linux-hardened/drivers/dma/cppi41.c
Kiran Padwal f0f3b5fa75 dma: cppi41: Switch to using managed resource in probe
This change uses managed resource APIs to allocate resources such as,
mem, irq in order to simplify the driver unload or failure cases

Signed-off-by: Kiran Padwal <kiran.padwal@smartplayin.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
2014-10-15 20:26:45 +05:30

1099 lines
25 KiB
C

#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/platform_device.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/slab.h>
#include <linux/of_dma.h>
#include <linux/of_irq.h>
#include <linux/dmapool.h>
#include <linux/interrupt.h>
#include <linux/of_address.h>
#include <linux/pm_runtime.h>
#include "dmaengine.h"
#define DESC_TYPE 27
#define DESC_TYPE_HOST 0x10
#define DESC_TYPE_TEARD 0x13
#define TD_DESC_IS_RX (1 << 16)
#define TD_DESC_DMA_NUM 10
#define DESC_LENGTH_BITS_NUM 21
#define DESC_TYPE_USB (5 << 26)
#define DESC_PD_COMPLETE (1 << 31)
/* DMA engine */
#define DMA_TDFDQ 4
#define DMA_TXGCR(x) (0x800 + (x) * 0x20)
#define DMA_RXGCR(x) (0x808 + (x) * 0x20)
#define RXHPCRA0 4
#define GCR_CHAN_ENABLE (1 << 31)
#define GCR_TEARDOWN (1 << 30)
#define GCR_STARV_RETRY (1 << 24)
#define GCR_DESC_TYPE_HOST (1 << 14)
/* DMA scheduler */
#define DMA_SCHED_CTRL 0
#define DMA_SCHED_CTRL_EN (1 << 31)
#define DMA_SCHED_WORD(x) ((x) * 4 + 0x800)
#define SCHED_ENTRY0_CHAN(x) ((x) << 0)
#define SCHED_ENTRY0_IS_RX (1 << 7)
#define SCHED_ENTRY1_CHAN(x) ((x) << 8)
#define SCHED_ENTRY1_IS_RX (1 << 15)
#define SCHED_ENTRY2_CHAN(x) ((x) << 16)
#define SCHED_ENTRY2_IS_RX (1 << 23)
#define SCHED_ENTRY3_CHAN(x) ((x) << 24)
#define SCHED_ENTRY3_IS_RX (1 << 31)
/* Queue manager */
/* 4 KiB of memory for descriptors, 2 for each endpoint */
#define ALLOC_DECS_NUM 128
#define DESCS_AREAS 1
#define TOTAL_DESCS_NUM (ALLOC_DECS_NUM * DESCS_AREAS)
#define QMGR_SCRATCH_SIZE (TOTAL_DESCS_NUM * 4)
#define QMGR_LRAM0_BASE 0x80
#define QMGR_LRAM_SIZE 0x84
#define QMGR_LRAM1_BASE 0x88
#define QMGR_MEMBASE(x) (0x1000 + (x) * 0x10)
#define QMGR_MEMCTRL(x) (0x1004 + (x) * 0x10)
#define QMGR_MEMCTRL_IDX_SH 16
#define QMGR_MEMCTRL_DESC_SH 8
#define QMGR_NUM_PEND 5
#define QMGR_PEND(x) (0x90 + (x) * 4)
#define QMGR_PENDING_SLOT_Q(x) (x / 32)
#define QMGR_PENDING_BIT_Q(x) (x % 32)
#define QMGR_QUEUE_A(n) (0x2000 + (n) * 0x10)
#define QMGR_QUEUE_B(n) (0x2004 + (n) * 0x10)
#define QMGR_QUEUE_C(n) (0x2008 + (n) * 0x10)
#define QMGR_QUEUE_D(n) (0x200c + (n) * 0x10)
/* Glue layer specific */
/* USBSS / USB AM335x */
#define USBSS_IRQ_STATUS 0x28
#define USBSS_IRQ_ENABLER 0x2c
#define USBSS_IRQ_CLEARR 0x30
#define USBSS_IRQ_PD_COMP (1 << 2)
/* Packet Descriptor */
#define PD2_ZERO_LENGTH (1 << 19)
struct cppi41_channel {
struct dma_chan chan;
struct dma_async_tx_descriptor txd;
struct cppi41_dd *cdd;
struct cppi41_desc *desc;
dma_addr_t desc_phys;
void __iomem *gcr_reg;
int is_tx;
u32 residue;
unsigned int q_num;
unsigned int q_comp_num;
unsigned int port_num;
unsigned td_retry;
unsigned td_queued:1;
unsigned td_seen:1;
unsigned td_desc_seen:1;
};
struct cppi41_desc {
u32 pd0;
u32 pd1;
