linux-hardened/drivers/gpu/drm/msm/dsi/phy/dsi_phy.c
Dave Airlie 53e155f2bb Merge tag 'drm-msm-next-2019-06-25' of https://gitlab.freedesktop.org/drm/msm into drm-next
+ usual progress on cleanups
+ dsi vs EPROBE_DEFER fixes
+ msm8998 (snapdragon 835 support)
  + a540 gpu support (mesa support already landed)
  + dsi, dsi-phy support
+ mdp5 and dpu interconnect (bus/memory scaling) support
+ initial prep work for per-context pagetables (at least the parts that
  don't have external dependencies like iommu/arm-smmu)

There is one more patch for fixing DSI cmd mode panels (part of a set of
patches to get things working on nexus5), but it would be conflicty with
1cff7440a8 in drm-next without rebasing or back-merge,
and since it doesn't conflict with anything in msm-next, I think it best
if Sean merges that through drm-mix-fixes instead.

(In other news, I've been making some progress w/ getting efifb working
properly on sdm850 laptop without horrible hacks, and drm/msm + clk stuff
not totally falling over when bootloader enables display and things are
already running when driver probes.. but not quite ready yet, hopefully
we can post some of that for 5.4.. should help for both the sdm835 and
sdm850 laptops.)

Signed-off-by: Dave Airlie <airlied@redhat.com>
From: Rob Clark <robdclark@gmail.com>
Link: https://patchwork.freedesktop.org/patch/msgid/CAF6AEGsj3N4XzDLSDoa+4RHZ9wXObYmhcep0M3LjnRg48BeLvg@mail.gmail.com
2019-06-28 10:16:40 +10:00

755 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2015, The Linux Foundation. All rights reserved.
*/
#include <linux/platform_device.h>
#include "dsi_phy.h"
#define S_DIV_ROUND_UP(n, d) \
(((n) >= 0) ? (((n) + (d) - 1) / (d)) : (((n) - (d) + 1) / (d)))
static inline s32 linear_inter(s32 tmax, s32 tmin, s32 percent,
s32 min_result, bool even)
{
s32 v;
v = (tmax - tmin) * percent;
v = S_DIV_ROUND_UP(v, 100) + tmin;
if (even && (v & 0x1))
return max_t(s32, min_result, v - 1);
else
return max_t(s32, min_result, v);
}
static void dsi_dphy_timing_calc_clk_zero(struct msm_dsi_dphy_timing *timing,
s32 ui, s32 coeff, s32 pcnt)
{
s32 tmax, tmin, clk_z;
s32 temp;
/* reset */
temp = 300 * coeff - ((timing->clk_prepare >> 1) + 1) * 2 * ui;
tmin = S_DIV_ROUND_UP(temp, ui) - 2;
if (tmin > 255) {
tmax = 511;
clk_z = linear_inter(2 * tmin, tmin, pcnt, 0, true);
} else {
tmax = 255;
clk_z = linear_inter(tmax, tmin, pcnt, 0, true);
}
/* adjust */
temp = (timing->hs_rqst + timing->clk_prepare + clk_z) & 0x7;
timing->clk_zero = clk_z + 8 - temp;
}
int msm_dsi_dphy_timing_calc(struct msm_dsi_dphy_timing *timing,
struct msm_dsi_phy_clk_request *clk_req)
{
const unsigned long bit_rate = clk_req->bitclk_rate;
const unsigned long esc_rate = clk_req->escclk_rate;
s32 ui, lpx;
s32 tmax, tmin;
s32 pcnt0 = 10;
s32 pcnt1 = (bit_rate > 1200000000) ? 15 : 10;
s32 pcnt2 = 10;
s32 pcnt3 = (bit_rate > 180000000) ? 10 : 40;
s32 coeff = 1000; /* Precision, should avoid overflow */
s32 temp;
if (!bit_rate || !esc_rate)
return -EINVAL;
