linux-hardened/drivers/tty/serial/mpsc.c
Jingoo Han 5c02fab62e serial: mpsc: Remove casting the return value which is a void pointer
Casting the return value which is a void pointer is redundant.
The conversion from void pointer to any other pointer type is
guaranteed by the C programming language.

Signed-off-by: Jingoo Han <jg1.han@samsung.com>
Acked-by: Vineet Gupta <vgupta@synopsys.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-09-26 14:29:58 -07:00

2163 lines
56 KiB
C

/*
* Generic driver for the MPSC (UART mode) on Marvell parts (e.g., GT64240,
* GT64260, MV64340, MV64360, GT96100, ... ).
*
* Author: Mark A. Greer <mgreer@mvista.com>
*
* Based on an old MPSC driver that was in the linuxppc tree. It appears to
* have been created by Chris Zankel (formerly of MontaVista) but there
* is no proper Copyright so I'm not sure. Apparently, parts were also
* taken from PPCBoot (now U-Boot). Also based on drivers/serial/8250.c
* by Russell King.
*
* 2004 (c) MontaVista, Software, Inc. This file is licensed under
* the terms of the GNU General Public License version 2. This program
* is licensed "as is" without any warranty of any kind, whether express
* or implied.
*/
/*
* The MPSC interface is much like a typical network controller's interface.
* That is, you set up separate rings of descriptors for transmitting and
* receiving data. There is also a pool of buffers with (one buffer per
* descriptor) that incoming data are dma'd into or outgoing data are dma'd
* out of.
*
* The MPSC requires two other controllers to be able to work. The Baud Rate
* Generator (BRG) provides a clock at programmable frequencies which determines
* the baud rate. The Serial DMA Controller (SDMA) takes incoming data from the
* MPSC and DMA's it into memory or DMA's outgoing data and passes it to the
* MPSC. It is actually the SDMA interrupt that the driver uses to keep the
* transmit and receive "engines" going (i.e., indicate data has been
* transmitted or received).
*
* NOTES:
*
* 1) Some chips have an erratum where several regs cannot be
* read. To work around that, we keep a local copy of those regs in
* 'mpsc_port_info'.
*
* 2) Some chips have an erratum where the ctlr will hang when the SDMA ctlr
* accesses system mem with coherency enabled. For that reason, the driver
* assumes that coherency for that ctlr has been disabled. This means
* that when in a cache coherent system, the driver has to manually manage
* the data cache on the areas that it touches because the dma_* macro are
* basically no-ops.
*
* 3) There is an erratum (on PPC) where you can't use the instruction to do
* a DMA_TO_DEVICE/cache clean so DMA_BIDIRECTIONAL/flushes are used in places
* where a DMA_TO_DEVICE/clean would have [otherwise] sufficed.
*
* 4) AFAICT, hardware flow control isn't supported by the controller --MAG.
*/
#if defined(CONFIG_SERIAL_MPSC_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
#define SUPPORT_SYSRQ
#endif
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>
#include <linux/ioport.h>
#include <linux/init.h>
#include <linux/console.h>
#include <linux/sysrq.h>
#include <linux/serial.h>
#include <linux/serial_core.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/mv643xx.h>
#include <linux/platform_device.h>
#include <linux/gfp.h>
#include <asm/io.h>
#include <asm/irq.h>
#define MPSC_NUM_CTLRS 2
/*
* Descriptors and buffers must be cache line aligned.
* Buffers lengths must be multiple of cache line size.
* Number of Tx & Rx descriptors must be powers of 2.
*/
#define MPSC_RXR_ENTRIES 32
#define MPSC_RXRE_SIZE dma_get_cache_alignment()
#define MPSC_RXR_SIZE (MPSC_RXR_ENTRIES * MPSC_RXRE_SIZE)
#define MPSC_RXBE_SIZE dma_get_cache_alignment()
#define MPSC_RXB_SIZE (MPSC_RXR_ENTRIES * MPSC_RXBE_SIZE)
#define MPSC_TXR_ENTRIES 32
#define MPSC_TXRE_SIZE dma_get_cache_alignment()
#define MPSC_TXR_SIZE (MPSC_TXR_ENTRIES * MPSC_TXRE_SIZE)
#define MPSC_TXBE_SIZE dma_get_cache_alignment()
#define MPSC_TXB_SIZE (MPSC_TXR_ENTRIES * MPSC_TXBE_SIZE)
#define MPSC_DMA_ALLOC_SIZE (MPSC_RXR_SIZE + MPSC_RXB_SIZE + MPSC_TXR_SIZE \
+ MPSC_TXB_SIZE + dma_get_cache_alignment() /* for alignment */)
/* Rx and Tx Ring entry descriptors -- assume entry size is <= cacheline size */
struct mpsc_rx_desc {
u16 bufsize;
u16 bytecnt;
u32 cmdstat;
u32 link;
u32 buf_ptr;
} __attribute((packed));
struct mpsc_tx_desc {
u16 bytecnt;
u16 shadow;
u32 cmdstat;
u32 link;
u32 buf_ptr;
} __attribute((packed));
/*
* Some regs that have the erratum that you can't read them are are shared
* between the two MPSC controllers. This struct contains those shared regs.
*/
struct mpsc_shared_regs {
phys_addr_t mpsc_routing_base_p;
phys_addr_t sdma_intr_base_p;
void __iomem *mpsc_routing_base;
void __iomem *sdma_intr_base;
u32 MPSC_MRR_m;
u32 MPSC_RCRR_m;
u32 MPSC_TCRR_m;
u32 SDMA_INTR_CAUSE_m;
u32 SDMA_INTR_MASK_m;
};
/* The main driver data structure */
struct mpsc_port_info {
struct uart_port port; /* Overlay uart_port structure */
/* Internal driver state for this ctlr */
u8 ready;
u8 rcv_data;
tcflag_t c_iflag; /* save termios->c_iflag */
tcflag_t c_cflag; /* save termios->c_cflag */
/* Info passed in from platform */
u8 mirror_regs; /* Need to mirror regs? */
u8 cache_mgmt; /* Need manual cache mgmt? */
u8 brg_can_tune; /* BRG has baud tuning? */
u32 brg_clk_src;
u16 mpsc_max_idle;
int default_baud;
int default_bits;
int default_parity;
int default_flow;
/* Physical addresses of various blocks of registers (from platform) */
phys_addr_t mpsc_base_p;
phys_addr_t sdma_base_p;
phys_addr_t brg_base_p;
/* Virtual addresses of various blocks of registers (from platform) */
void __iomem *mpsc_base;
void __iomem *sdma_base;
void __iomem *brg_base;
/* Descriptor ring and buffer allocations */
void *dma_region;
dma_addr_t dma_region_p;
dma_addr_t rxr; /* Rx descriptor ring */
dma_addr_t rxr_p; /* Phys addr of rxr */
u8 *rxb; /* Rx Ring I/O buf */
u8 *rxb_p; /* Phys addr of rxb */
u32 rxr_posn; /* First desc w/ Rx data */
dma_addr_t txr; /* Tx descriptor ring */
dma_addr_t txr_p; /* Phys addr of txr */
u8 *txb; /* Tx Ring I/O buf */
u8 *txb_p; /* Phys addr of txb */
int txr_head; /* Where new data goes */
int txr_tail; /* Where sent data comes off */
spinlock_t tx_lock; /* transmit lock */
/* Mirrored values of regs we can't read (if 'mirror_regs' set) */
u32 MPSC_MPCR_m;
u32 MPSC_CHR_1_m;
u32 MPSC_CHR_2_m;
u32 MPSC_CHR_10_m;
u32 BRG_BCR_m;
struct mpsc_shared_regs *shared_regs;
};
/* Hooks to platform-specific code */
int mpsc_platform_register_driver(void);
void mpsc_platform_unregister_driver(void);
/* Hooks back in to mpsc common to be called by platform-specific code */
struct mpsc_port_info *mpsc_device_probe(int index);
struct mpsc_port_info *mpsc_device_remove(int index);
/* Main MPSC Configuration Register Offsets */
#define MPSC_MMCRL 0x0000
#define MPSC_MMCRH 0x0004
#define MPSC_MPCR 0x0008
#define MPSC_CHR_1 0x000c
#define MPSC_CHR_2 0x0010
#define MPSC_CHR_3 0x0014
#define MPSC_CHR_4 0x0018
#define MPSC_CHR_5 0x001c
#define MPSC_CHR_6 0x0020
#define MPSC_CHR_7 0x0024
#define MPSC_CHR_8 0x0028
#define MPSC_CHR_9 0x002c
#define MPSC_CHR_10 0x0030
#define MPSC_CHR_11 0x0034
#define MPSC_MPCR_FRZ (1 << 9)
#define MPSC_MPCR_CL_5 0
#define MPSC_MPCR_CL_6 1
#define MPSC_MPCR_CL_7 2
#define MPSC_MPCR_CL_8 3
#define MPSC_MPCR_SBL_1 0
#define MPSC_MPCR_SBL_2 1
#define MPSC_CHR_2_TEV (1<<1)