u32 pd2;
u32 pd3;
u32 pd4;
u32 pd5;
u32 pd6;
u32 pd7;
} __aligned(32);
struct chan_queues {
u16 submit;
u16 complete;
};
struct cppi41_dd {
struct dma_device ddev;
void *qmgr_scratch;
dma_addr_t scratch_phys;
struct cppi41_desc *cd;
dma_addr_t descs_phys;
u32 first_td_desc;
struct cppi41_channel *chan_busy[ALLOC_DECS_NUM];
void __iomem *usbss_mem;
void __iomem *ctrl_mem;
void __iomem *sched_mem;
void __iomem *qmgr_mem;
unsigned int irq;
const struct chan_queues *queues_rx;
const struct chan_queues *queues_tx;
struct chan_queues td_queue;
/* context for suspend/resume */
unsigned int dma_tdfdq;
};
#define FIST_COMPLETION_QUEUE 93
static struct chan_queues usb_queues_tx[] = {
/* USB0 ENDP 1 */
[ 0] = { .submit = 32, .complete = 93},
[ 1] = { .submit = 34, .complete = 94},
[ 2] = { .submit = 36, .complete = 95},
[ 3] = { .submit = 38, .complete = 96},
[ 4] = { .submit = 40, .complete = 97},
[ 5] = { .submit = 42, .complete = 98},
[ 6] = { .submit = 44, .complete = 99},
[ 7] = { .submit = 46, .complete = 100},
[ 8] = { .submit = 48, .complete = 101},
[ 9] = { .submit = 50, .complete = 102},
[10] = { .submit = 52, .complete = 103},
[11] = { .submit = 54, .complete = 104},
[12] = { .submit = 56, .complete = 105},
[13] = { .submit = 58, .complete = 106},
[14] = { .submit = 60, .complete = 107},
/* USB1 ENDP1 */
[15] = { .submit = 62, .complete = 125},
[16] = { .submit = 64, .complete = 126},
[17] = { .submit = 66, .complete = 127},
[18] = { .submit = 68, .complete = 128},
[19] = { .submit = 70, .complete = 129},
[20] = { .submit = 72, .complete = 130},
[21] = { .submit = 74, .complete = 131},
[22] = { .submit = 76, .complete = 132},
[23] = { .submit = 78, .complete = 133},
[24] = { .submit = 80, .complete = 134},
[25] = { .submit = 82, .complete = 135},
[26] = { .submit = 84, .complete = 136},
[27] = { .submit = 86, .complete = 137},
[28] = { .submit = 88, .complete = 138},
[29] = { .submit = 90, .complete = 139},
};
static const struct chan_queues usb_queues_rx[] = {
/* USB0 ENDP 1 */
[ 0] = { .submit = 1, .complete = 109},
[ 1] = { .submit = 2, .complete = 110},
[ 2] = { .submit = 3, .complete = 111},
[ 3] = { .submit = 4, .complete = 112},
[ 4] = { .submit = 5, .complete = 113},
[ 5] = { .submit = 6, .complete = 114},
[ 6] = { .submit = 7, .complete = 115},
[ 7] = { .submit = 8, .complete = 116},
[ 8] = { .submit = 9, .complete = 117},
[ 9] = { .submit = 10, .complete = 118},
[10] = { .submit = 11, .complete = 119},
[11] = { .submit = 12, .complete = 120},
[12] = { .submit = 13, .complete = 121},
[13] = { .submit = 14, .complete = 122},
[14] = { .submit = 15, .complete = 123},
/* USB1 ENDP 1 */
[15] = { .submit = 16, .complete = 141},
[16] = { .submit = 17, .complete = 142},
[17] = { .submit = 18, .complete = 143},
[18] = { .submit = 19, .complete = 144},
[19] = { .submit = 20, .complete = 145},
[20] = { .submit = 21, .complete = 146},
[21] = { .submit = 22, .complete = 147},
[22] = { .submit = 23, .complete = 148},
[23] = { .submit = 24, .complete = 149},
[24] = { .submit = 25, .complete = 150},
[25] = { .submit = 26, .complete = 151},
