_of(cs, struct sh_tmu_channel, cs);
}
static cycle_t sh_tmu_clocksource_read(struct clocksource *cs)
{
struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
return sh_tmu_read(ch, TCNT) ^ 0xffffffff;
}
static int sh_tmu_clocksource_enable(struct clocksource *cs)
{
struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
int ret;
if (WARN_ON(ch->cs_enabled))
return 0;
ret = sh_tmu_enable(ch);
if (!ret) {
__clocksource_updatefreq_hz(cs, ch->rate);
ch->cs_enabled = true;
}
return ret;
}
static void sh_tmu_clocksource_disable(struct clocksource *cs)
{
struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
if (WARN_ON(!ch->cs_enabled))
return;
sh_tmu_disable(ch);
ch->cs_enabled = false;
}
static void sh_tmu_clocksource_suspend(struct clocksource *cs)
{
struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
if (!ch->cs_enabled)
return;
if (--ch->enable_count == 0) {
__sh_tmu_disable(ch);
pm_genpd_syscore_poweroff(&ch->tmu->pdev->dev);
}
}
static void sh_tmu_clocksource_resume(struct clocksource *cs)
{
struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
if (!ch->cs_enabled)
return;
if (ch->enable_count++ == 0) {
pm_genpd_syscore_poweron(&ch->tmu->pdev->dev);
__sh_tmu_enable(ch);
}
}
static int sh_tmu_register_clocksource(struct sh_tmu_channel *ch,
const char *name)
{
struct clocksource *cs = &ch->cs;
cs->name = name;
cs->rating = 200;
cs->read = sh_tmu_clocksource_read;
cs->enable = sh_tmu_clocksource_enable;
cs->disable = sh_tmu_clocksource_disable;
cs->suspend = sh_tmu_clocksource_suspend;
cs->resume = sh_tmu_clocksource_resume;
cs->mask = CLOCKSOURCE_MASK(32);
cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
dev_info(&ch->tmu->pdev->dev, "ch%u: used as clock source\n",
ch->index);
/* Register with dummy 1 Hz value, gets updated in ->enable() */
clocksource_register_hz(cs, 1);
return 0;
}
static struct sh_tmu_channel *ced_to_sh_tmu(struct clock_event_device *ced)
{
return container_of(ced, struct sh_tmu_channel, ced);
}
static void sh_tmu_clock_event_start(struct sh_tmu_channel *ch, int periodic)
{
struct clock_event_device *ced = &ch->ced;
sh_tmu_enable(ch);
clockevents_config(ced, ch->rate);
if (periodic) {
ch->periodic = (ch->rate + HZ/2) / HZ;
sh_tmu_set_next(ch, ch->periodic, 1);
}
}
static void sh_tmu_clock_event_mode(enum clock_event_mode mode,
struct clock_event_device *ced)
{
struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
int disabled = 0;
/* deal with old setting first */
switch (ced->mode) {
case CLOCK_EVT_MODE_PERIODIC:
case CLOCK_EVT_MODE_ONESHOT:
sh_tmu_disable(ch);
disabled = 1;
break;
default:
break;
}
switch (mode) {
case CLOCK_EVT_MODE_PERIODIC:
dev_info(&ch->tmu->pdev->dev,
"ch%u: used for periodic clock events\n", ch->index);
sh_tmu_clock_event_start(ch, 1);
break;
case CLOCK_EVT_MODE_ONESHOT:
dev_info(&ch->tmu->pdev->dev,
"ch%u: used for oneshot clock events\n", ch->index);
sh_tmu_clock_event_start(ch, 0);
break;
case CLOCK_EVT_MODE_UNUSED:
if (!disabled)
sh_tmu_disable(ch);
break;
case CLOCK_EVT_MODE_SHUTDOWN:
default:
break;
}
}
static int sh_tmu_clock_event_next(unsigned long delta,
struct clock_event_device *ced)
{
struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