ui = mult_frac(NSEC_PER_MSEC, coeff, bit_rate / 1000);
lpx = mult_frac(NSEC_PER_MSEC, coeff, esc_rate / 1000);
tmax = S_DIV_ROUND_UP(95 * coeff, ui) - 2;
tmin = S_DIV_ROUND_UP(38 * coeff, ui) - 2;
timing->clk_prepare = linear_inter(tmax, tmin, pcnt0, 0, true);
temp = lpx / ui;
if (temp & 0x1)
timing->hs_rqst = temp;
else
timing->hs_rqst = max_t(s32, 0, temp - 2);
/* Calculate clk_zero after clk_prepare and hs_rqst */
dsi_dphy_timing_calc_clk_zero(timing, ui, coeff, pcnt2);
temp = 105 * coeff + 12 * ui - 20 * coeff;
tmax = S_DIV_ROUND_UP(temp, ui) - 2;
tmin = S_DIV_ROUND_UP(60 * coeff, ui) - 2;
timing->clk_trail = linear_inter(tmax, tmin, pcnt3, 0, true);
temp = 85 * coeff + 6 * ui;
tmax = S_DIV_ROUND_UP(temp, ui) - 2;
temp = 40 * coeff + 4 * ui;
tmin = S_DIV_ROUND_UP(temp, ui) - 2;
timing->hs_prepare = linear_inter(tmax, tmin, pcnt1, 0, true);
tmax = 255;
temp = ((timing->hs_prepare >> 1) + 1) * 2 * ui + 2 * ui;
temp = 145 * coeff + 10 * ui - temp;
tmin = S_DIV_ROUND_UP(temp, ui) - 2;
timing->hs_zero = linear_inter(tmax, tmin, pcnt2, 24, true);
temp = 105 * coeff + 12 * ui - 20 * coeff;
tmax = S_DIV_ROUND_UP(temp, ui) - 2;
temp = 60 * coeff + 4 * ui;
tmin = DIV_ROUND_UP(temp, ui) - 2;
timing->hs_trail = linear_inter(tmax, tmin, pcnt3, 0, true);
tmax = 255;
tmin = S_DIV_ROUND_UP(100 * coeff, ui) - 2;
timing->hs_exit = linear_inter(tmax, tmin, pcnt2, 0, true);
tmax = 63;
temp = ((timing->hs_exit >> 1) + 1) * 2 * ui;
temp = 60 * coeff + 52 * ui - 24 * ui - temp;
tmin = S_DIV_ROUND_UP(temp, 8 * ui) - 1;
timing->shared_timings.clk_post = linear_inter(tmax, tmin, pcnt2, 0,
false);
tmax = 63;
temp = ((timing->clk_prepare >> 1) + 1) * 2 * ui;
temp += ((timing->clk_zero >> 1) + 1) * 2 * ui;
temp += 8 * ui + lpx;
tmin = S_DIV_ROUND_UP(temp, 8 * ui) - 1;
if (tmin > tmax) {
temp = linear_inter(2 * tmax, tmin, pcnt2, 0, false);
timing->shared_timings.clk_pre = temp >> 1;
timing->shared_timings.clk_pre_inc_by_2 = true;
} else {
timing->shared_timings.clk_pre =
linear_inter(tmax, tmin, pcnt2, 0, false);
timing->shared_timings.clk_pre_inc_by_2 = false;
}
timing->ta_go = 3;
timing->ta_sure = 0;
timing->ta_get = 4;
DBG("PHY timings: %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d",
timing->shared_timings.clk_pre, timing->shared_timings.clk_post,
timing->shared_timings.clk_pre_inc_by_2, timing->clk_zero,
timing->clk_trail, timing->clk_prepare, timing->hs_exit,
timing->hs_zero, timing->hs_prepare, timing->hs_trail,
timing->hs_rqst);
return 0;
}
int msm_dsi_dphy_timing_calc_v2(struct msm_dsi_dphy_timing *timing,
struct msm_dsi_phy_clk_request *clk_req)
{
const unsigned long bit_rate = clk_req->bitclk_rate;
const unsigned long esc_rate = clk_req->escclk_rate;
s32 ui, ui_x8, lpx;
s32 tmax, tmin;
s32 pcnt0 = 50;
s32 pcnt1 = 50;
s32 pcnt2 = 10;
s32 pcnt3 = 30;
s32 pcnt4 = 10;
s32 pcnt5 = 2;
s32 coeff = 1000; /* Precision, should avoid overflow */
s32 hb_en, hb_en_ckln, pd_ckln, pd;
s32 val, val_ckln;
s32 temp;
if (!bit_rate || !esc_rate)
return -EINVAL;