[26] = { .submit = 27, .complete = 152},
[27] = { .submit = 28, .complete = 153},
[28] = { .submit = 29, .complete = 154},
[29] = { .submit = 30, .complete = 155},
};
struct cppi_glue_infos {
irqreturn_t (*isr)(int irq, void *data);
const struct chan_queues *queues_rx;
const struct chan_queues *queues_tx;
struct chan_queues td_queue;
};
static struct cppi41_channel *to_cpp41_chan(struct dma_chan *c)
{
return container_of(c, struct cppi41_channel, chan);
}
static struct cppi41_channel *desc_to_chan(struct cppi41_dd *cdd, u32 desc)
{
struct cppi41_channel *c;
u32 descs_size;
u32 desc_num;
descs_size = sizeof(struct cppi41_desc) * ALLOC_DECS_NUM;
if (!((desc >= cdd->descs_phys) &&
(desc < (cdd->descs_phys + descs_size)))) {
return NULL;
}
desc_num = (desc - cdd->descs_phys) / sizeof(struct cppi41_desc);
BUG_ON(desc_num >= ALLOC_DECS_NUM);
c = cdd->chan_busy[desc_num];
cdd->chan_busy[desc_num] = NULL;
return c;
}
static void cppi_writel(u32 val, void *__iomem *mem)
{
__raw_writel(val, mem);
}
static u32 cppi_readl(void *__iomem *mem)
{
return __raw_readl(mem);
}
static u32 pd_trans_len(u32 val)
{
return val & ((1 << (DESC_LENGTH_BITS_NUM + 1)) - 1);
}
static u32 cppi41_pop_desc(struct cppi41_dd *cdd, unsigned queue_num)
{
u32 desc;
desc = cppi_readl(cdd->qmgr_mem + QMGR_QUEUE_D(queue_num));
desc &= ~0x1f;
return desc;
}
static irqreturn_t cppi41_irq(int irq, void *data)
{
struct cppi41_dd *cdd = data;
struct cppi41_channel *c;
u32 status;
int i;
status = cppi_readl(cdd->usbss_mem + USBSS_IRQ_STATUS);
if (!(status & USBSS_IRQ_PD_COMP))
return IRQ_NONE;
cppi_writel(status, cdd->usbss_mem + USBSS_IRQ_STATUS);
for (i = QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE); i < QMGR_NUM_PEND;
i++) {
u32 val;
u32 q_num;
val = cppi_readl(cdd->qmgr_mem + QMGR_PEND(i));
if (i == QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE) && val) {
u32 mask;
/* set corresponding bit for completetion Q 93 */
mask = 1 << QMGR_PENDING_BIT_Q(FIST_COMPLETION_QUEUE);
/* not set all bits for queues less than Q 93 */
mask--;
/* now invert and keep only Q 93+ set */
val &= ~mask;
}
if (val)
__iormb();
while (val) {
u32 desc, len;
q_num = __fls(val);
val &= ~(1 << q_num);
q_num += 32 * i;
desc = cppi41_pop_desc(cdd, q_num);
c = desc_to_chan(cdd, desc);
if (WARN_ON(!c)) {
pr_err("%s() q %d desc %08x\n", __func__,
q_num, desc);
continue;
}
if (c->desc->pd2 & PD2_ZERO_LENGTH)
len = 0;
else
len = pd_trans_len(c->desc->pd0);
c->residue = pd_trans_len(c->desc->pd6) - len;
dma_cookie_complete(&c->txd);
c->txd.callback(c->txd.callback_param);
}
}
return IRQ_HANDLED;
}
static dma_cookie_t cppi41_tx_submit(struct dma_async_tx_descriptor *tx)
{
dma_cookie_t cookie;
cookie = dma_cookie_assign(tx);
return cookie;
}
static int cppi41_dma_alloc_chan_resources(struct dma_chan *chan)
{
struct cppi41_channel *c = to_cpp41_chan(chan);
dma_cookie_init(chan);
dma_async_tx_descriptor_init(&c->txd, chan);
c->txd.tx_submit = cppi41_tx_submit;
if (!c->is_tx)
cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
return 0;
}
static void cppi41_dma_free_chan_resources(struct dma_chan *chan)
{
}
