linux-hardened/drivers/message/i2o/pci.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

497 lines
12 KiB
C

/*
* PCI handling of I2O controller
*
* Copyright (C) 1999-2002 Red Hat Software
*
* Written by Alan Cox, Building Number Three Ltd
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* A lot of the I2O message side code from this is taken from the Red
* Creek RCPCI45 adapter driver by Red Creek Communications
*
* Fixes/additions:
* Philipp Rumpf
* Juha Sievänen <Juha.Sievanen@cs.Helsinki.FI>
* Auvo Häkkinen <Auvo.Hakkinen@cs.Helsinki.FI>
* Deepak Saxena <deepak@plexity.net>
* Boji T Kannanthanam <boji.t.kannanthanam@intel.com>
* Alan Cox <alan@lxorguk.ukuu.org.uk>:
* Ported to Linux 2.5.
* Markus Lidel <Markus.Lidel@shadowconnect.com>:
* Minor fixes for 2.6.
* Markus Lidel <Markus.Lidel@shadowconnect.com>:
* Support for sysfs included.
*/
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/i2o.h>
#include "core.h"
#define OSM_DESCRIPTION "I2O-subsystem"
/* PCI device id table for all I2O controllers */
static struct pci_device_id __devinitdata i2o_pci_ids[] = {
{PCI_DEVICE_CLASS(PCI_CLASS_INTELLIGENT_I2O << 8, 0xffff00)},
{PCI_DEVICE(PCI_VENDOR_ID_DPT, 0xa511)},
{.vendor = PCI_VENDOR_ID_INTEL,.device = 0x1962,
.subvendor = PCI_VENDOR_ID_PROMISE,.subdevice = PCI_ANY_ID},
{0}
};
/**
* i2o_pci_free - Frees the DMA memory for the I2O controller
* @c: I2O controller to free
*
* Remove all allocated DMA memory and unmap memory IO regions. If MTRR
* is enabled, also remove it again.
*/
static void i2o_pci_free(struct i2o_controller *c)
{
struct device *dev;
dev = &c->pdev->dev;
i2o_dma_free(dev, &c->out_queue);
i2o_dma_free(dev, &c->status_block);
kfree(c->lct);
i2o_dma_free(dev, &c->dlct);
i2o_dma_free(dev, &c->hrt);
i2o_dma_free(dev, &c->status);
if (c->raptor && c->in_queue.virt)
iounmap(c->in_queue.virt);
if (c->base.virt)
iounmap(c->base.virt);
pci_release_regions(c->pdev);
}
/**
* i2o_pci_alloc - Allocate DMA memory, map IO memory for I2O controller
* @c: I2O controller
*
* Allocate DMA memory for a PCI (or in theory AGP) I2O controller. All
* IO mappings are also done here. If MTRR is enabled, also do add memory
* regions here.
*
* Returns 0 on success or negative error code on failure.
*/
static int __devinit i2o_pci_alloc(struct i2o_controller *c)
{
struct pci_dev *pdev = c->pdev;
struct device *dev = &pdev->dev;
int i;
if (pci_request_regions(pdev, OSM_DESCRIPTION)) {
printk(KERN_ERR "%s: device already claimed\n", c->name);
return -ENODEV;
}
for (i = 0; i < 6; i++) {
/* Skip I/O spaces */
if (!(pci_resource_flags(pdev, i) & IORESOURCE_IO)) {
if (!c->base.phys) {
c->base.phys = pci_resource_start(pdev, i);
c->base.len = pci_resource_len(pdev, i);
/*
* If we know what card it is, set the size
* correctly. Code is taken from dpt_i2o.c
*/
if (pdev->device == 0xa501) {
if (pdev->subsystem_device >= 0xc032 &&
pdev->subsystem_device <= 0xc03b) {
if (c->base.len > 0x400000)
c->base.len = 0x400000;
} else {
if (c->base.len > 0x100000)
c->base.len = 0x100000;
}
}
if (!c->raptor)
break;
} else {
c->in_queue.phys = pci_resource_start(pdev, i);
c->in_queue.len = pci_resource_len(pdev, i);
break;
}
}
}
if (i == 6) {
printk(KERN_ERR "%s: I2O controller has no memory regions"
" defined.\n", c->name);
i2o_pci_free(c);
return -EINVAL;
}
/* Map the I2O controller */
if (c->raptor) {
printk(KERN_INFO "%s: PCI I2O controller\n", c->name);
printk(KERN_INFO " BAR0 at 0x%08lX size=%ld\n",
(unsigned long)c->base.phys, (unsigned long)c->base.len);
printk(KERN_INFO " BAR1 at 0x%08lX size=%ld\n",
(unsigned long)c->in_queue.phys,
(unsigned long)c->in_queue.len);
} else
printk(KERN_INFO "%s: PCI I2O controller at %08lX size=%ld\n",
c->name, (unsigned long)c->base.phys,
(unsigned long)c->base.len);
c->base.virt = ioremap_nocache(c->base.phys, c->base.len);