#define MPSC_CHR_2_TA (1<<7)
#define MPSC_CHR_2_TTCS (1<<9)
#define MPSC_CHR_2_REV (1<<17)
#define MPSC_CHR_2_RA (1<<23)
#define MPSC_CHR_2_CRD (1<<25)
#define MPSC_CHR_2_EH (1<<31)
#define MPSC_CHR_2_PAR_ODD 0
#define MPSC_CHR_2_PAR_SPACE 1
#define MPSC_CHR_2_PAR_EVEN 2
#define MPSC_CHR_2_PAR_MARK 3
/* MPSC Signal Routing */
#define MPSC_MRR 0x0000
#define MPSC_RCRR 0x0004
#define MPSC_TCRR 0x0008
/* Serial DMA Controller Interface Registers */
#define SDMA_SDC 0x0000
#define SDMA_SDCM 0x0008
#define SDMA_RX_DESC 0x0800
#define SDMA_RX_BUF_PTR 0x0808
#define SDMA_SCRDP 0x0810
#define SDMA_TX_DESC 0x0c00
#define SDMA_SCTDP 0x0c10
#define SDMA_SFTDP 0x0c14
#define SDMA_DESC_CMDSTAT_PE (1<<0)
#define SDMA_DESC_CMDSTAT_CDL (1<<1)
#define SDMA_DESC_CMDSTAT_FR (1<<3)
#define SDMA_DESC_CMDSTAT_OR (1<<6)
#define SDMA_DESC_CMDSTAT_BR (1<<9)
#define SDMA_DESC_CMDSTAT_MI (1<<10)
#define SDMA_DESC_CMDSTAT_A (1<<11)
#define SDMA_DESC_CMDSTAT_AM (1<<12)
#define SDMA_DESC_CMDSTAT_CT (1<<13)
#define SDMA_DESC_CMDSTAT_C (1<<14)
#define SDMA_DESC_CMDSTAT_ES (1<<15)
#define SDMA_DESC_CMDSTAT_L (1<<16)
#define SDMA_DESC_CMDSTAT_F (1<<17)
#define SDMA_DESC_CMDSTAT_P (1<<18)
#define SDMA_DESC_CMDSTAT_EI (1<<23)
#define SDMA_DESC_CMDSTAT_O (1<<31)
#define SDMA_DESC_DFLT (SDMA_DESC_CMDSTAT_O \
| SDMA_DESC_CMDSTAT_EI)
#define SDMA_SDC_RFT (1<<0)
#define SDMA_SDC_SFM (1<<1)
#define SDMA_SDC_BLMR (1<<6)
#define SDMA_SDC_BLMT (1<<7)
#define SDMA_SDC_POVR (1<<8)
#define SDMA_SDC_RIFB (1<<9)
#define SDMA_SDCM_ERD (1<<7)
#define SDMA_SDCM_AR (1<<15)
#define SDMA_SDCM_STD (1<<16)
#define SDMA_SDCM_TXD (1<<23)
#define SDMA_SDCM_AT (1<<31)
#define SDMA_0_CAUSE_RXBUF (1<<0)
#define SDMA_0_CAUSE_RXERR (1<<1)
#define SDMA_0_CAUSE_TXBUF (1<<2)
#define SDMA_0_CAUSE_TXEND (1<<3)
#define SDMA_1_CAUSE_RXBUF (1<<8)
#define SDMA_1_CAUSE_RXERR (1<<9)
#define SDMA_1_CAUSE_TXBUF (1<<10)
#define SDMA_1_CAUSE_TXEND (1<<11)
#define SDMA_CAUSE_RX_MASK (SDMA_0_CAUSE_RXBUF | SDMA_0_CAUSE_RXERR \
| SDMA_1_CAUSE_RXBUF | SDMA_1_CAUSE_RXERR)
#define SDMA_CAUSE_TX_MASK (SDMA_0_CAUSE_TXBUF | SDMA_0_CAUSE_TXEND \
| SDMA_1_CAUSE_TXBUF | SDMA_1_CAUSE_TXEND)
/* SDMA Interrupt registers */
#define SDMA_INTR_CAUSE 0x0000
#define SDMA_INTR_MASK 0x0080
/* Baud Rate Generator Interface Registers */
#define BRG_BCR 0x0000
#define BRG_BTR 0x0004
/*
* Define how this driver is known to the outside (we've been assigned a
* range on the "Low-density serial ports" major).
*/
#define MPSC_MAJOR 204
#define MPSC_MINOR_START 44
#define MPSC_DRIVER_NAME "MPSC"
#define MPSC_DEV_NAME "ttyMM"
#define MPSC_VERSION "1.00"
static struct mpsc_port_info mpsc_ports[MPSC_NUM_CTLRS];
static struct mpsc_shared_regs mpsc_shared_regs;
static struct uart_driver mpsc_reg;
static void mpsc_start_rx(struct mpsc_port_info *pi);
static void mpsc_free_ring_mem(struct mpsc_port_info *pi);
static void mpsc_release_port(struct uart_port *port);
/*
******************************************************************************
*
* Baud Rate Generator Routines (BRG)
*
******************************************************************************
*/
static void mpsc_brg_init(struct mpsc_port_info *pi, u32 clk_src)
{
u32 v;
v = (pi->mirror_regs) ? pi->BRG_BCR_m : readl(pi->brg_base + BRG_BCR);
v = (v & ~(0xf << 18)) | ((clk_src & 0xf) << 18);
if (pi->brg_can_tune)
v &= ~(1 << 25);
if (pi->mirror_regs)
pi->BRG_BCR_m = v;
writel(v, pi->brg_base + BRG_BCR);
writel(readl(pi->brg_base + BRG_BTR) & 0xffff0000,
pi->brg_base + BRG_BTR);
}
static void mpsc_brg_enable(struct mpsc_port_info *pi)
{
u32 v;
v = (pi->mirror_regs) ? pi->BRG_BCR_m : readl(pi->brg_base + BRG_BCR);
v |= (1 << 16);
if (pi->mirror_regs)
pi->BRG_BCR_m = v;
writel(v, pi->brg_base + BRG_BCR);
}
static void mpsc_brg_disable(struct mpsc_port_info *pi)
{
u32 v;
v = (pi->mirror_regs) ? pi->BRG_BCR_m : readl(pi->brg_base + BRG_BCR);
v &= ~(1 << 16);
if (pi->mirror_regs)
pi->BRG_BCR_m = v;
writel(v, pi->brg_base + BRG_BCR);
}
/*
* To set the baud, we adjust the CDV field in the BRG_BCR reg.
* From manual: Baud = clk / ((CDV+1)*2) ==> CDV = (clk / (baud*2)) - 1.
* However, the input clock is divided by 16 in the MPSC b/c of how
* 'MPSC_MMCRH' was set up so we have to divide the 'clk' used in our
* calculation by 16 to account for that. So the real calculation
* that accounts for the way the mpsc is set up is:
* CDV = (clk / (baud*2*16)) - 1 ==> CDV = (clk / (baud << 5)) - 1.
*/
static void mpsc_set_baudrate(struct mpsc_port_info *pi, u32 baud)
{
u32 cdv = (pi->port.uartclk / (baud << 5)) - 1;
u32 v;
mpsc_brg_disable(pi);
v = (pi->mirror_regs) ? pi->BRG_BCR_m : readl(pi->brg_base + BRG_BCR);
v = (v & 0xffff0000) | (cdv & 0xffff);
if (pi->mirror_regs)
pi->BRG_BCR_m = v;
writel(v, pi->brg_base + BRG_BCR);
mpsc_brg_enable(pi);
}
/*
******************************************************************************
*
* Serial DMA Routines (SDMA)
*
******************************************************************************
*/
static void mpsc_sdma_burstsize(struct mpsc_port_info *pi, u32 burst_size)
{
u32 v;
pr_debug("mpsc_sdma_burstsize[%d]: burst_size: %d\n",
pi->port.line, burst_size);
burst_size >>= 3; /* Divide by 8 b/c reg values are 8-byte chunks */
if (burst_size < 2)
v = 0x0; /* 1 64-bit word */
else if (burst_size < 4)
v = 0x1; /* 2 64-bit words */
else if (burst_size < 8)
v = 0x2; /* 4 64-bit words */
else
v = 0x3; /* 8 64-bit words */
writel((readl(pi->sdma_base + SDMA_SDC) & (0x3 << 12)) | (v << 12),
pi->sdma_base + SDMA_SDC);
}
static void mpsc_sdma_init(struct mpsc_port_info *pi, u32 burst_size)
{
pr_debug("mpsc_sdma_init[%d]: burst_size: %d\n", pi->port.line,
burst_size);
writel((readl(pi->sdma_base + SDMA_SDC) & 0x3ff) | 0x03f,
pi->sdma_base + SDMA_SDC);
mpsc_sdma_burstsize(pi, burst_size);
}
static u32 mpsc_sdma_intr_mask(struct mpsc_port_info *pi, u32 mask)
{
u32 old, v;
pr_debug("mpsc_sdma_intr_mask[%d]: mask: 0x%x\n", pi->port.line, mask);
old = v = (pi->mirror_regs) ? pi->shared_regs->SDMA_INTR_MASK_m :
readl(pi->shared_regs->sdma_intr_base + SDMA_INTR_MASK);
mask &= 0xf;
if (pi->port.line)
mask <<= 8;
v &= ~mask;
if (pi->mirror_regs)
pi->shared_regs->SDMA_INTR_MASK_m = v;
writel(v, pi->shared_regs->sdma_intr_base + SDMA_INTR_MASK);
if (pi->port.line)
old >>= 8;
return old & 0xf;
}
static void mpsc_sdma_intr_unmask(struct mpsc_port_info *pi, u32 mask)
{
u32 v;
pr_debug("mpsc_sdma_intr_unmask[%d]: mask: 0x%x\n", pi->port.line,mask);
v = (pi->mirror_regs) ? pi->shared_regs->SDMA_INTR_MASK_m
: readl(pi->shared_regs->sdma_intr_base + SDMA_INTR_MASK);
mask &= 0xf;
if (pi->port.line)
mask <<= 8;
v |= mask;
if (pi->mirror_regs)
pi->shared_regs->SDMA_INTR_MASK_m = v;
writel(v, pi->shared_regs->sdma_intr_base + SDMA_INTR_MASK);
}
static void mpsc_sdma_intr_ack(struct mpsc_port_info *pi)
{
pr_debug("mpsc_sdma_intr_ack[%d]: Acknowledging IRQ\n", pi->port.line);
if (pi->mirror_regs)
pi->shared_regs->SDMA_INTR_CAUSE_m = 0;
writeb(0x00, pi->shared_regs->sdma_intr_base + SDMA_INTR_CAUSE
+ pi->port.line);
}
static void mpsc_sdma_set_rx_ring(struct mpsc_port_info *pi,
struct mpsc_rx_desc *rxre_p)
{
pr_debug("mpsc_sdma_set_rx_ring[%d]: rxre_p: 0x%x\n",
pi->port.line, (u32)rxre_p);
writel((u32)rxre_p, pi->sdma_base + SDMA_SCRDP);
}
static void mpsc_sdma_set_tx_ring(struct mpsc_port_info *pi,
struct mpsc_tx_desc *txre_p)
{
writel((u32)txre_p, pi->sdma_base + SDMA_SFTDP);