timing->hs_halfbyte_en = 0;
hb_en = 0;
timing->hs_halfbyte_en_ckln = 0;
hb_en_ckln = 0;
timing->hs_prep_dly_ckln = (bit_rate > 100000000) ? 0 : 3;
pd_ckln = timing->hs_prep_dly_ckln;
timing->hs_prep_dly = (bit_rate > 120000000) ? 0 : 1;
pd = timing->hs_prep_dly;
val = (hb_en << 2) + (pd << 1);
val_ckln = (hb_en_ckln << 2) + (pd_ckln << 1);
ui = mult_frac(NSEC_PER_MSEC, coeff, bit_rate / 1000);
ui_x8 = ui << 3;
lpx = mult_frac(NSEC_PER_MSEC, coeff, esc_rate / 1000);
temp = S_DIV_ROUND_UP(38 * coeff - val_ckln * ui, ui_x8);
tmin = max_t(s32, temp, 0);
temp = (95 * coeff - val_ckln * ui) / ui_x8;
tmax = max_t(s32, temp, 0);
timing->clk_prepare = linear_inter(tmax, tmin, pcnt0, 0, false);
temp = 300 * coeff - ((timing->clk_prepare << 3) + val_ckln) * ui;
tmin = S_DIV_ROUND_UP(temp - 11 * ui, ui_x8) - 3;
tmax = (tmin > 255) ? 511 : 255;
timing->clk_zero = linear_inter(tmax, tmin, pcnt5, 0, false);
tmin = DIV_ROUND_UP(60 * coeff + 3 * ui, ui_x8);
temp = 105 * coeff + 12 * ui - 20 * coeff;
tmax = (temp + 3 * ui) / ui_x8;
timing->clk_trail = linear_inter(tmax, tmin, pcnt3, 0, false);
temp = S_DIV_ROUND_UP(40 * coeff + 4 * ui - val * ui, ui_x8);
tmin = max_t(s32, temp, 0);
temp = (85 * coeff + 6 * ui - val * ui) / ui_x8;
tmax = max_t(s32, temp, 0);
timing->hs_prepare = linear_inter(tmax, tmin, pcnt1, 0, false);
temp = 145 * coeff + 10 * ui - ((timing->hs_prepare << 3) + val) * ui;
tmin = S_DIV_ROUND_UP(temp - 11 * ui, ui_x8) - 3;
tmax = 255;
timing->hs_zero = linear_inter(tmax, tmin, pcnt4, 0, false);
tmin = DIV_ROUND_UP(60 * coeff + 4 * ui + 3 * ui, ui_x8);
temp = 105 * coeff + 12 * ui - 20 * coeff;
tmax = (temp + 3 * ui) / ui_x8;
timing->hs_trail = linear_inter(tmax, tmin, pcnt3, 0, false);
temp = 50 * coeff + ((hb_en << 2) - 8) * ui;
timing->hs_rqst = S_DIV_ROUND_UP(temp, ui_x8);
tmin = DIV_ROUND_UP(100 * coeff, ui_x8) - 1;
tmax = 255;
timing->hs_exit = linear_inter(tmax, tmin, pcnt2, 0, false);
temp = 50 * coeff + ((hb_en_ckln << 2) - 8) * ui;
timing->hs_rqst_ckln = S_DIV_ROUND_UP(temp, ui_x8);
temp = 60 * coeff + 52 * ui - 43 * ui;
tmin = DIV_ROUND_UP(temp, ui_x8) - 1;
tmax = 63;
timing->shared_timings.clk_post =
linear_inter(tmax, tmin, pcnt2, 0, false);
temp = 8 * ui + ((timing->clk_prepare << 3) + val_ckln) * ui;
temp += (((timing->clk_zero + 3) << 3) + 11 - (pd_ckln << 1)) * ui;
temp += hb_en_ckln ? (((timing->hs_rqst_ckln << 3) + 4) * ui) :
(((timing->hs_rqst_ckln << 3) + 8) * ui);
tmin = S_DIV_ROUND_UP(temp, ui_x8) - 1;
tmax = 63;
if (tmin > tmax) {
temp = linear_inter(tmax << 1, tmin, pcnt2, 0, false);
timing->shared_timings.clk_pre = temp >> 1;
timing->shared_timings.clk_pre_inc_by_2 = 1;
} else {
timing->shared_timings.clk_pre =
linear_inter(tmax, tmin, pcnt2, 0, false);
timing->shared_timings.clk_pre_inc_by_2 = 0;
}
timing->ta_go = 3;
timing->ta_sure = 0;
timing->ta_get = 4;
DBG("%d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d",
timing->shared_timings.clk_pre, timing->shared_timings.clk_post,
timing->shared_timings.clk_pre_inc_by_2, timing->clk_zero,