static enum dma_status cppi41_dma_tx_status(struct dma_chan *chan,
dma_cookie_t cookie, struct dma_tx_state *txstate)
{
struct cppi41_channel *c = to_cpp41_chan(chan);
enum dma_status ret;
/* lock */
ret = dma_cookie_status(chan, cookie, txstate);
if (txstate && ret == DMA_COMPLETE)
txstate->residue = c->residue;
/* unlock */
return ret;
}
static void push_desc_queue(struct cppi41_channel *c)
{
struct cppi41_dd *cdd = c->cdd;
u32 desc_num;
u32 desc_phys;
u32 reg;
desc_phys = lower_32_bits(c->desc_phys);
desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
WARN_ON(cdd->chan_busy[desc_num]);
cdd->chan_busy[desc_num] = c;
reg = (sizeof(struct cppi41_desc) - 24) / 4;
reg |= desc_phys;
cppi_writel(reg, cdd->qmgr_mem + QMGR_QUEUE_D(c->q_num));
}
static void cppi41_dma_issue_pending(struct dma_chan *chan)
{
struct cppi41_channel *c = to_cpp41_chan(chan);
u32 reg;
c->residue = 0;
reg = GCR_CHAN_ENABLE;
if (!c->is_tx) {
reg |= GCR_STARV_RETRY;
reg |= GCR_DESC_TYPE_HOST;
reg |= c->q_comp_num;
}
cppi_writel(reg, c->gcr_reg);
/*
* We don't use writel() but __raw_writel() so we have to make sure
* that the DMA descriptor in coherent memory made to the main memory
* before starting the dma engine.
*/
__iowmb();
push_desc_queue(c);
}
static u32 get_host_pd0(u32 length)
{
u32 reg;
reg = DESC_TYPE_HOST << DESC_TYPE;
reg |= length;
return reg;
}
static u32 get_host_pd1(struct cppi41_channel *c)
{
u32 reg;
reg = 0;
return reg;
}
static u32 get_host_pd2(struct cppi41_channel *c)
{
u32 reg;
reg = DESC_TYPE_USB;
reg |= c->q_comp_num;
return reg;
}
static u32 get_host_pd3(u32 length)
{
u32 reg;
/* PD3 = packet size */
reg = length;
return reg;
}
static u32 get_host_pd6(u32 length)
{
u32 reg;
/* PD6 buffer size */
reg = DESC_PD_COMPLETE;
reg |= length;
return reg;
}
static u32 get_host_pd4_or_7(u32 addr)
{
u32 reg;
reg = addr;
return reg;
}
static u32 get_host_pd5(void)
{
u32 reg;
reg = 0;
return reg;
}
static struct dma_async_tx_descriptor *cppi41_dma_prep_slave_sg(
struct dma_chan *chan, struct scatterlist *sgl, unsigned sg_len,
enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
{
struct cppi41_channel *c = to_cpp41_chan(chan);
struct cppi41_desc *d;
struct scatterlist *sg;
unsigned int i;
unsigned int num;
num = 0;
d = c->desc;
for_each_sg(sgl, sg, sg_len, i) {
u32 addr;
u32 len;
/* We need to use more than one desc once musb supports sg */
BUG_ON(num > 0);
addr = lower_32_bits(sg_dma_address(sg));
len = sg_dma_len(sg);
d->pd0 = get_host_pd0(len);
d->pd1 = get_host_pd1(c);
d->pd2 = get_host_pd2(c);
d->pd3 = get_host_pd3(len);
d->pd4 = get_host_pd4_or_7(addr);
d->pd5 = get_host_pd5();
d->pd6 = get_host_pd6(len);
d->pd7 = get_host_pd4_or_7(addr);
d++;
}
return &c->txd;
}
static int cpp41_cfg_chan(struct cppi41_channel *c,
struct dma_slave_config *cfg)
{
return 0;
}
static void cppi41_compute_td_desc(struct cppi41_desc *d)
{
d->pd0 = DESC_TYPE_TEARD << DESC_TYPE;
}
static int cppi41_tear_down_chan(struct cppi41_channel *c)
{
struct cppi41_dd *cdd = c->cdd;
struct cppi41_desc *td;
u32 reg;
u32 desc_phys;
u32 td_desc_phys;
td = cdd->cd;
td += cdd->first_td_desc;
td_desc_phys = cdd->descs_phys;