writel((u32)txre_p, pi->sdma_base + SDMA_SCTDP);
}
static void mpsc_sdma_cmd(struct mpsc_port_info *pi, u32 val)
{
u32 v;
v = readl(pi->sdma_base + SDMA_SDCM);
if (val)
v |= val;
else
v = 0;
wmb();
writel(v, pi->sdma_base + SDMA_SDCM);
wmb();
}
static uint mpsc_sdma_tx_active(struct mpsc_port_info *pi)
{
return readl(pi->sdma_base + SDMA_SDCM) & SDMA_SDCM_TXD;
}
static void mpsc_sdma_start_tx(struct mpsc_port_info *pi)
{
struct mpsc_tx_desc *txre, *txre_p;
/* If tx isn't running & there's a desc ready to go, start it */
if (!mpsc_sdma_tx_active(pi)) {
txre = (struct mpsc_tx_desc *)(pi->txr
+ (pi->txr_tail * MPSC_TXRE_SIZE));
dma_cache_sync(pi->port.dev, (void *)txre, MPSC_TXRE_SIZE,
DMA_FROM_DEVICE);
#if defined(CONFIG_PPC32) && !defined(CONFIG_NOT_COHERENT_CACHE)
if (pi->cache_mgmt) /* GT642[46]0 Res #COMM-2 */
invalidate_dcache_range((ulong)txre,
(ulong)txre + MPSC_TXRE_SIZE);
#endif
if (be32_to_cpu(txre->cmdstat) & SDMA_DESC_CMDSTAT_O) {
txre_p = (struct mpsc_tx_desc *)
(pi->txr_p + (pi->txr_tail * MPSC_TXRE_SIZE));
mpsc_sdma_set_tx_ring(pi, txre_p);
mpsc_sdma_cmd(pi, SDMA_SDCM_STD | SDMA_SDCM_TXD);
}
}
}
static void mpsc_sdma_stop(struct mpsc_port_info *pi)
{
pr_debug("mpsc_sdma_stop[%d]: Stopping SDMA\n", pi->port.line);
/* Abort any SDMA transfers */
mpsc_sdma_cmd(pi, 0);
mpsc_sdma_cmd(pi, SDMA_SDCM_AR | SDMA_SDCM_AT);
/* Clear the SDMA current and first TX and RX pointers */
mpsc_sdma_set_tx_ring(pi, NULL);
mpsc_sdma_set_rx_ring(pi, NULL);
/* Disable interrupts */
mpsc_sdma_intr_mask(pi, 0xf);
mpsc_sdma_intr_ack(pi);
}
/*
******************************************************************************
*
* Multi-Protocol Serial Controller Routines (MPSC)
*
******************************************************************************
*/
static void mpsc_hw_init(struct mpsc_port_info *pi)
{
u32 v;
pr_debug("mpsc_hw_init[%d]: Initializing hardware\n", pi->port.line);
/* Set up clock routing */
if (pi->mirror_regs) {
v = pi->shared_regs->MPSC_MRR_m;
v &= ~0x1c7;
pi->shared_regs->MPSC_MRR_m = v;
writel(v, pi->shared_regs->mpsc_routing_base + MPSC_MRR);
v = pi->shared_regs->MPSC_RCRR_m;
v = (v & ~0xf0f) | 0x100;
pi->shared_regs->MPSC_RCRR_m = v;
writel(v, pi->shared_regs->mpsc_routing_base + MPSC_RCRR);
v = pi->shared_regs->MPSC_TCRR_m;
v = (v & ~0xf0f) | 0x100;
pi->shared_regs->MPSC_TCRR_m = v;
writel(v, pi->shared_regs->mpsc_routing_base + MPSC_TCRR);
} else {
v = readl(pi->shared_regs->mpsc_routing_base + MPSC_MRR);
v &= ~0x1c7;
writel(v, pi->shared_regs->mpsc_routing_base + MPSC_MRR);
v = readl(pi->shared_regs->mpsc_routing_base + MPSC_RCRR);
v = (v & ~0xf0f) | 0x100;
writel(v, pi->shared_regs->mpsc_routing_base + MPSC_RCRR);
v = readl(pi->shared_regs->mpsc_routing_base + MPSC_TCRR);
v = (v & ~0xf0f) | 0x100;
writel(v, pi->shared_regs->mpsc_routing_base + MPSC_TCRR);
}
/* Put MPSC in UART mode & enabel Tx/Rx egines */
writel(0x000004c4, pi->mpsc_base + MPSC_MMCRL);
/* No preamble, 16x divider, low-latency, */
writel(0x04400400, pi->mpsc_base + MPSC_MMCRH);
mpsc_set_baudrate(pi, pi->default_baud);
if (pi->mirror_regs) {
pi->MPSC_CHR_1_m = 0;
pi->MPSC_CHR_2_m = 0;
}
writel(0, pi->mpsc_base + MPSC_CHR_1);
writel(0, pi->mpsc_base + MPSC_CHR_2);
writel(pi->mpsc_max_idle, pi->mpsc_base + MPSC_CHR_3);
writel(0, pi->mpsc_base + MPSC_CHR_4);
writel(0, pi->mpsc_base + MPSC_CHR_5);
writel(0, pi->mpsc_base + MPSC_CHR_6);
writel(0, pi->mpsc_base + MPSC_CHR_7);
writel(0, pi->mpsc_base + MPSC_CHR_8);
writel(0, pi->mpsc_base + MPSC_CHR_9);
writel(0, pi->mpsc_base + MPSC_CHR_10);
}
static void mpsc_enter_hunt(struct mpsc_port_info *pi)
{
pr_debug("mpsc_enter_hunt[%d]: Hunting...\n", pi->port.line);
if (pi->mirror_regs) {
writel(pi->MPSC_CHR_2_m | MPSC_CHR_2_EH,
pi->mpsc_base + MPSC_CHR_2);
/* Erratum prevents reading CHR_2 so just delay for a while */
udelay(100);
} else {
writel(readl(pi->mpsc_base + MPSC_CHR_2) | MPSC_CHR_2_EH,
pi->mpsc_base + MPSC_CHR_2);
while (readl(pi->mpsc_base + MPSC_CHR_2) & MPSC_CHR_2_EH)
udelay(10);
}
}
static void mpsc_freeze(struct mpsc_port_info *pi)
{
u32 v;
pr_debug("mpsc_freeze[%d]: Freezing\n", pi->port.line);
v = (pi->mirror_regs) ? pi->MPSC_MPCR_m :
readl(pi->mpsc_base + MPSC_MPCR);
v |= MPSC_MPCR_FRZ;
if (pi->mirror_regs)
pi->MPSC_MPCR_m = v;
writel(v, pi->mpsc_base + MPSC_MPCR);
}
static void mpsc_unfreeze(struct mpsc_port_info *pi)
{
u32 v;
v = (pi->mirror_regs) ? pi->MPSC_MPCR_m :
readl(pi->mpsc_base + MPSC_MPCR);
v &= ~MPSC_MPCR_FRZ;
if (pi->mirror_regs)
pi->MPSC_MPCR_m = v;
writel(v, pi->mpsc_base + MPSC_MPCR);
pr_debug("mpsc_unfreeze[%d]: Unfrozen\n", pi->port.line);
}
static void mpsc_set_char_length(struct mpsc_port_info *pi, u32 len)
{
u32 v;
pr_debug("mpsc_set_char_length[%d]: char len: %d\n", pi->port.line,len);
v = (pi->mirror_regs) ? pi->MPSC_MPCR_m :
readl(pi->mpsc_base + MPSC_MPCR);
v = (v & ~(0x3 << 12)) | ((len & 0x3) << 12);
if (pi->mirror_regs)
pi->MPSC_MPCR_m = v;
writel(v, pi->mpsc_base + MPSC_MPCR);
}
static void mpsc_set_stop_bit_length(struct mpsc_port_info *pi, u32 len)
{
u32 v;
pr_debug("mpsc_set_stop_bit_length[%d]: stop bits: %d\n",
pi->port.line, len);
v = (pi->mirror_regs) ? pi->MPSC_MPCR_m :
readl(pi->mpsc_base + MPSC_MPCR);
v = (v & ~(1 << 14)) | ((len & 0x1) << 14);
if (pi->mirror_regs)
pi->MPSC_MPCR_m = v;
writel(v, pi->mpsc_base + MPSC_MPCR);
}
static void mpsc_set_parity(struct mpsc_port_info *pi, u32 p)
{
u32 v;
pr_debug("mpsc_set_parity[%d]: parity bits: 0x%x\n", pi->port.line, p);
v = (pi->mirror_regs) ? pi->MPSC_CHR_2_m :
readl(pi->mpsc_base + MPSC_CHR_2);
p &= 0x3;
v = (v & ~0xc000c) | (p << 18) | (p << 2);
if (pi->mirror_regs)
pi->MPSC_CHR_2_m = v;
writel(v, pi->mpsc_base + MPSC_CHR_2);
}
/*
******************************************************************************
*
* Driver Init Routines
*
******************************************************************************
*/
static void mpsc_init_hw(struct mpsc_port_info *pi)
{
pr_debug("mpsc_init_hw[%d]: Initializing\n", pi->port.line);
mpsc_brg_init(pi, pi->brg_clk_src);
mpsc_brg_enable(pi);
mpsc_sdma_init(pi, dma_get_cache_alignment()); /* burst a cacheline */
mpsc_sdma_stop(pi);
mpsc_hw_init(pi);
}
static int mpsc_alloc_ring_mem(struct mpsc_port_info *pi)
{
int rc = 0;
pr_debug("mpsc_alloc_ring_mem[%d]: Allocating ring mem\n",
pi->port.line);
if (!pi->dma_region) {
if (!dma_supported(pi->port.dev, 0xffffffff)) {
printk(KERN_ERR "MPSC: Inadequate DMA support\n");
rc = -ENXIO;
} else if ((pi->dma_region = dma_alloc_noncoherent(pi->port.dev,
MPSC_DMA_ALLOC_SIZE,
&pi->dma_region_p, GFP_KERNEL))
== NULL) {
printk(KERN_ERR "MPSC: Can't alloc Desc region\n");
rc = -ENOMEM;
}
}
return rc;
}
static void mpsc_free_ring_mem(struct mpsc_port_info *pi)
{
pr_debug("mpsc_free_ring_mem[%d]: Freeing ring mem\n", pi->port.line);
if (pi->dma_region) {
dma_free_noncoherent(pi->port.dev, MPSC_DMA_ALLOC_SIZE,
pi->dma_region, pi->dma_region_p);
pi->dma_region = NULL;
pi->dma_region_p = (dma_addr_t)NULL;
}
}
static void mpsc_init_rings(struct mpsc_port_info *pi)
{
struct mpsc_rx_desc *rxre;
struct mpsc_tx_desc *txre;
dma_addr_t dp, dp_p;
u8 *bp, *bp_p;
int i;
pr_debug("mpsc_init_rings[%d]: Initializing rings\n", pi->port.line);
BUG_ON(pi->dma_region == NULL);
memset(pi->dma_region, 0, MPSC_DMA_ALLOC_SIZE);
/*
* Descriptors & buffers are multiples of cacheline size and must be
* cacheline aligned.