timing->clk_trail, timing->clk_prepare, timing->hs_exit,
timing->hs_zero, timing->hs_prepare, timing->hs_trail,
timing->hs_rqst, timing->hs_rqst_ckln, timing->hs_halfbyte_en,
timing->hs_halfbyte_en_ckln, timing->hs_prep_dly,
timing->hs_prep_dly_ckln);
return 0;
}
int msm_dsi_dphy_timing_calc_v3(struct msm_dsi_dphy_timing *timing,
struct msm_dsi_phy_clk_request *clk_req)
{
const unsigned long bit_rate = clk_req->bitclk_rate;
const unsigned long esc_rate = clk_req->escclk_rate;
s32 ui, ui_x8, lpx;
s32 tmax, tmin;
s32 pcnt0 = 50;
s32 pcnt1 = 50;
s32 pcnt2 = 10;
s32 pcnt3 = 30;
s32 pcnt4 = 10;
s32 pcnt5 = 2;
s32 coeff = 1000; /* Precision, should avoid overflow */
s32 hb_en, hb_en_ckln;
s32 temp;
if (!bit_rate || !esc_rate)
return -EINVAL;
timing->hs_halfbyte_en = 0;
hb_en = 0;
timing->hs_halfbyte_en_ckln = 0;
hb_en_ckln = 0;
ui = mult_frac(NSEC_PER_MSEC, coeff, bit_rate / 1000);
ui_x8 = ui << 3;
lpx = mult_frac(NSEC_PER_MSEC, coeff, esc_rate / 1000);
temp = S_DIV_ROUND_UP(38 * coeff, ui_x8);
tmin = max_t(s32, temp, 0);
temp = (95 * coeff) / ui_x8;
tmax = max_t(s32, temp, 0);
timing->clk_prepare = linear_inter(tmax, tmin, pcnt0, 0, false);
temp = 300 * coeff - (timing->clk_prepare << 3) * ui;
tmin = S_DIV_ROUND_UP(temp, ui_x8) - 1;
tmax = (tmin > 255) ? 511 : 255;
timing->clk_zero = linear_inter(tmax, tmin, pcnt5, 0, false);
tmin = DIV_ROUND_UP(60 * coeff + 3 * ui, ui_x8);
temp = 105 * coeff + 12 * ui - 20 * coeff;
tmax = (temp + 3 * ui) / ui_x8;
timing->clk_trail = linear_inter(tmax, tmin, pcnt3, 0, false);
temp = S_DIV_ROUND_UP(40 * coeff + 4 * ui, ui_x8);
tmin = max_t(s32, temp, 0);
temp = (85 * coeff + 6 * ui) / ui_x8;
tmax = max_t(s32, temp, 0);
timing->hs_prepare = linear_inter(tmax, tmin, pcnt1, 0, false);
temp = 145 * coeff + 10 * ui - (timing->hs_prepare << 3) * ui;
tmin = S_DIV_ROUND_UP(temp, ui_x8) - 1;
tmax = 255;
timing->hs_zero = linear_inter(tmax, tmin, pcnt4, 0, false);
tmin = DIV_ROUND_UP(60 * coeff + 4 * ui, ui_x8) - 1;
temp = 105 * coeff + 12 * ui - 20 * coeff;
tmax = (temp / ui_x8) - 1;
timing->hs_trail = linear_inter(tmax, tmin, pcnt3, 0, false);
temp = 50 * coeff + ((hb_en << 2) - 8) * ui;
timing->hs_rqst = S_DIV_ROUND_UP(temp, ui_x8);
tmin = DIV_ROUND_UP(100 * coeff, ui_x8) - 1;
tmax = 255;
timing->hs_exit = linear_inter(tmax, tmin, pcnt2, 0, false);
temp = 50 * coeff + ((hb_en_ckln << 2) - 8) * ui;
timing->hs_rqst_ckln = S_DIV_ROUND_UP(temp, ui_x8);
temp = 60 * coeff + 52 * ui - 43 * ui;
tmin = DIV_ROUND_UP(temp, ui_x8) - 1;
tmax = 63;
timing->shared_timings.clk_post =
linear_inter(tmax, tmin, pcnt2, 0, false);
temp = 8 * ui + (timing->clk_prepare << 3) * ui;
temp += (((timing->clk_zero + 3) << 3) + 11) * ui;
temp += hb_en_ckln ? (((timing->hs_rqst_ckln << 3) + 4) * ui) :
(((timing->hs_rqst_ckln << 3) + 8) * ui);
tmin = S_DIV_ROUND_UP(temp, ui_x8) - 1;
tmax = 63;
if (tmin > tmax) {
temp = linear_inter(tmax << 1, tmin, pcnt2, 0, false);
timing->shared_timings.clk_pre = temp >> 1;