/* program new delta value */
sh_tmu_set_next(ch, delta, 0);
return 0;
}
static void sh_tmu_clock_event_suspend(struct clock_event_device *ced)
{
pm_genpd_syscore_poweroff(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
}
static void sh_tmu_clock_event_resume(struct clock_event_device *ced)
{
pm_genpd_syscore_poweron(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
}
static void sh_tmu_register_clockevent(struct sh_tmu_channel *ch,
const char *name)
{
struct clock_event_device *ced = &ch->ced;
int ret;
ced->name = name;
ced->features = CLOCK_EVT_FEAT_PERIODIC;
ced->features |= CLOCK_EVT_FEAT_ONESHOT;
ced->rating = 200;
ced->cpumask = cpumask_of(0);
ced->set_next_event = sh_tmu_clock_event_next;
ced->set_mode = sh_tmu_clock_event_mode;
ced->suspend = sh_tmu_clock_event_suspend;
ced->resume = sh_tmu_clock_event_resume;
dev_info(&ch->tmu->pdev->dev, "ch%u: used for clock events\n",
ch->index);
clockevents_config_and_register(ced, 1, 0x300, 0xffffffff);
ret = request_irq(ch->irq, sh_tmu_interrupt,
IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
dev_name(&ch->tmu->pdev->dev), ch);
if (ret) {
dev_err(&ch->tmu->pdev->dev, "ch%u: failed to request irq %d\n",
ch->index, ch->irq);
return;
}
}
static int sh_tmu_register(struct sh_tmu_channel *ch, const char *name,
bool clockevent, bool clocksource)
{
if (clockevent) {
ch->tmu->has_clockevent = true;
sh_tmu_register_clockevent(ch, name);
} else if (clocksource) {
ch->tmu->has_clocksource = true;
sh_tmu_register_clocksource(ch, name);
}
return 0;
}
static int sh_tmu_channel_setup(struct sh_tmu_channel *ch, unsigned int index,
bool clockevent, bool clocksource,
struct sh_tmu_device *tmu)
{
/* Skip unused channels. */
if (!clockevent && !clocksource)
return 0;
ch->tmu = tmu;
if (tmu->model == SH_TMU_LEGACY) {
struct sh_timer_config *cfg = tmu->pdev->dev.platform_data;
/*
* The SH3 variant (SH770x, SH7705, SH7710 and SH7720) maps
* channel registers blocks at base + 2 + 12 * index, while all
* other variants map them at base + 4 + 12 * index. We can
* compute the index by just dividing by 12, the 2 bytes or 4
* bytes offset being hidden by the integer division.
*/
ch->index = cfg->channel_offset / 12;
ch->base = tmu->mapbase + cfg->channel_offset;
} else {
ch->index = index;
if (tmu->model == SH_TMU_SH3)
ch->base = tmu->mapbase + 4 + ch->index * 12;
else
ch->base = tmu->mapbase + 8 + ch->index * 12;
}
ch->irq = platform_get_irq(tmu->pdev, ch->index);
if (ch->irq < 0) {
dev_err(&tmu->pdev->dev, "ch%u: failed to get irq\n",
ch->index);
return ch->irq;
}
ch->cs_enabled = false;
ch->enable_count = 0;
return sh_tmu_register(ch, dev_name(&tmu->pdev->dev),
clockevent, clocksource);
}
static int sh_tmu_map_memory(struct sh_tmu_device *tmu)
{
struct resource *res;
res = platform_get_resource(tmu->pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(&tmu->pdev->dev, "failed to get I/O memory\n");
return -ENXIO;
}
tmu->mapbase = ioremap_nocache(res->start, resource_size(res));
if (tmu->mapbase == NULL)
return -ENXIO;
/*
* In legacy platform device configuration (with one device per channel)
* the resource points to the channel base address.