*/
dp = ALIGN((u32)pi->dma_region, dma_get_cache_alignment());
dp_p = ALIGN((u32)pi->dma_region_p, dma_get_cache_alignment());
/*
* Partition dma region into rx ring descriptor, rx buffers,
* tx ring descriptors, and tx buffers.
*/
pi->rxr = dp;
pi->rxr_p = dp_p;
dp += MPSC_RXR_SIZE;
dp_p += MPSC_RXR_SIZE;
pi->rxb = (u8 *)dp;
pi->rxb_p = (u8 *)dp_p;
dp += MPSC_RXB_SIZE;
dp_p += MPSC_RXB_SIZE;
pi->rxr_posn = 0;
pi->txr = dp;
pi->txr_p = dp_p;
dp += MPSC_TXR_SIZE;
dp_p += MPSC_TXR_SIZE;
pi->txb = (u8 *)dp;
pi->txb_p = (u8 *)dp_p;
pi->txr_head = 0;
pi->txr_tail = 0;
/* Init rx ring descriptors */
dp = pi->rxr;
dp_p = pi->rxr_p;
bp = pi->rxb;
bp_p = pi->rxb_p;
for (i = 0; i < MPSC_RXR_ENTRIES; i++) {
rxre = (struct mpsc_rx_desc *)dp;
rxre->bufsize = cpu_to_be16(MPSC_RXBE_SIZE);
rxre->bytecnt = cpu_to_be16(0);
rxre->cmdstat = cpu_to_be32(SDMA_DESC_CMDSTAT_O
| SDMA_DESC_CMDSTAT_EI | SDMA_DESC_CMDSTAT_F
| SDMA_DESC_CMDSTAT_L);
rxre->link = cpu_to_be32(dp_p + MPSC_RXRE_SIZE);
rxre->buf_ptr = cpu_to_be32(bp_p);
dp += MPSC_RXRE_SIZE;
dp_p += MPSC_RXRE_SIZE;
bp += MPSC_RXBE_SIZE;
bp_p += MPSC_RXBE_SIZE;
}
rxre->link = cpu_to_be32(pi->rxr_p); /* Wrap last back to first */
/* Init tx ring descriptors */
dp = pi->txr;
dp_p = pi->txr_p;
bp = pi->txb;
bp_p = pi->txb_p;
for (i = 0; i < MPSC_TXR_ENTRIES; i++) {
txre = (struct mpsc_tx_desc *)dp;
txre->link = cpu_to_be32(dp_p + MPSC_TXRE_SIZE);
txre->buf_ptr = cpu_to_be32(bp_p);
dp += MPSC_TXRE_SIZE;
dp_p += MPSC_TXRE_SIZE;
bp += MPSC_TXBE_SIZE;
bp_p += MPSC_TXBE_SIZE;
}
txre->link = cpu_to_be32(pi->txr_p); /* Wrap last back to first */
dma_cache_sync(pi->port.dev, (void *)pi->dma_region,
MPSC_DMA_ALLOC_SIZE, DMA_BIDIRECTIONAL);
#if defined(CONFIG_PPC32) && !defined(CONFIG_NOT_COHERENT_CACHE)
if (pi->cache_mgmt) /* GT642[46]0 Res #COMM-2 */
flush_dcache_range((ulong)pi->dma_region,
(ulong)pi->dma_region
+ MPSC_DMA_ALLOC_SIZE);
#endif
return;
}
static void mpsc_uninit_rings(struct mpsc_port_info *pi)
{
pr_debug("mpsc_uninit_rings[%d]: Uninitializing rings\n",pi->port.line);
BUG_ON(pi->dma_region == NULL);
pi->rxr = 0;
pi->rxr_p = 0;
pi->rxb = NULL;
pi->rxb_p = NULL;
pi->rxr_posn = 0;
pi->txr = 0;
pi->txr_p = 0;
pi->txb = NULL;
pi->txb_p = NULL;
pi->txr_head = 0;
pi->txr_tail = 0;
}
static int mpsc_make_ready(struct mpsc_port_info *pi)
{
int rc;
pr_debug("mpsc_make_ready[%d]: Making cltr ready\n", pi->port.line);
if (!pi->ready) {
mpsc_init_hw(pi);
if ((rc = mpsc_alloc_ring_mem(pi)))
return rc;
mpsc_init_rings(pi);
pi->ready = 1;
}
return 0;
}
#ifdef CONFIG_CONSOLE_POLL
static int serial_polled;
#endif
/*
******************************************************************************
*
* Interrupt Handling Routines
*
******************************************************************************
*/
static int mpsc_rx_intr(struct mpsc_port_info *pi, unsigned long *flags)
{
struct mpsc_rx_desc *rxre;
struct tty_port *port = &pi->port.state->port;
u32 cmdstat, bytes_in, i;
int rc = 0;
u8 *bp;
char flag = TTY_NORMAL;
pr_debug("mpsc_rx_intr[%d]: Handling Rx intr\n", pi->port.line);
rxre = (struct mpsc_rx_desc *)(pi->rxr + (pi->rxr_posn*MPSC_RXRE_SIZE));
dma_cache_sync(pi->port.dev, (void *)rxre, MPSC_RXRE_SIZE,
DMA_FROM_DEVICE);
#if defined(CONFIG_PPC32) && !defined(CONFIG_NOT_COHERENT_CACHE)
if (pi->cache_mgmt) /* GT642[46]0 Res #COMM-2 */
invalidate_dcache_range((ulong)rxre,
(ulong)rxre + MPSC_RXRE_SIZE);
#endif
/*
* Loop through Rx descriptors handling ones that have been completed.
*/
while (!((cmdstat = be32_to_cpu(rxre->cmdstat))
& SDMA_DESC_CMDSTAT_O)) {
bytes_in = be16_to_cpu(rxre->bytecnt);
#ifdef CONFIG_CONSOLE_POLL
if (unlikely(serial_polled)) {
serial_polled = 0;
return 0;
}
#endif
/* Following use of tty struct directly is deprecated */
if (tty_buffer_request_room(port, bytes_in) < bytes_in) {
if (port->low_latency) {
spin_unlock_irqrestore(&pi->port.lock, *flags);
tty_flip_buffer_push(port);
spin_lock_irqsave(&pi->port.lock, *flags);
}
/*
* If this failed then we will throw away the bytes
* but must do so to clear interrupts.
*/
}
bp = pi->rxb + (pi->rxr_posn * MPSC_RXBE_SIZE);
dma_cache_sync(pi->port.dev, (void *)bp, MPSC_RXBE_SIZE,
DMA_FROM_DEVICE);
#if defined(CONFIG_PPC32) && !defined(CONFIG_NOT_COHERENT_CACHE)
if (pi->cache_mgmt) /* GT642[46]0 Res #COMM-2 */
invalidate_dcache_range((ulong)bp,
(ulong)bp + MPSC_RXBE_SIZE);
#endif
/*
* Other than for parity error, the manual provides little
* info on what data will be in a frame flagged by any of
* these errors. For parity error, it is the last byte in
* the buffer that had the error. As for the rest, I guess
* we'll assume there is no data in the buffer.
* If there is...it gets lost.