td_desc_phys += cdd->first_td_desc * sizeof(struct cppi41_desc);
if (!c->td_queued) {
cppi41_compute_td_desc(td);
__iowmb();
reg = (sizeof(struct cppi41_desc) - 24) / 4;
reg |= td_desc_phys;
cppi_writel(reg, cdd->qmgr_mem +
QMGR_QUEUE_D(cdd->td_queue.submit));
reg = GCR_CHAN_ENABLE;
if (!c->is_tx) {
reg |= GCR_STARV_RETRY;
reg |= GCR_DESC_TYPE_HOST;
reg |= c->q_comp_num;
}
reg |= GCR_TEARDOWN;
cppi_writel(reg, c->gcr_reg);
c->td_queued = 1;
c->td_retry = 100;
}
if (!c->td_seen || !c->td_desc_seen) {
desc_phys = cppi41_pop_desc(cdd, cdd->td_queue.complete);
if (!desc_phys)
desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
if (desc_phys == c->desc_phys) {
c->td_desc_seen = 1;
} else if (desc_phys == td_desc_phys) {
u32 pd0;
__iormb();
pd0 = td->pd0;
WARN_ON((pd0 >> DESC_TYPE) != DESC_TYPE_TEARD);
WARN_ON(!c->is_tx && !(pd0 & TD_DESC_IS_RX));
WARN_ON((pd0 & 0x1f) != c->port_num);
c->td_seen = 1;
} else if (desc_phys) {
WARN_ON_ONCE(1);
}
}
c->td_retry--;
/*
* If the TX descriptor / channel is in use, the caller needs to poke
* his TD bit multiple times. After that he hardware releases the
* transfer descriptor followed by TD descriptor. Waiting seems not to
* cause any difference.
* RX seems to be thrown out right away. However once the TearDown
* descriptor gets through we are done. If we have seens the transfer
* descriptor before the TD we fetch it from enqueue, it has to be
* there waiting for us.
*/
if (!c->td_seen && c->td_retry)
return -EAGAIN;
WARN_ON(!c->td_retry);
if (!c->td_desc_seen) {
desc_phys = cppi41_pop_desc(cdd, c->q_num);
WARN_ON(!desc_phys);
}
c->td_queued = 0;
c->td_seen = 0;
c->td_desc_seen = 0;
cppi_writel(0, c->gcr_reg);
return 0;
}
static int cppi41_stop_chan(struct dma_chan *chan)
{
struct cppi41_channel *c = to_cpp41_chan(chan);
struct cppi41_dd *cdd = c->cdd;
u32 desc_num;
u32 desc_phys;
int ret;
desc_phys = lower_32_bits(c->desc_phys);
desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
if (!cdd->chan_busy[desc_num])
return 0;
ret = cppi41_tear_down_chan(c);
if (ret)
return ret;
WARN_ON(!cdd->chan_busy[desc_num]);
cdd->chan_busy[desc_num] = NULL;
return 0;
}
static int cppi41_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
unsigned long arg)
{
struct cppi41_channel *c = to_cpp41_chan(chan);
int ret;
switch (cmd) {
case DMA_SLAVE_CONFIG:
ret = cpp41_cfg_chan(c, (struct dma_slave_config *) arg);
break;
case DMA_TERMINATE_ALL:
ret = cppi41_stop_chan(chan);
break;
default:
ret = -ENXIO;
break;
}
return ret;
}
static void cleanup_chans(struct cppi41_dd *cdd)
{
while (!list_empty(&cdd->ddev.channels)) {
struct cppi41_channel *cchan;
cchan = list_first_entry(&cdd->ddev.channels,
struct cppi41_channel, chan.device_node);
list_del(&cchan->chan.device_node);
kfree(cchan);
}
}
static int cppi41_add_chans(struct device *dev, struct cppi41_dd *cdd)
{
struct cppi41_channel *cchan;
int i;
int ret;
u32 n_chans;
ret = of_property_read_u32(dev->of_node, "#dma-channels",
&n_chans);
if (ret)
return ret;
/*
* The channels can only be used as TX or as RX. So we add twice
* that much dma channels because USB can only do RX or TX.