*/
if (tmu->model == SH_TMU_LEGACY) {
struct sh_timer_config *cfg = tmu->pdev->dev.platform_data;
tmu->mapbase -= cfg->channel_offset;
}
return 0;
}
static void sh_tmu_unmap_memory(struct sh_tmu_device *tmu)
{
if (tmu->model == SH_TMU_LEGACY) {
struct sh_timer_config *cfg = tmu->pdev->dev.platform_data;
tmu->mapbase += cfg->channel_offset;
}
iounmap(tmu->mapbase);
}
static int sh_tmu_setup(struct sh_tmu_device *tmu, struct platform_device *pdev)
{
struct sh_timer_config *cfg = pdev->dev.platform_data;
const struct platform_device_id *id = pdev->id_entry;
unsigned int i;
int ret;
if (!cfg) {
dev_err(&tmu->pdev->dev, "missing platform data\n");
return -ENXIO;
}
tmu->pdev = pdev;
tmu->model = id->driver_data;
/* Get hold of clock. */
tmu->clk = clk_get(&tmu->pdev->dev,
tmu->model == SH_TMU_LEGACY ? "tmu_fck" : "fck");
if (IS_ERR(tmu->clk)) {
dev_err(&tmu->pdev->dev, "cannot get clock\n");
return PTR_ERR(tmu->clk);
}
ret = clk_prepare(tmu->clk);
if (ret < 0)
goto err_clk_put;
/* Map the memory resource. */
ret = sh_tmu_map_memory(tmu);
if (ret < 0) {
dev_err(&tmu->pdev->dev, "failed to remap I/O memory\n");
goto err_clk_unprepare;
}
/* Allocate and setup the channels. */
if (tmu->model == SH_TMU_LEGACY)
tmu->num_channels = 1;
else
tmu->num_channels = hweight8(cfg->channels_mask);
tmu->channels = kzalloc(sizeof(*tmu->channels) * tmu->num_channels,
GFP_KERNEL);
if (tmu->channels == NULL) {
ret = -ENOMEM;
goto err_unmap;
}
if (tmu->model == SH_TMU_LEGACY) {
ret = sh_tmu_channel_setup(&tmu->channels[0], 0,
cfg->clockevent_rating != 0,
cfg->clocksource_rating != 0, tmu);
if (ret < 0)
goto err_unmap;
} else {
/*
* Use the first channel as a clock event device and the second
* channel as a clock source.
*/
for (i = 0; i < tmu->num_channels; ++i) {
ret = sh_tmu_channel_setup(&tmu->channels[i], i,
i == 0, i == 1, tmu);
if (ret < 0)
goto err_unmap;
}
}
platform_set_drvdata(pdev, tmu);
return 0;
err_unmap:
kfree(tmu->channels);
sh_tmu_unmap_memory(tmu);
err_clk_unprepare:
clk_unprepare(tmu->clk);
err_clk_put:
clk_put(tmu->clk);
return ret;
}
static int sh_tmu_probe(struct platform_device *pdev)
{
struct sh_tmu_device *tmu = platform_get_drvdata(pdev);
int ret;
if (!is_early_platform_device(pdev)) {
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
}
if (tmu) {
dev_info(&pdev->dev, "kept as earlytimer\n");
goto out;
}
tmu = kzalloc(sizeof(*tmu), GFP_KERNEL);
if (tmu == NULL) {
dev_err(&pdev->dev, "failed to allocate driver data\n");
return -ENOMEM;
}
ret = sh_tmu_setup(tmu, pdev);
if (ret) {
kfree(tmu);
pm_runtime_idle(&pdev->dev);
return ret;
}
if (is_early_platform_device(pdev))
return 0;
out:
if (tmu->has_clockevent || tmu->has_clocksource)
pm_runtime_irq_safe(&pdev->dev);
else
pm_runtime_idle(&pdev->dev);
return 0;
}
static int sh_tmu_remove(struct platform_device *pdev)
{
return -EBUSY; /* cannot unregister clockevent and clocksource */
}
static const struct platform_device_id sh_tmu_id_table[] = {
{ "sh_tmu", SH_TMU_LEGACY },
{ "sh-tmu", SH_TMU },
{ "sh-tmu-sh3", SH_TMU_SH3 },
{ }
};
MODULE_DEVICE_TABLE(platform, sh_tmu_id_table);
static struct platform_driver sh_tmu_device_driver = {
.probe = sh_tmu_probe,
.remove = sh_tmu_remove,
.driver = {
.name = "sh_tmu",
},
.id_table = sh_tmu_id_table,
};
static int __init sh_tmu_init(void)
{
return platform_driver_register(&sh_tmu_device_driver);
}
static void __exit sh_tmu_exit(void)
{
platform_driver_unregister(&sh_tmu_device_driver);
}
early_platform_init("earlytimer", &sh_tmu_device_driver);
subsys_initcall(sh_tmu_init);
module_exit(sh_tmu_exit);
MODULE_AUTHOR("Magnus Damm");
MODULE_DESCRIPTION("SuperH TMU Timer Driver");
MODULE_LICENSE("GPL v2");