timing->shared_timings.clk_pre_inc_by_2 = 1;
} else {
timing->shared_timings.clk_pre =
linear_inter(tmax, tmin, pcnt2, 0, false);
timing->shared_timings.clk_pre_inc_by_2 = 0;
}
timing->ta_go = 3;
timing->ta_sure = 0;
timing->ta_get = 4;
DBG("%d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d",
timing->shared_timings.clk_pre, timing->shared_timings.clk_post,
timing->shared_timings.clk_pre_inc_by_2, timing->clk_zero,
timing->clk_trail, timing->clk_prepare, timing->hs_exit,
timing->hs_zero, timing->hs_prepare, timing->hs_trail,
timing->hs_rqst, timing->hs_rqst_ckln, timing->hs_halfbyte_en,
timing->hs_halfbyte_en_ckln, timing->hs_prep_dly,
timing->hs_prep_dly_ckln);
return 0;
}
void msm_dsi_phy_set_src_pll(struct msm_dsi_phy *phy, int pll_id, u32 reg,
u32 bit_mask)
{
int phy_id = phy->id;
u32 val;
if ((phy_id >= DSI_MAX) || (pll_id >= DSI_MAX))
return;
val = dsi_phy_read(phy->base + reg);
if (phy->cfg->src_pll_truthtable[phy_id][pll_id])
dsi_phy_write(phy->base + reg, val | bit_mask);
else
dsi_phy_write(phy->base + reg, val & (~bit_mask));
}
static int dsi_phy_regulator_init(struct msm_dsi_phy *phy)
{
struct regulator_bulk_data *s = phy->supplies;
const struct dsi_reg_entry *regs = phy->cfg->reg_cfg.regs;
struct device *dev = &phy->pdev->dev;
int num = phy->cfg->reg_cfg.num;
int i, ret;
for (i = 0; i < num; i++)
s[i].supply = regs[i].name;
ret = devm_regulator_bulk_get(dev, num, s);
if (ret < 0) {
DRM_DEV_ERROR(dev, "%s: failed to init regulator, ret=%d\n",
__func__, ret);
return ret;
}
return 0;
}
static void dsi_phy_regulator_disable(struct msm_dsi_phy *phy)
{
struct regulator_bulk_data *s = phy->supplies;
const struct dsi_reg_entry *regs = phy->cfg->reg_cfg.regs;
int num = phy->cfg->reg_cfg.num;
int i;
DBG("");
for (i = num - 1; i >= 0; i--)
if (regs[i].disable_load >= 0)
regulator_set_load(s[i].consumer, regs[i].disable_load);
regulator_bulk_disable(num, s);
}
static int dsi_phy_regulator_enable(struct msm_dsi_phy *phy)
{
struct regulator_bulk_data *s = phy->supplies;
const struct dsi_reg_entry *regs = phy->cfg->reg_cfg.regs;
struct device *dev = &phy->pdev->dev;
int num = phy->cfg->reg_cfg.num;
int ret, i;
DBG("");
for (i = 0; i < num; i++) {
if (regs[i].enable_load >= 0) {
ret = regulator_set_load(s[i].consumer,
regs[i].enable_load);
if (ret < 0) {
DRM_DEV_ERROR(dev,
"regulator %d set op mode failed, %d\n",
i, ret);
goto fail;
}
}
}
ret = regulator_bulk_enable(num, s);
if (ret < 0) {
DRM_DEV_ERROR(dev, "regulator enable failed, %d\n", ret);
goto fail;
}
return 0;
fail:
for (i--; i >= 0; i--)
regulator_set_load(s[i].consumer, regs[i].disable_load);
return ret;
}
static int dsi_phy_enable_resource(struct msm_dsi_phy *phy)
{
struct device *dev = &phy->pdev->dev;
int ret;
pm_runtime_get_sync(dev);
ret = clk_prepare_enable(phy->ahb_clk);
if (ret) {
DRM_DEV_ERROR(dev, "%s: can't enable ahb clk, %d\n", __func__, ret);
pm_runtime_put_sync(dev);
}
return ret;
}
static void dsi_phy_disable_resource(struct msm_dsi_phy *phy)
{
clk_disable_unprepare(phy->ahb_clk);