*/
n_chans *= 2;
for (i = 0; i < n_chans; i++) {
cchan = kzalloc(sizeof(*cchan), GFP_KERNEL);
if (!cchan)
goto err;
cchan->cdd = cdd;
if (i & 1) {
cchan->gcr_reg = cdd->ctrl_mem + DMA_TXGCR(i >> 1);
cchan->is_tx = 1;
} else {
cchan->gcr_reg = cdd->ctrl_mem + DMA_RXGCR(i >> 1);
cchan->is_tx = 0;
}
cchan->port_num = i >> 1;
cchan->desc = &cdd->cd[i];
cchan->desc_phys = cdd->descs_phys;
cchan->desc_phys += i * sizeof(struct cppi41_desc);
cchan->chan.device = &cdd->ddev;
list_add_tail(&cchan->chan.device_node, &cdd->ddev.channels);
}
cdd->first_td_desc = n_chans;
return 0;
err:
cleanup_chans(cdd);
return -ENOMEM;
}
static void purge_descs(struct device *dev, struct cppi41_dd *cdd)
{
unsigned int mem_decs;
int i;
mem_decs = ALLOC_DECS_NUM * sizeof(struct cppi41_desc);
for (i = 0; i < DESCS_AREAS; i++) {
cppi_writel(0, cdd->qmgr_mem + QMGR_MEMBASE(i));
cppi_writel(0, cdd->qmgr_mem + QMGR_MEMCTRL(i));
dma_free_coherent(dev, mem_decs, cdd->cd,
cdd->descs_phys);
}
}
static void disable_sched(struct cppi41_dd *cdd)
{
cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
}
static void deinit_cppi41(struct device *dev, struct cppi41_dd *cdd)
{
disable_sched(cdd);
purge_descs(dev, cdd);
cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
dma_free_coherent(dev, QMGR_SCRATCH_SIZE, cdd->qmgr_scratch,
cdd->scratch_phys);
}
static int init_descs(struct device *dev, struct cppi41_dd *cdd)
{
unsigned int desc_size;
unsigned int mem_decs;
int i;
u32 reg;
u32 idx;
BUILD_BUG_ON(sizeof(struct cppi41_desc) &
(sizeof(struct cppi41_desc) - 1));
BUILD_BUG_ON(sizeof(struct cppi41_desc) < 32);
BUILD_BUG_ON(ALLOC_DECS_NUM < 32);
desc_size = sizeof(struct cppi41_desc);
mem_decs = ALLOC_DECS_NUM * desc_size;
idx = 0;
for (i = 0; i < DESCS_AREAS; i++) {
reg = idx << QMGR_MEMCTRL_IDX_SH;
reg |= (ilog2(desc_size) - 5) << QMGR_MEMCTRL_DESC_SH;
reg |= ilog2(ALLOC_DECS_NUM) - 5;
BUILD_BUG_ON(DESCS_AREAS != 1);
cdd->cd = dma_alloc_coherent(dev, mem_decs,
&cdd->descs_phys, GFP_KERNEL);
if (!cdd->cd)
return -ENOMEM;
cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
cppi_writel(reg, cdd->qmgr_mem + QMGR_MEMCTRL(i));
idx += ALLOC_DECS_NUM;
}
return 0;
}
static void init_sched(struct cppi41_dd *cdd)
{
unsigned ch;
unsigned word;
u32 reg;
word = 0;
cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
for (ch = 0; ch < 15 * 2; ch += 2) {
reg = SCHED_ENTRY0_CHAN(ch);
reg |= SCHED_ENTRY1_CHAN(ch) | SCHED_ENTRY1_IS_RX;
reg |= SCHED_ENTRY2_CHAN(ch + 1);
reg |= SCHED_ENTRY3_CHAN(ch + 1) | SCHED_ENTRY3_IS_RX;
cppi_writel(reg, cdd->sched_mem + DMA_SCHED_WORD(word));
word++;
}
reg = 15 * 2 * 2 - 1;
reg |= DMA_SCHED_CTRL_EN;
cppi_writel(reg, cdd->sched_mem + DMA_SCHED_CTRL);
}
static int init_cppi41(struct device *dev, struct cppi41_dd *cdd)
{
int ret;
BUILD_BUG_ON(QMGR_SCRATCH_SIZE > ((1 << 14) - 1));
cdd->qmgr_scratch = dma_alloc_coherent(dev, QMGR_SCRATCH_SIZE,
&cdd->scratch_phys, GFP_KERNEL);
if (!cdd->qmgr_scratch)
return -ENOMEM;
cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
ret = init_descs(dev, cdd);