*/
if (unlikely(cmdstat & (SDMA_DESC_CMDSTAT_BR
| SDMA_DESC_CMDSTAT_FR
| SDMA_DESC_CMDSTAT_OR))) {
pi->port.icount.rx++;
if (cmdstat & SDMA_DESC_CMDSTAT_BR) { /* Break */
pi->port.icount.brk++;
if (uart_handle_break(&pi->port))
goto next_frame;
} else if (cmdstat & SDMA_DESC_CMDSTAT_FR) {
pi->port.icount.frame++;
} else if (cmdstat & SDMA_DESC_CMDSTAT_OR) {
pi->port.icount.overrun++;
}
cmdstat &= pi->port.read_status_mask;
if (cmdstat & SDMA_DESC_CMDSTAT_BR)
flag = TTY_BREAK;
else if (cmdstat & SDMA_DESC_CMDSTAT_FR)
flag = TTY_FRAME;
else if (cmdstat & SDMA_DESC_CMDSTAT_OR)
flag = TTY_OVERRUN;
else if (cmdstat & SDMA_DESC_CMDSTAT_PE)
flag = TTY_PARITY;
}
if (uart_handle_sysrq_char(&pi->port, *bp)) {
bp++;
bytes_in--;
#ifdef CONFIG_CONSOLE_POLL
if (unlikely(serial_polled)) {
serial_polled = 0;
return 0;
}
#endif
goto next_frame;
}
if ((unlikely(cmdstat & (SDMA_DESC_CMDSTAT_BR
| SDMA_DESC_CMDSTAT_FR
| SDMA_DESC_CMDSTAT_OR)))
&& !(cmdstat & pi->port.ignore_status_mask)) {
tty_insert_flip_char(port, *bp, flag);
} else {
for (i=0; i<bytes_in; i++)
tty_insert_flip_char(port, *bp++, TTY_NORMAL);
pi->port.icount.rx += bytes_in;
}
next_frame:
rxre->bytecnt = cpu_to_be16(0);
wmb();
rxre->cmdstat = cpu_to_be32(SDMA_DESC_CMDSTAT_O
| SDMA_DESC_CMDSTAT_EI | SDMA_DESC_CMDSTAT_F
| SDMA_DESC_CMDSTAT_L);
wmb();
dma_cache_sync(pi->port.dev, (void *)rxre, MPSC_RXRE_SIZE,
DMA_BIDIRECTIONAL);
#if defined(CONFIG_PPC32) && !defined(CONFIG_NOT_COHERENT_CACHE)
if (pi->cache_mgmt) /* GT642[46]0 Res #COMM-2 */
flush_dcache_range((ulong)rxre,
(ulong)rxre + MPSC_RXRE_SIZE);
#endif
/* Advance to next descriptor */
pi->rxr_posn = (pi->rxr_posn + 1) & (MPSC_RXR_ENTRIES - 1);
rxre = (struct mpsc_rx_desc *)
(pi->rxr + (pi->rxr_posn * MPSC_RXRE_SIZE));
dma_cache_sync(pi->port.dev, (void *)rxre, MPSC_RXRE_SIZE,
DMA_FROM_DEVICE);
#if defined(CONFIG_PPC32) && !defined(CONFIG_NOT_COHERENT_CACHE)
if (pi->cache_mgmt) /* GT642[46]0 Res #COMM-2 */
invalidate_dcache_range((ulong)rxre,
(ulong)rxre + MPSC_RXRE_SIZE);
#endif
rc = 1;
}
/* Restart rx engine, if its stopped */
if ((readl(pi->sdma_base + SDMA_SDCM) & SDMA_SDCM_ERD) == 0)
mpsc_start_rx(pi);
spin_unlock_irqrestore(&pi->port.lock, *flags);
tty_flip_buffer_push(port);
spin_lock_irqsave(&pi->port.lock, *flags);
return rc;
}
static void mpsc_setup_tx_desc(struct mpsc_port_info *pi, u32 count, u32 intr)
{
struct mpsc_tx_desc *txre;
txre = (struct mpsc_tx_desc *)(pi->txr
+ (pi->txr_head * MPSC_TXRE_SIZE));
txre->bytecnt = cpu_to_be16(count);
txre->shadow = txre->bytecnt;
wmb(); /* ensure cmdstat is last field updated */
txre->cmdstat = cpu_to_be32(SDMA_DESC_CMDSTAT_O | SDMA_DESC_CMDSTAT_F
| SDMA_DESC_CMDSTAT_L
| ((intr) ? SDMA_DESC_CMDSTAT_EI : 0));
wmb();
dma_cache_sync(pi->port.dev, (void *)txre, MPSC_TXRE_SIZE,
DMA_BIDIRECTIONAL);
#if defined(CONFIG_PPC32) && !defined(CONFIG_NOT_COHERENT_CACHE)
if (pi->cache_mgmt) /* GT642[46]0 Res #COMM-2 */
flush_dcache_range((ulong)txre,
(ulong)txre + MPSC_TXRE_SIZE);
#endif
}
static void mpsc_copy_tx_data(struct mpsc_port_info *pi)
{
struct circ_buf *xmit = &pi->port.state->xmit;
u8 *bp;
u32 i;
/* Make sure the desc ring isn't full */
while (CIRC_CNT(pi->txr_head, pi->txr_tail, MPSC_TXR_ENTRIES)
< (MPSC_TXR_ENTRIES - 1)) {
if (pi->port.x_char) {
/*
* Ideally, we should use the TCS field in
* CHR_1 to put the x_char out immediately but
* errata prevents us from being able to read
* CHR_2 to know that its safe to write to
* CHR_1. Instead, just put it in-band with
* all the other Tx data.
*/
bp = pi->txb + (pi->txr_head * MPSC_TXBE_SIZE);
*bp = pi->port.x_char;
pi->port.x_char = 0;
i = 1;
} else if (!uart_circ_empty(xmit)
&& !uart_tx_stopped(&pi->port)) {
i = min((u32)MPSC_TXBE_SIZE,
(u32)uart_circ_chars_pending(xmit));
i = min(i, (u32)CIRC_CNT_TO_END(xmit->head, xmit->tail,
UART_XMIT_SIZE));
bp = pi->txb + (pi->txr_head * MPSC_TXBE_SIZE);
memcpy(bp, &xmit->buf[xmit->tail], i);
xmit->tail = (xmit->tail + i) & (UART_XMIT_SIZE - 1);
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
uart_write_wakeup(&pi->port);
} else { /* All tx data copied into ring bufs */
return;
}
dma_cache_sync(pi->port.dev, (void *)bp, MPSC_TXBE_SIZE,
DMA_BIDIRECTIONAL);
#if defined(CONFIG_PPC32) && !defined(CONFIG_NOT_COHERENT_CACHE)
if (pi->cache_mgmt) /* GT642[46]0 Res #COMM-2 */
flush_dcache_range((ulong)bp,
(ulong)bp + MPSC_TXBE_SIZE);
#endif
mpsc_setup_tx_desc(pi, i, 1);
/* Advance to next descriptor */
pi->txr_head = (pi->txr_head + 1) & (MPSC_TXR_ENTRIES - 1);
}
}
static int mpsc_tx_intr(struct mpsc_port_info *pi)
{
struct mpsc_tx_desc *txre;
int rc = 0;
unsigned long iflags;
spin_lock_irqsave(&pi->tx_lock, iflags);
if (!mpsc_sdma_tx_active(pi)) {
txre = (struct mpsc_tx_desc *)(pi->txr
+ (pi->txr_tail * MPSC_TXRE_SIZE));
dma_cache_sync(pi->port.dev, (void *)txre, MPSC_TXRE_SIZE,
DMA_FROM_DEVICE);
#if defined(CONFIG_PPC32) && !defined(CONFIG_NOT_COHERENT_CACHE)
if (pi->cache_mgmt) /* GT642[46]0 Res #COMM-2 */
invalidate_dcache_range((ulong)txre,
(ulong)txre + MPSC_TXRE_SIZE);
#endif
while (!(be32_to_cpu(txre->cmdstat) & SDMA_DESC_CMDSTAT_O)) {
rc = 1;
pi->port.icount.tx += be16_to_cpu(txre->bytecnt);
pi->txr_tail = (pi->txr_tail+1) & (MPSC_TXR_ENTRIES-1);
/* If no more data to tx, fall out of loop */
if (pi->txr_head == pi->txr_tail)
break;
txre = (struct mpsc_tx_desc *)(pi->txr
+ (pi->txr_tail * MPSC_TXRE_SIZE));
dma_cache_sync(pi->port.dev, (void *)txre,
MPSC_TXRE_SIZE, DMA_FROM_DEVICE);
#if defined(CONFIG_PPC32) && !defined(CONFIG_NOT_COHERENT_CACHE)
if (pi->cache_mgmt) /* GT642[46]0 Res #COMM-2 */
invalidate_dcache_range((ulong)txre,
(ulong)txre + MPSC_TXRE_SIZE);
#endif
}
mpsc_copy_tx_data(pi);
mpsc_sdma_start_tx(pi); /* start next desc if ready */
}
spin_unlock_irqrestore(&pi->tx_lock, iflags);
return rc;
}
/*
* This is the driver's interrupt handler. To avoid a race, we first clear
* the interrupt, then handle any completed Rx/Tx descriptors. When done
* handling those descriptors, we restart the Rx/Tx engines if they're stopped.