if (!c->base.virt) {
printk(KERN_ERR "%s: Unable to map controller.\n", c->name);
i2o_pci_free(c);
return -ENOMEM;
}
if (c->raptor) {
c->in_queue.virt =
ioremap_nocache(c->in_queue.phys, c->in_queue.len);
if (!c->in_queue.virt) {
printk(KERN_ERR "%s: Unable to map controller.\n",
c->name);
i2o_pci_free(c);
return -ENOMEM;
}
} else
c->in_queue = c->base;
c->irq_status = c->base.virt + I2O_IRQ_STATUS;
c->irq_mask = c->base.virt + I2O_IRQ_MASK;
c->in_port = c->base.virt + I2O_IN_PORT;
c->out_port = c->base.virt + I2O_OUT_PORT;
/* Motorola/Freescale chip does not follow spec */
if (pdev->vendor == PCI_VENDOR_ID_MOTOROLA && pdev->device == 0x18c0) {
/* Check if CPU is enabled */
if (be32_to_cpu(readl(c->base.virt + 0x10000)) & 0x10000000) {
printk(KERN_INFO "%s: MPC82XX needs CPU running to "
"service I2O.\n", c->name);
i2o_pci_free(c);
return -ENODEV;
} else {
c->irq_status += I2O_MOTOROLA_PORT_OFFSET;
c->irq_mask += I2O_MOTOROLA_PORT_OFFSET;
c->in_port += I2O_MOTOROLA_PORT_OFFSET;
c->out_port += I2O_MOTOROLA_PORT_OFFSET;
printk(KERN_INFO "%s: MPC82XX workarounds activated.\n",
c->name);
}
}
if (i2o_dma_alloc(dev, &c->status, 8)) {
i2o_pci_free(c);
return -ENOMEM;
}
if (i2o_dma_alloc(dev, &c->hrt, sizeof(i2o_hrt))) {
i2o_pci_free(c);
return -ENOMEM;
}
if (i2o_dma_alloc(dev, &c->dlct, 8192)) {
i2o_pci_free(c);
return -ENOMEM;
}
if (i2o_dma_alloc(dev, &c->status_block, sizeof(i2o_status_block))) {
i2o_pci_free(c);
return -ENOMEM;
}
if (i2o_dma_alloc(dev, &c->out_queue,
I2O_MAX_OUTBOUND_MSG_FRAMES * I2O_OUTBOUND_MSG_FRAME_SIZE *
sizeof(u32))) {
i2o_pci_free(c);
return -ENOMEM;
}
pci_set_drvdata(pdev, c);
return 0;
}
/**
* i2o_pci_interrupt - Interrupt handler for I2O controller
* @irq: interrupt line
* @dev_id: pointer to the I2O controller
*
* Handle an interrupt from a PCI based I2O controller. This turns out
* to be rather simple. We keep the controller pointer in the cookie.
*/
static irqreturn_t i2o_pci_interrupt(int irq, void *dev_id)
{
struct i2o_controller *c = dev_id;
u32 m;
irqreturn_t rc = IRQ_NONE;
while (readl(c->irq_status) & I2O_IRQ_OUTBOUND_POST) {
m = readl(c->out_port);
if (m == I2O_QUEUE_EMPTY) {
/*
* Old 960 steppings had a bug in the I2O unit that
* caused the queue to appear empty when it wasn't.
*/
m = readl(c->out_port);
if (unlikely(m == I2O_QUEUE_EMPTY))
break;
}
/* dispatch it */
if (i2o_driver_dispatch(c, m))
/* flush it if result != 0 */
i2o_flush_reply(c, m);
rc = IRQ_HANDLED;
}
return rc;
}
/**
* i2o_pci_irq_enable - Allocate interrupt for I2O controller
* @c: i2o_controller that the request is for
*
* Allocate an interrupt for the I2O controller, and activate interrupts
* on the I2O controller.
*
* Returns 0 on success or negative error code on failure.
*/
static int i2o_pci_irq_enable(struct i2o_controller *c)
{
struct pci_dev *pdev = c->pdev;
int rc;
writel(0xffffffff, c->irq_mask);
if (pdev->irq) {
rc = request_irq(pdev->irq, i2o_pci_interrupt, IRQF_SHARED,
c->name, c);
if (rc < 0) {
printk(KERN_ERR "%s: unable to allocate interrupt %d."
"\n", c->name, pdev->irq);
return rc;
}
}
writel(0x00000000, c->irq_mask);
printk(KERN_INFO "%s: Installed at IRQ %d\n", c->name, pdev->irq);
return 0;
}
/**
* i2o_pci_irq_disable - Free interrupt for I2O controller
* @c: I2O controller
*
* Disable interrupts in I2O controller and then free interrupt.
*/
static void i2o_pci_irq_disable(struct i2o_controller *c)
{
writel(0xffffffff, c->irq_mask);
if (c->pdev->irq > 0)
free_irq(c->pdev->irq, c);
}
/**
* i2o_pci_probe - Probe the PCI device for an I2O controller
* @pdev: PCI device to test
* @id: id which matched with the PCI device id table
*
* Probe the PCI device for any device which is a memory of the
* Intelligent, I2O class or an Adaptec Zero Channel Controller. We
* attempt to set up each such device and register it with the core.