if (ret)
goto err_td;
cppi_writel(cdd->td_queue.submit, cdd->ctrl_mem + DMA_TDFDQ);
init_sched(cdd);
return 0;
err_td:
deinit_cppi41(dev, cdd);
return ret;
}
static struct platform_driver cpp41_dma_driver;
/*
* The param format is:
* X Y
* X: Port
* Y: 0 = RX else TX
*/
#define INFO_PORT 0
#define INFO_IS_TX 1
static bool cpp41_dma_filter_fn(struct dma_chan *chan, void *param)
{
struct cppi41_channel *cchan;
struct cppi41_dd *cdd;
const struct chan_queues *queues;
u32 *num = param;
if (chan->device->dev->driver != &cpp41_dma_driver.driver)
return false;
cchan = to_cpp41_chan(chan);
if (cchan->port_num != num[INFO_PORT])
return false;
if (cchan->is_tx && !num[INFO_IS_TX])
return false;
cdd = cchan->cdd;
if (cchan->is_tx)
queues = cdd->queues_tx;
else
queues = cdd->queues_rx;
BUILD_BUG_ON(ARRAY_SIZE(usb_queues_rx) != ARRAY_SIZE(usb_queues_tx));
if (WARN_ON(cchan->port_num > ARRAY_SIZE(usb_queues_rx)))
return false;
cchan->q_num = queues[cchan->port_num].submit;
cchan->q_comp_num = queues[cchan->port_num].complete;
return true;
}
static struct of_dma_filter_info cpp41_dma_info = {
.filter_fn = cpp41_dma_filter_fn,
};
static struct dma_chan *cppi41_dma_xlate(struct of_phandle_args *dma_spec,
struct of_dma *ofdma)
{
int count = dma_spec->args_count;
struct of_dma_filter_info *info = ofdma->of_dma_data;
if (!info || !info->filter_fn)
return NULL;
if (count != 2)
return NULL;
return dma_request_channel(info->dma_cap, info->filter_fn,
&dma_spec->args[0]);
}
static const struct cppi_glue_infos usb_infos = {
.isr = cppi41_irq,
.queues_rx = usb_queues_rx,
.queues_tx = usb_queues_tx,
.td_queue = { .submit = 31, .complete = 0 },
};
static const struct of_device_id cppi41_dma_ids[] = {
{ .compatible = "ti,am3359-cppi41", .data = &usb_infos},
{},
};
MODULE_DEVICE_TABLE(of, cppi41_dma_ids);
static const struct cppi_glue_infos *get_glue_info(struct device *dev)
{
const struct of_device_id *of_id;
of_id = of_match_node(cppi41_dma_ids, dev->of_node);
if (!of_id)
return NULL;
return of_id->data;
}
static int cppi41_dma_probe(struct platform_device *pdev)
{
struct cppi41_dd *cdd;
struct device *dev = &pdev->dev;
const struct cppi_glue_infos *glue_info;
int irq;
int ret;
glue_info = get_glue_info(dev);
if (!glue_info)
return -EINVAL;
cdd = devm_kzalloc(&pdev->dev, sizeof(*cdd), GFP_KERNEL);
if (!cdd)
return -ENOMEM;
dma_cap_set(DMA_SLAVE, cdd->ddev.cap_mask);
cdd->ddev.device_alloc_chan_resources = cppi41_dma_alloc_chan_resources;
cdd->ddev.device_free_chan_resources = cppi41_dma_free_chan_resources;
cdd->ddev.device_tx_status = cppi41_dma_tx_status;
cdd->ddev.device_issue_pending = cppi41_dma_issue_pending;
cdd->ddev.device_prep_slave_sg = cppi41_dma_prep_slave_sg;
cdd->ddev.device_control = cppi41_dma_control;
cdd->ddev.dev = dev;
INIT_LIST_HEAD(&cdd->ddev.channels);
cpp41_dma_info.dma_cap = cdd->ddev.cap_mask;
cdd->usbss_mem = of_iomap(dev->of_node, 0);
cdd->ctrl_mem = of_iomap(dev->of_node, 1);
cdd->sched_mem = of_iomap(dev->of_node, 2);
cdd->qmgr_mem = of_iomap(dev->of_node, 3);