*/
static irqreturn_t mpsc_sdma_intr(int irq, void *dev_id)
{
struct mpsc_port_info *pi = dev_id;
ulong iflags;
int rc = IRQ_NONE;
pr_debug("mpsc_sdma_intr[%d]: SDMA Interrupt Received\n",pi->port.line);
spin_lock_irqsave(&pi->port.lock, iflags);
mpsc_sdma_intr_ack(pi);
if (mpsc_rx_intr(pi, &iflags))
rc = IRQ_HANDLED;
if (mpsc_tx_intr(pi))
rc = IRQ_HANDLED;
spin_unlock_irqrestore(&pi->port.lock, iflags);
pr_debug("mpsc_sdma_intr[%d]: SDMA Interrupt Handled\n", pi->port.line);
return rc;
}
/*
******************************************************************************
*
* serial_core.c Interface routines
*
******************************************************************************
*/
static uint mpsc_tx_empty(struct uart_port *port)
{
struct mpsc_port_info *pi = (struct mpsc_port_info *)port;
ulong iflags;
uint rc;
spin_lock_irqsave(&pi->port.lock, iflags);
rc = mpsc_sdma_tx_active(pi) ? 0 : TIOCSER_TEMT;
spin_unlock_irqrestore(&pi->port.lock, iflags);
return rc;
}
static void mpsc_set_mctrl(struct uart_port *port, uint mctrl)
{
/* Have no way to set modem control lines AFAICT */
}
static uint mpsc_get_mctrl(struct uart_port *port)
{
struct mpsc_port_info *pi = (struct mpsc_port_info *)port;
u32 mflags, status;
status = (pi->mirror_regs) ? pi->MPSC_CHR_10_m
: readl(pi->mpsc_base + MPSC_CHR_10);
mflags = 0;
if (status & 0x1)
mflags |= TIOCM_CTS;
if (status & 0x2)
mflags |= TIOCM_CAR;
return mflags | TIOCM_DSR; /* No way to tell if DSR asserted */
}
static void mpsc_stop_tx(struct uart_port *port)
{
struct mpsc_port_info *pi = (struct mpsc_port_info *)port;
pr_debug("mpsc_stop_tx[%d]\n", port->line);
mpsc_freeze(pi);
}
static void mpsc_start_tx(struct uart_port *port)
{
struct mpsc_port_info *pi = (struct mpsc_port_info *)port;
unsigned long iflags;
spin_lock_irqsave(&pi->tx_lock, iflags);
mpsc_unfreeze(pi);
mpsc_copy_tx_data(pi);
mpsc_sdma_start_tx(pi);
spin_unlock_irqrestore(&pi->tx_lock, iflags);
pr_debug("mpsc_start_tx[%d]\n", port->line);
}
static void mpsc_start_rx(struct mpsc_port_info *pi)
{
pr_debug("mpsc_start_rx[%d]: Starting...\n", pi->port.line);
if (pi->rcv_data) {
mpsc_enter_hunt(pi);
mpsc_sdma_cmd(pi, SDMA_SDCM_ERD);
}
}
static void mpsc_stop_rx(struct uart_port *port)
{
struct mpsc_port_info *pi = (struct mpsc_port_info *)port;
pr_debug("mpsc_stop_rx[%d]: Stopping...\n", port->line);
if (pi->mirror_regs) {
writel(pi->MPSC_CHR_2_m | MPSC_CHR_2_RA,
pi->mpsc_base + MPSC_CHR_2);
/* Erratum prevents reading CHR_2 so just delay for a while */
udelay(100);
} else {
writel(readl(pi->mpsc_base + MPSC_CHR_2) | MPSC_CHR_2_RA,
pi->mpsc_base + MPSC_CHR_2);
while (readl(pi->mpsc_base + MPSC_CHR_2) & MPSC_CHR_2_RA)
udelay(10);
}
mpsc_sdma_cmd(pi, SDMA_SDCM_AR);
}
static void mpsc_enable_ms(struct uart_port *port)
{
}
static void mpsc_break_ctl(struct uart_port *port, int ctl)
{
struct mpsc_port_info *pi = (struct mpsc_port_info *)port;
ulong flags;
u32 v;
v = ctl ? 0x00ff0000 : 0;
spin_lock_irqsave(&pi->port.lock, flags);
if (pi->mirror_regs)
pi->MPSC_CHR_1_m = v;
writel(v, pi->mpsc_base + MPSC_CHR_1);
spin_unlock_irqrestore(&pi->port.lock, flags);
}
static int mpsc_startup(struct uart_port *port)
{
struct mpsc_port_info *pi = (struct mpsc_port_info *)port;
u32 flag = 0;
int rc;
pr_debug("mpsc_startup[%d]: Starting up MPSC, irq: %d\n",
port->line, pi->port.irq);
if ((rc = mpsc_make_ready(pi)) == 0) {
/* Setup IRQ handler */
mpsc_sdma_intr_ack(pi);
/* If irq's are shared, need to set flag */
if (mpsc_ports[0].port.irq == mpsc_ports[1].port.irq)
flag = IRQF_SHARED;
if (request_irq(pi->port.irq, mpsc_sdma_intr, flag,
"mpsc-sdma", pi))
printk(KERN_ERR "MPSC: Can't get SDMA IRQ %d\n",
pi->port.irq);
mpsc_sdma_intr_unmask(pi, 0xf);
mpsc_sdma_set_rx_ring(pi, (struct mpsc_rx_desc *)(pi->rxr_p
+ (pi->rxr_posn * MPSC_RXRE_SIZE)));
}
return rc;
}
static void mpsc_shutdown(struct uart_port *port)
{
struct mpsc_port_info *pi = (struct mpsc_port_info *)port;
pr_debug("mpsc_shutdown[%d]: Shutting down MPSC\n", port->line);
mpsc_sdma_stop(pi);
free_irq(pi->port.irq, pi);
}
static void mpsc_set_termios(struct uart_port *port, struct ktermios *termios,
struct ktermios *old)
{
struct mpsc_port_info *pi = (struct mpsc_port_info *)port;
u32 baud;
ulong flags;
u32 chr_bits, stop_bits, par;
pi->c_iflag = termios->c_iflag;
pi->c_cflag = termios->c_cflag;
switch (termios->c_cflag & CSIZE) {
case CS5:
chr_bits = MPSC_MPCR_CL_5;
break;
case CS6:
chr_bits = MPSC_MPCR_CL_6;
break;
case CS7:
chr_bits = MPSC_MPCR_CL_7;
break;
case CS8:
default:
chr_bits = MPSC_MPCR_CL_8;
break;
}
if (termios->c_cflag & CSTOPB)
stop_bits = MPSC_MPCR_SBL_2;
else
stop_bits = MPSC_MPCR_SBL_1;
par = MPSC_CHR_2_PAR_EVEN;
if (termios->c_cflag & PARENB)
if (termios->c_cflag & PARODD)
par = MPSC_CHR_2_PAR_ODD;
#ifdef CMSPAR
if (termios->c_cflag & CMSPAR) {
if (termios->c_cflag & PARODD)
par = MPSC_CHR_2_PAR_MARK;
else
par = MPSC_CHR_2_PAR_SPACE;
}
#endif
baud = uart_get_baud_rate(port, termios, old, 0, port->uartclk);
spin_lock_irqsave(&pi->port.lock, flags);
uart_update_timeout(port, termios->c_cflag, baud);
mpsc_set_char_length(pi, chr_bits);
mpsc_set_stop_bit_length(pi, stop_bits);
mpsc_set_parity(pi, par);
mpsc_set_baudrate(pi, baud);
/* Characters/events to read */
pi->port.read_status_mask = SDMA_DESC_CMDSTAT_OR;
if (termios->c_iflag & INPCK)
pi->port.read_status_mask |= SDMA_DESC_CMDSTAT_PE
| SDMA_DESC_CMDSTAT_FR;
if (termios->c_iflag & (BRKINT | PARMRK))
pi->port.read_status_mask |= SDMA_DESC_CMDSTAT_BR;
/* Characters/events to ignore */
pi->port.ignore_status_mask = 0;
if (termios->c_iflag & IGNPAR)
pi->port.ignore_status_mask |= SDMA_DESC_CMDSTAT_PE
| SDMA_DESC_CMDSTAT_FR;
if (termios->c_iflag & IGNBRK) {
pi->port.ignore_status_mask |= SDMA_DESC_CMDSTAT_BR;
if (termios->c_iflag & IGNPAR)
pi->port.ignore_status_mask |= SDMA_DESC_CMDSTAT_OR;
}
if ((termios->c_cflag & CREAD)) {
if (!pi->rcv_data) {
pi->rcv_data = 1;
mpsc_start_rx(pi);
}
} else if (pi->rcv_data) {
mpsc_stop_rx(port);
pi->rcv_data = 0;
}
spin_unlock_irqrestore(&pi->port.lock, flags);
}
static const char *mpsc_type(struct uart_port *port)
{
pr_debug("mpsc_type[%d]: port type: %s\n", port->line,MPSC_DRIVER_NAME);
return MPSC_DRIVER_NAME;
}
static int mpsc_request_port(struct uart_port *port)
{
/* Should make chip/platform specific call */
return 0;
}
static void mpsc_release_port(struct uart_port *port)
{
struct mpsc_port_info *pi = (struct mpsc_port_info *)port;
if (pi->ready) {
mpsc_uninit_rings(pi);
mpsc_free_ring_mem(pi);
pi->ready = 0;
}
}
static void mpsc_config_port(struct uart_port *port, int flags)
{
}
static int mpsc_verify_port(struct uart_port *port, struct serial_struct *ser)
{
struct mpsc_port_info *pi = (struct mpsc_port_info *)port;
int rc = 0;
pr_debug("mpsc_verify_port[%d]: Verifying port data\n", pi->port.line);
if (ser->type != PORT_UNKNOWN && ser->type != PORT_MPSC)
rc = -EINVAL;
else if (pi->port.irq != ser->irq)
rc = -EINVAL;
else if (ser->io_type != SERIAL_IO_MEM)
rc = -EINVAL;
else if (pi->port.uartclk / 16 != ser->baud_base) /* Not sure */
rc = -EINVAL;
else if ((void *)pi->port.mapbase != ser->iomem_base)
rc = -EINVAL;
else if (pi->port.iobase != ser->port)
rc = -EINVAL;
else if (ser->hub6 != 0)
rc = -EINVAL;
return rc;
}
#ifdef CONFIG_CONSOLE_POLL
/* Serial polling routines for writing and reading from the uart while
* in an interrupt or debug context.