*
* Returns 0 on success or negative error code on failure.
*/
static int __devinit i2o_pci_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct i2o_controller *c;
int rc;
struct pci_dev *i960 = NULL;
printk(KERN_INFO "i2o: Checking for PCI I2O controllers...\n");
if ((pdev->class & 0xff) > 1) {
printk(KERN_WARNING "i2o: %s does not support I2O 1.5 "
"(skipping).\n", pci_name(pdev));
return -ENODEV;
}
if ((rc = pci_enable_device(pdev))) {
printk(KERN_WARNING "i2o: couldn't enable device %s\n",
pci_name(pdev));
return rc;
}
if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
printk(KERN_WARNING "i2o: no suitable DMA found for %s\n",
pci_name(pdev));
rc = -ENODEV;
goto disable;
}
pci_set_master(pdev);
c = i2o_iop_alloc();
if (IS_ERR(c)) {
printk(KERN_ERR "i2o: couldn't allocate memory for %s\n",
pci_name(pdev));
rc = PTR_ERR(c);
goto disable;
} else
printk(KERN_INFO "%s: controller found (%s)\n", c->name,
pci_name(pdev));
c->pdev = pdev;
c->device.parent = &pdev->dev;
/* Cards that fall apart if you hit them with large I/O loads... */
if (pdev->vendor == PCI_VENDOR_ID_NCR && pdev->device == 0x0630) {
c->short_req = 1;
printk(KERN_INFO "%s: Symbios FC920 workarounds activated.\n",
c->name);
}
if (pdev->subsystem_vendor == PCI_VENDOR_ID_PROMISE) {
/*
* Expose the ship behind i960 for initialization, or it will
* failed
*/
i960 = pci_get_slot(c->pdev->bus,
PCI_DEVFN(PCI_SLOT(c->pdev->devfn), 0));
if (i960) {
pci_write_config_word(i960, 0x42, 0);
pci_dev_put(i960);
}
c->promise = 1;
c->limit_sectors = 1;
}
if (pdev->subsystem_vendor == PCI_VENDOR_ID_DPT)
c->adaptec = 1;
/* Cards that go bananas if you quiesce them before you reset them. */
if (pdev->vendor == PCI_VENDOR_ID_DPT) {
c->no_quiesce = 1;
if (pdev->device == 0xa511)
c->raptor = 1;
if (pdev->subsystem_device == 0xc05a) {
c->limit_sectors = 1;
printk(KERN_INFO
"%s: limit sectors per request to %d\n", c->name,
I2O_MAX_SECTORS_LIMITED);
}
#ifdef CONFIG_I2O_EXT_ADAPTEC_DMA64
if (sizeof(dma_addr_t) > 4) {
if (pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
printk(KERN_INFO "%s: 64-bit DMA unavailable\n",
c->name);
else {
c->pae_support = 1;
printk(KERN_INFO "%s: using 64-bit DMA\n",
c->name);
}
}
#endif
}
if ((rc = i2o_pci_alloc(c))) {
printk(KERN_ERR "%s: DMA / IO allocation for I2O controller "
"failed\n", c->name);
goto free_controller;
}
if (i2o_pci_irq_enable(c)) {
printk(KERN_ERR "%s: unable to enable interrupts for I2O "
"controller\n", c->name);
goto free_pci;
}
if ((rc = i2o_iop_add(c)))
goto uninstall;
if (i960)
pci_write_config_word(i960, 0x42, 0x03ff);
return 0;
uninstall:
i2o_pci_irq_disable(c);
free_pci:
i2o_pci_free(c);
free_controller:
i2o_iop_free(c);
disable:
pci_disable_device(pdev);
return rc;
}
/**
* i2o_pci_remove - Removes a I2O controller from the system
* @pdev: I2O controller which should be removed
*
* Reset the I2O controller, disable interrupts and remove all allocated
* resources.
*/
static void __devexit i2o_pci_remove(struct pci_dev *pdev)
{
struct i2o_controller *c;
c = pci_get_drvdata(pdev);
i2o_iop_remove(c);
i2o_pci_irq_disable(c);
i2o_pci_free(c);
pci_disable_device(pdev);
printk(KERN_INFO "%s: Controller removed.\n", c->name);
put_device(&c->device);
};
/* PCI driver for I2O controller */
static struct pci_driver i2o_pci_driver = {
.name = "PCI_I2O",
.id_table = i2o_pci_ids,
.probe = i2o_pci_probe,
.remove = __devexit_p(i2o_pci_remove),
};
/**
* i2o_pci_init - registers I2O PCI driver in PCI subsystem
*
* Returns > 0 on success or negative error code on failure.
*/
int __init i2o_pci_init(void)
{
return pci_register_driver(&i2o_pci_driver);
};
/**
* i2o_pci_exit - unregisters I2O PCI driver from PCI subsystem
*/
void __exit i2o_pci_exit(void)
{
pci_unregister_driver(&i2o_pci_driver);
};
MODULE_DEVICE_TABLE(pci, i2o_pci_ids);