if (!cdd->usbss_mem || !cdd->ctrl_mem || !cdd->sched_mem ||
!cdd->qmgr_mem)
return -ENXIO;
pm_runtime_enable(dev);
ret = pm_runtime_get_sync(dev);
if (ret < 0)
goto err_get_sync;
cdd->queues_rx = glue_info->queues_rx;
cdd->queues_tx = glue_info->queues_tx;
cdd->td_queue = glue_info->td_queue;
ret = init_cppi41(dev, cdd);
if (ret)
goto err_init_cppi;
ret = cppi41_add_chans(dev, cdd);
if (ret)
goto err_chans;
irq = irq_of_parse_and_map(dev->of_node, 0);
if (!irq) {
ret = -EINVAL;
goto err_irq;
}
cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER);
ret = devm_request_irq(&pdev->dev, irq, glue_info->isr, IRQF_SHARED,
dev_name(dev), cdd);
if (ret)
goto err_irq;
cdd->irq = irq;
ret = dma_async_device_register(&cdd->ddev);
if (ret)
goto err_dma_reg;
ret = of_dma_controller_register(dev->of_node,
cppi41_dma_xlate, &cpp41_dma_info);
if (ret)
goto err_of;
platform_set_drvdata(pdev, cdd);
return 0;
err_of:
dma_async_device_unregister(&cdd->ddev);
err_dma_reg:
err_irq:
cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
cleanup_chans(cdd);
err_chans:
deinit_cppi41(dev, cdd);
err_init_cppi:
pm_runtime_put(dev);
err_get_sync:
pm_runtime_disable(dev);
iounmap(cdd->usbss_mem);
iounmap(cdd->ctrl_mem);
iounmap(cdd->sched_mem);
iounmap(cdd->qmgr_mem);
return ret;
}
static int cppi41_dma_remove(struct platform_device *pdev)
{
struct cppi41_dd *cdd = platform_get_drvdata(pdev);
of_dma_controller_free(pdev->dev.of_node);
dma_async_device_unregister(&cdd->ddev);
cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
devm_free_irq(&pdev->dev, cdd->irq, cdd);
cleanup_chans(cdd);
deinit_cppi41(&pdev->dev, cdd);
iounmap(cdd->usbss_mem);
iounmap(cdd->ctrl_mem);
iounmap(cdd->sched_mem);
iounmap(cdd->qmgr_mem);
pm_runtime_put(&pdev->dev);
pm_runtime_disable(&pdev->dev);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int cppi41_suspend(struct device *dev)
{
struct cppi41_dd *cdd = dev_get_drvdata(dev);
cdd->dma_tdfdq = cppi_readl(cdd->ctrl_mem + DMA_TDFDQ);
cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
disable_sched(cdd);
return 0;
}
static int cppi41_resume(struct device *dev)
{
struct cppi41_dd *cdd = dev_get_drvdata(dev);
struct cppi41_channel *c;
int i;
for (i = 0; i < DESCS_AREAS; i++)
cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
list_for_each_entry(c, &cdd->ddev.channels, chan.device_node)
if (!c->is_tx)
cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
init_sched(cdd);
cppi_writel(cdd->dma_tdfdq, cdd->ctrl_mem + DMA_TDFDQ);
cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER);
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(cppi41_pm_ops, cppi41_suspend, cppi41_resume);
static struct platform_driver cpp41_dma_driver = {
.probe = cppi41_dma_probe,
.remove = cppi41_dma_remove,
.driver = {
.name = "cppi41-dma-engine",
.owner = THIS_MODULE,
.pm = &cppi41_pm_ops,
.of_match_table = of_match_ptr(cppi41_dma_ids),
},
};
module_platform_driver(cpp41_dma_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Sebastian Andrzej Siewior <bigeasy@linutronix.de>");