*/
static char poll_buf[2048];
static int poll_ptr;
static int poll_cnt;
static void mpsc_put_poll_char(struct uart_port *port,
unsigned char c);
static int mpsc_get_poll_char(struct uart_port *port)
{
struct mpsc_port_info *pi = (struct mpsc_port_info *)port;
struct mpsc_rx_desc *rxre;
u32 cmdstat, bytes_in, i;
u8 *bp;
if (!serial_polled)
serial_polled = 1;
pr_debug("mpsc_rx_intr[%d]: Handling Rx intr\n", pi->port.line);
if (poll_cnt) {
poll_cnt--;
return poll_buf[poll_ptr++];
}
poll_ptr = 0;
poll_cnt = 0;
while (poll_cnt == 0) {
rxre = (struct mpsc_rx_desc *)(pi->rxr +
(pi->rxr_posn*MPSC_RXRE_SIZE));
dma_cache_sync(pi->port.dev, (void *)rxre,
MPSC_RXRE_SIZE, DMA_FROM_DEVICE);
#if defined(CONFIG_PPC32) && !defined(CONFIG_NOT_COHERENT_CACHE)
if (pi->cache_mgmt) /* GT642[46]0 Res #COMM-2 */
invalidate_dcache_range((ulong)rxre,
(ulong)rxre + MPSC_RXRE_SIZE);
#endif
/*
* Loop through Rx descriptors handling ones that have
* been completed.
*/
while (poll_cnt == 0 &&
!((cmdstat = be32_to_cpu(rxre->cmdstat)) &
SDMA_DESC_CMDSTAT_O)){
bytes_in = be16_to_cpu(rxre->bytecnt);
bp = pi->rxb + (pi->rxr_posn * MPSC_RXBE_SIZE);
dma_cache_sync(pi->port.dev, (void *) bp,
MPSC_RXBE_SIZE, DMA_FROM_DEVICE);
#if defined(CONFIG_PPC32) && !defined(CONFIG_NOT_COHERENT_CACHE)
if (pi->cache_mgmt) /* GT642[46]0 Res #COMM-2 */
invalidate_dcache_range((ulong)bp,
(ulong)bp + MPSC_RXBE_SIZE);
#endif
if ((unlikely(cmdstat & (SDMA_DESC_CMDSTAT_BR |
SDMA_DESC_CMDSTAT_FR | SDMA_DESC_CMDSTAT_OR))) &&
!(cmdstat & pi->port.ignore_status_mask)) {
poll_buf[poll_cnt] = *bp;
poll_cnt++;
} else {
for (i = 0; i < bytes_in; i++) {
poll_buf[poll_cnt] = *bp++;
poll_cnt++;
}
pi->port.icount.rx += bytes_in;
}
rxre->bytecnt = cpu_to_be16(0);
wmb();
rxre->cmdstat = cpu_to_be32(SDMA_DESC_CMDSTAT_O |
SDMA_DESC_CMDSTAT_EI |
SDMA_DESC_CMDSTAT_F |
SDMA_DESC_CMDSTAT_L);
wmb();
dma_cache_sync(pi->port.dev, (void *)rxre,
MPSC_RXRE_SIZE, DMA_BIDIRECTIONAL);
#if defined(CONFIG_PPC32) && !defined(CONFIG_NOT_COHERENT_CACHE)
if (pi->cache_mgmt) /* GT642[46]0 Res #COMM-2 */
flush_dcache_range((ulong)rxre,
(ulong)rxre + MPSC_RXRE_SIZE);
#endif
/* Advance to next descriptor */
pi->rxr_posn = (pi->rxr_posn + 1) &
(MPSC_RXR_ENTRIES - 1);
rxre = (struct mpsc_rx_desc *)(pi->rxr +
(pi->rxr_posn * MPSC_RXRE_SIZE));
dma_cache_sync(pi->port.dev, (void *)rxre,
MPSC_RXRE_SIZE, DMA_FROM_DEVICE);
#if defined(CONFIG_PPC32) && !defined(CONFIG_NOT_COHERENT_CACHE)
if (pi->cache_mgmt) /* GT642[46]0 Res #COMM-2 */
invalidate_dcache_range((ulong)rxre,
(ulong)rxre + MPSC_RXRE_SIZE);
#endif
}
/* Restart rx engine, if its stopped */
if ((readl(pi->sdma_base + SDMA_SDCM) & SDMA_SDCM_ERD) == 0)
mpsc_start_rx(pi);
}
if (poll_cnt) {
poll_cnt--;
return poll_buf[poll_ptr++];
}
return 0;
}
static void mpsc_put_poll_char(struct uart_port *port,
unsigned char c)
{
struct mpsc_port_info *pi = (struct mpsc_port_info *)port;
u32 data;
data = readl(pi->mpsc_base + MPSC_MPCR);
writeb(c, pi->mpsc_base + MPSC_CHR_1);
mb();
data = readl(pi->mpsc_base + MPSC_CHR_2);
data |= MPSC_CHR_2_TTCS;
writel(data, pi->mpsc_base + MPSC_CHR_2);
mb();
while (readl(pi->mpsc_base + MPSC_CHR_2) & MPSC_CHR_2_TTCS);
}
#endif
static struct uart_ops mpsc_pops = {
.tx_empty = mpsc_tx_empty,
.set_mctrl = mpsc_set_mctrl,
.get_mctrl = mpsc_get_mctrl,
.stop_tx = mpsc_stop_tx,
.start_tx = mpsc_start_tx,
.stop_rx = mpsc_stop_rx,
.enable_ms = mpsc_enable_ms,
.break_ctl = mpsc_break_ctl,
.startup = mpsc_startup,
.shutdown = mpsc_shutdown,
.set_termios = mpsc_set_termios,
.type = mpsc_type,
.release_port = mpsc_release_port,
.request_port = mpsc_request_port,
.config_port = mpsc_config_port,
.verify_port = mpsc_verify_port,
#ifdef CONFIG_CONSOLE_POLL
.poll_get_char = mpsc_get_poll_char,
.poll_put_char = mpsc_put_poll_char,
#endif
};
/*
******************************************************************************
*
* Console Interface Routines
*
******************************************************************************
*/
#ifdef CONFIG_SERIAL_MPSC_CONSOLE
static void mpsc_console_write(struct console *co, const char *s, uint count)
{
struct mpsc_port_info *pi = &mpsc_ports[co->index];
u8 *bp, *dp, add_cr = 0;
int i;
unsigned long iflags;
spin_lock_irqsave(&pi->tx_lock, iflags);
while (pi->txr_head != pi->txr_tail) {
while (mpsc_sdma_tx_active(pi))
udelay(100);
mpsc_sdma_intr_ack(pi);
mpsc_tx_intr(pi);
}
while (mpsc_sdma_tx_active(pi))
udelay(100);
while (count > 0) {
bp = dp = pi->txb + (pi->txr_head * MPSC_TXBE_SIZE);
for (i = 0; i < MPSC_TXBE_SIZE; i++) {
if (count == 0)
break;
if (add_cr) {
*(dp++) = '\r';
add_cr = 0;
} else {
*(dp++) = *s;
if (*(s++) == '\n') { /* add '\r' after '\n' */
add_cr = 1;
count++;
}
}
count--;
}
dma_cache_sync(pi->port.dev, (void *)bp, MPSC_TXBE_SIZE,
DMA_BIDIRECTIONAL);
#if defined(CONFIG_PPC32) && !defined(CONFIG_NOT_COHERENT_CACHE)
if (pi->cache_mgmt) /* GT642[46]0 Res #COMM-2 */
flush_dcache_range((ulong)bp,
(ulong)bp + MPSC_TXBE_SIZE);
#endif
mpsc_setup_tx_desc(pi, i, 0);
pi->txr_head = (pi->txr_head + 1) & (MPSC_TXR_ENTRIES - 1);
mpsc_sdma_start_tx(pi);
while (mpsc_sdma_tx_active(pi))
udelay(100);
pi->txr_tail = (pi->txr_tail + 1) & (MPSC_TXR_ENTRIES - 1);
}
spin_unlock_irqrestore(&pi->tx_lock, iflags);
}
static int __init mpsc_console_setup(struct console *co, char *options)
{
struct mpsc_port_info *pi;
int baud, bits, parity, flow;
pr_debug("mpsc_console_setup[%d]: options: %s\n", co->index, options);
if (co->index >= MPSC_NUM_CTLRS)
co->index = 0;
pi = &mpsc_ports[co->index];
baud = pi->default_baud;
bits = pi->default_bits;
parity = pi->default_parity;
flow = pi->default_flow;
if (!pi->port.ops)
return -ENODEV;
spin_lock_init(&pi->port.lock); /* Temporary fix--copied from 8250.c */
if (options)
uart_parse_options(options, &baud, &parity, &bits, &flow);
return uart_set_options(&pi->port, co, baud, parity, bits, flow);
}
static struct console mpsc_console = {
.name = MPSC_DEV_NAME,
.write = mpsc_console_write,
.device = uart_console_device,
.setup = mpsc_console_setup,
.flags = CON_PRINTBUFFER,
.index = -1,
.data = &mpsc_reg,
};
static int __init mpsc_late_console_init(void)
{
pr_debug("mpsc_late_console_init: Enter\n");
if (!(mpsc_console.flags & CON_ENABLED))
register_console(&mpsc_console);
return 0;
}
late_initcall(mpsc_late_console_init);
#define MPSC_CONSOLE &mpsc_console
#else
#define MPSC_CONSOLE NULL
#endif
/*
******************************************************************************
*
* Dummy Platform Driver to extract & map shared register regions
*