pm_runtime_put_autosuspend(&phy->pdev->dev);
}
static const struct of_device_id dsi_phy_dt_match[] = {
#ifdef CONFIG_DRM_MSM_DSI_28NM_PHY
{ .compatible = "qcom,dsi-phy-28nm-hpm",
.data = &dsi_phy_28nm_hpm_cfgs },
{ .compatible = "qcom,dsi-phy-28nm-lp",
.data = &dsi_phy_28nm_lp_cfgs },
#endif
#ifdef CONFIG_DRM_MSM_DSI_20NM_PHY
{ .compatible = "qcom,dsi-phy-20nm",
.data = &dsi_phy_20nm_cfgs },
#endif
#ifdef CONFIG_DRM_MSM_DSI_28NM_8960_PHY
{ .compatible = "qcom,dsi-phy-28nm-8960",
.data = &dsi_phy_28nm_8960_cfgs },
#endif
#ifdef CONFIG_DRM_MSM_DSI_14NM_PHY
{ .compatible = "qcom,dsi-phy-14nm",
.data = &dsi_phy_14nm_cfgs },
#endif
#ifdef CONFIG_DRM_MSM_DSI_10NM_PHY
{ .compatible = "qcom,dsi-phy-10nm",
.data = &dsi_phy_10nm_cfgs },
{ .compatible = "qcom,dsi-phy-10nm-8998",
.data = &dsi_phy_10nm_8998_cfgs },
#endif
{}
};
/*
* Currently, we only support one SoC for each PHY type. When we have multiple
* SoCs for the same PHY, we can try to make the index searching a bit more
* clever.
*/
static int dsi_phy_get_id(struct msm_dsi_phy *phy)
{
struct platform_device *pdev = phy->pdev;
const struct msm_dsi_phy_cfg *cfg = phy->cfg;
struct resource *res;
int i;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dsi_phy");
if (!res)
return -EINVAL;
for (i = 0; i < cfg->num_dsi_phy; i++) {
if (cfg->io_start[i] == res->start)
return i;
}
return -EINVAL;
}
int msm_dsi_phy_init_common(struct msm_dsi_phy *phy)
{
struct platform_device *pdev = phy->pdev;
int ret = 0;
phy->reg_base = msm_ioremap(pdev, "dsi_phy_regulator",
"DSI_PHY_REG");
if (IS_ERR(phy->reg_base)) {
DRM_DEV_ERROR(&pdev->dev, "%s: failed to map phy regulator base\n",
__func__);
ret = -ENOMEM;
goto fail;
}
fail:
return ret;
}
static int dsi_phy_driver_probe(struct platform_device *pdev)
{
struct msm_dsi_phy *phy;
struct device *dev = &pdev->dev;
const struct of_device_id *match;
int ret;
phy = devm_kzalloc(dev, sizeof(*phy), GFP_KERNEL);
if (!phy)
return -ENOMEM;
match = of_match_node(dsi_phy_dt_match, dev->of_node);
if (!match)
return -ENODEV;
phy->cfg = match->data;
phy->pdev = pdev;
phy->id = dsi_phy_get_id(phy);
if (phy->id < 0) {
ret = phy->id;
DRM_DEV_ERROR(dev, "%s: couldn't identify PHY index, %d\n",
__func__, ret);
goto fail;
}
phy->regulator_ldo_mode = of_property_read_bool(dev->of_node,
"qcom,dsi-phy-regulator-ldo-mode");
phy->base = msm_ioremap(pdev, "dsi_phy", "DSI_PHY");
if (IS_ERR(phy->base)) {
DRM_DEV_ERROR(dev, "%s: failed to map phy base\n", __func__);
ret = -ENOMEM;
goto fail;
}
ret = dsi_phy_regulator_init(phy);
if (ret) {
DRM_DEV_ERROR(dev, "%s: failed to init regulator\n", __func__);
goto fail;
}
phy->ahb_clk = msm_clk_get(pdev, "iface");
if (IS_ERR(phy->ahb_clk)) {
DRM_DEV_ERROR(dev, "%s: Unable to get ahb clk\n", __func__);
ret = PTR_ERR(phy->ahb_clk);
goto fail;
}
if (phy->cfg->ops.init) {
ret = phy->cfg->ops.init(phy);
if (ret)
goto fail;
}
/* PLL init will call into clk_register which requires
* register access, so we need to enable power and ahb clock.
*/
ret = dsi_phy_enable_resource(phy);
if (ret)
goto fail;
phy->pll = msm_dsi_pll_init(pdev, phy->cfg->type, phy->id);
if (IS_ERR_OR_NULL(phy->pll)) {
DRM_DEV_INFO(dev,
"%s: pll init failed: %ld, need separate pll clk driver\n",
__func__, PTR_ERR(phy->pll));
phy->pll = NULL;
}
dsi_phy_disable_resource(phy);
platform_set_drvdata(pdev, phy);
return 0;
fail:
return ret;
}
static int dsi_phy_driver_remove(struct platform_device *pdev)
{
struct msm_dsi_phy *phy = platform_get_drvdata(pdev);
if (phy && phy->pll) {
msm_dsi_pll_destroy(phy->pll);
phy->pll = NULL;
}
platform_set_drvdata(pdev, NULL);
return 0;
}
static struct platform_driver dsi_phy_platform_driver = {
.probe = dsi_phy_driver_probe,
.remove = dsi_phy_driver_remove,
.driver = {
.name = "msm_dsi_phy",
.of_match_table = dsi_phy_dt_match,
},
};
void __init msm_dsi_phy_driver_register(void)
{
platform_driver_register(&dsi_phy_platform_driver);
}
void __exit msm_dsi_phy_driver_unregister(void)
{
platform_driver_unregister(&dsi_phy_platform_driver);
}
int msm_dsi_phy_enable(struct msm_dsi_phy *phy, int src_pll_id,
struct msm_dsi_phy_clk_request *clk_req)
{
struct device *dev = &phy->pdev->dev;
int ret;
if (!phy || !phy->cfg->ops.enable)
return -EINVAL;
ret = dsi_phy_enable_resource(phy);
if (ret) {
DRM_DEV_ERROR(dev, "%s: resource enable failed, %d\n",
__func__, ret);
goto res_en_fail;
}
ret = dsi_phy_regulator_enable(phy);
if (ret) {
DRM_DEV_ERROR(dev, "%s: regulator enable failed, %d\n",
__func__, ret);
goto reg_en_fail;
}
ret = phy->cfg->ops.enable(phy, src_pll_id, clk_req);
if (ret) {
DRM_DEV_ERROR(dev, "%s: phy enable failed, %d\n", __func__, ret);
goto phy_en_fail;
}
/*
* Resetting DSI PHY silently changes its PLL registers to reset status,
* which will confuse clock driver and result in wrong output rate of
* link clocks. Restore PLL status if its PLL is being used as clock
* source.
*/
if (phy->usecase != MSM_DSI_PHY_SLAVE) {
ret = msm_dsi_pll_restore_state(phy->pll);
if (ret) {
DRM_DEV_ERROR(dev, "%s: failed to restore pll state, %d\n",
__func__, ret);
goto pll_restor_fail;
}
}
return 0;
pll_restor_fail:
if (phy->cfg->ops.disable)
phy->cfg->ops.disable(phy);
phy_en_fail:
dsi_phy_regulator_disable(phy);
reg_en_fail:
dsi_phy_disable_resource(phy);
res_en_fail:
return ret;
}
void msm_dsi_phy_disable(struct msm_dsi_phy *phy)
{
if (!phy || !phy->cfg->ops.disable)
return;
/* Save PLL status if it is a clock source */
if (phy->usecase != MSM_DSI_PHY_SLAVE)
msm_dsi_pll_save_state(phy->pll);
phy->cfg->ops.disable(phy);
dsi_phy_regulator_disable(phy);
dsi_phy_disable_resource(phy);
}
void msm_dsi_phy_get_shared_timings(struct msm_dsi_phy *phy,
struct msm_dsi_phy_shared_timings *shared_timings)
{
memcpy(shared_timings, &phy->timing.shared_timings,
sizeof(*shared_timings));
}
struct msm_dsi_pll *msm_dsi_phy_get_pll(struct msm_dsi_phy *phy)
{
if (!phy)
return NULL;
return phy->pll;
}
void msm_dsi_phy_set_usecase(struct msm_dsi_phy *phy,
enum msm_dsi_phy_usecase uc)
{
if (phy)
phy->usecase = uc;
}