******************************************************************************
*/
static void mpsc_resource_err(char *s)
{
printk(KERN_WARNING "MPSC: Platform device resource error in %s\n", s);
}
static int mpsc_shared_map_regs(struct platform_device *pd)
{
struct resource *r;
if ((r = platform_get_resource(pd, IORESOURCE_MEM,
MPSC_ROUTING_BASE_ORDER))
&& request_mem_region(r->start,
MPSC_ROUTING_REG_BLOCK_SIZE,
"mpsc_routing_regs")) {
mpsc_shared_regs.mpsc_routing_base = ioremap(r->start,
MPSC_ROUTING_REG_BLOCK_SIZE);
mpsc_shared_regs.mpsc_routing_base_p = r->start;
} else {
mpsc_resource_err("MPSC routing base");
return -ENOMEM;
}
if ((r = platform_get_resource(pd, IORESOURCE_MEM,
MPSC_SDMA_INTR_BASE_ORDER))
&& request_mem_region(r->start,
MPSC_SDMA_INTR_REG_BLOCK_SIZE,
"sdma_intr_regs")) {
mpsc_shared_regs.sdma_intr_base = ioremap(r->start,
MPSC_SDMA_INTR_REG_BLOCK_SIZE);
mpsc_shared_regs.sdma_intr_base_p = r->start;
} else {
iounmap(mpsc_shared_regs.mpsc_routing_base);
release_mem_region(mpsc_shared_regs.mpsc_routing_base_p,
MPSC_ROUTING_REG_BLOCK_SIZE);
mpsc_resource_err("SDMA intr base");
return -ENOMEM;
}
return 0;
}
static void mpsc_shared_unmap_regs(void)
{
if (!mpsc_shared_regs.mpsc_routing_base) {
iounmap(mpsc_shared_regs.mpsc_routing_base);
release_mem_region(mpsc_shared_regs.mpsc_routing_base_p,
MPSC_ROUTING_REG_BLOCK_SIZE);
}
if (!mpsc_shared_regs.sdma_intr_base) {
iounmap(mpsc_shared_regs.sdma_intr_base);
release_mem_region(mpsc_shared_regs.sdma_intr_base_p,
MPSC_SDMA_INTR_REG_BLOCK_SIZE);
}
mpsc_shared_regs.mpsc_routing_base = NULL;
mpsc_shared_regs.sdma_intr_base = NULL;
mpsc_shared_regs.mpsc_routing_base_p = 0;
mpsc_shared_regs.sdma_intr_base_p = 0;
}
static int mpsc_shared_drv_probe(struct platform_device *dev)
{
struct mpsc_shared_pdata *pdata;
int rc = -ENODEV;
if (dev->id == 0) {
if (!(rc = mpsc_shared_map_regs(dev))) {
pdata = (struct mpsc_shared_pdata *)
dev_get_platdata(&dev->dev);
mpsc_shared_regs.MPSC_MRR_m = pdata->mrr_val;
mpsc_shared_regs.MPSC_RCRR_m= pdata->rcrr_val;
mpsc_shared_regs.MPSC_TCRR_m= pdata->tcrr_val;
mpsc_shared_regs.SDMA_INTR_CAUSE_m =
pdata->intr_cause_val;
mpsc_shared_regs.SDMA_INTR_MASK_m =
pdata->intr_mask_val;
rc = 0;
}
}
return rc;
}
static int mpsc_shared_drv_remove(struct platform_device *dev)
{
int rc = -ENODEV;
if (dev->id == 0) {
mpsc_shared_unmap_regs();
mpsc_shared_regs.MPSC_MRR_m = 0;
mpsc_shared_regs.MPSC_RCRR_m = 0;
mpsc_shared_regs.MPSC_TCRR_m = 0;
mpsc_shared_regs.SDMA_INTR_CAUSE_m = 0;
mpsc_shared_regs.SDMA_INTR_MASK_m = 0;
rc = 0;
}
return rc;
}
static struct platform_driver mpsc_shared_driver = {
.probe = mpsc_shared_drv_probe,
.remove = mpsc_shared_drv_remove,
.driver = {
.name = MPSC_SHARED_NAME,
},
};
/*
******************************************************************************
*
* Driver Interface Routines
*
******************************************************************************
*/
static struct uart_driver mpsc_reg = {
.owner = THIS_MODULE,
.driver_name = MPSC_DRIVER_NAME,
.dev_name = MPSC_DEV_NAME,
.major = MPSC_MAJOR,
.minor = MPSC_MINOR_START,
.nr = MPSC_NUM_CTLRS,
.cons = MPSC_CONSOLE,
};
static int mpsc_drv_map_regs(struct mpsc_port_info *pi,
struct platform_device *pd)
{
struct resource *r;
if ((r = platform_get_resource(pd, IORESOURCE_MEM, MPSC_BASE_ORDER))
&& request_mem_region(r->start, MPSC_REG_BLOCK_SIZE,
"mpsc_regs")) {
pi->mpsc_base = ioremap(r->start, MPSC_REG_BLOCK_SIZE);
pi->mpsc_base_p = r->start;
} else {
mpsc_resource_err("MPSC base");
goto err;
}
if ((r = platform_get_resource(pd, IORESOURCE_MEM,
MPSC_SDMA_BASE_ORDER))
&& request_mem_region(r->start,
MPSC_SDMA_REG_BLOCK_SIZE, "sdma_regs")) {
pi->sdma_base = ioremap(r->start,MPSC_SDMA_REG_BLOCK_SIZE);
pi->sdma_base_p = r->start;
} else {
mpsc_resource_err("SDMA base");
if (pi->mpsc_base) {
iounmap(pi->mpsc_base);
pi->mpsc_base = NULL;
}
goto err;
}
if ((r = platform_get_resource(pd,IORESOURCE_MEM,MPSC_BRG_BASE_ORDER))
&& request_mem_region(r->start,
MPSC_BRG_REG_BLOCK_SIZE, "brg_regs")) {
pi->brg_base = ioremap(r->start, MPSC_BRG_REG_BLOCK_SIZE);
pi->brg_base_p = r->start;
} else {
mpsc_resource_err("BRG base");
if (pi->mpsc_base) {
iounmap(pi->mpsc_base);
pi->mpsc_base = NULL;
}
if (pi->sdma_base) {
iounmap(pi->sdma_base);
pi->sdma_base = NULL;
}
goto err;
}
return 0;
err:
return -ENOMEM;
}
static void mpsc_drv_unmap_regs(struct mpsc_port_info *pi)
{
if (!pi->mpsc_base) {
iounmap(pi->mpsc_base);
release_mem_region(pi->mpsc_base_p, MPSC_REG_BLOCK_SIZE);
}
if (!pi->sdma_base) {
iounmap(pi->sdma_base);
release_mem_region(pi->sdma_base_p, MPSC_SDMA_REG_BLOCK_SIZE);
}
if (!pi->brg_base) {
iounmap(pi->brg_base);
release_mem_region(pi->brg_base_p, MPSC_BRG_REG_BLOCK_SIZE);
}
pi->mpsc_base = NULL;
pi->sdma_base = NULL;
pi->brg_base = NULL;
pi->mpsc_base_p = 0;
pi->sdma_base_p = 0;
pi->brg_base_p = 0;
}
static void mpsc_drv_get_platform_data(struct mpsc_port_info *pi,
struct platform_device *pd, int num)
{
struct mpsc_pdata *pdata;
pdata = dev_get_platdata(&pd->dev);
pi->port.uartclk = pdata->brg_clk_freq;
pi->port.iotype = UPIO_MEM;
pi->port.line = num;
pi->port.type = PORT_MPSC;
pi->port.fifosize = MPSC_TXBE_SIZE;
pi->port.membase = pi->mpsc_base;
pi->port.mapbase = (ulong)pi->mpsc_base;
pi->port.ops = &mpsc_pops;
pi->mirror_regs = pdata->mirror_regs;
pi->cache_mgmt = pdata->cache_mgmt;
pi->brg_can_tune = pdata->brg_can_tune;
pi->brg_clk_src = pdata->brg_clk_src;
pi->mpsc_max_idle = pdata->max_idle;
pi->default_baud = pdata->default_baud;
pi->default_bits = pdata->default_bits;
pi->default_parity = pdata->default_parity;
pi->default_flow = pdata->default_flow;
/* Initial values of mirrored regs */
pi->MPSC_CHR_1_m = pdata->chr_1_val;
pi->MPSC_CHR_2_m = pdata->chr_2_val;
pi->MPSC_CHR_10_m = pdata->chr_10_val;
pi->MPSC_MPCR_m = pdata->mpcr_val;
pi->BRG_BCR_m = pdata->bcr_val;
pi->shared_regs = &mpsc_shared_regs;
pi->port.irq = platform_get_irq(pd, 0);
}
static int mpsc_drv_probe(struct platform_device *dev)
{
struct mpsc_port_info *pi;
int rc = -ENODEV;
pr_debug("mpsc_drv_probe: Adding MPSC %d\n", dev->id);
if (dev->id < MPSC_NUM_CTLRS) {
pi = &mpsc_ports[dev->id];
if (!(rc = mpsc_drv_map_regs(pi, dev))) {
mpsc_drv_get_platform_data(pi, dev, dev->id);
pi->port.dev = &dev->dev;
if (!(rc = mpsc_make_ready(pi))) {
spin_lock_init(&pi->tx_lock);
if (!(rc = uart_add_one_port(&mpsc_reg,
&pi->port))) {
rc = 0;
} else {
mpsc_release_port((struct uart_port *)
pi);
mpsc_drv_unmap_regs(pi);
}
} else {
mpsc_drv_unmap_regs(pi);
}
}
}
return rc;
}
static int mpsc_drv_remove(struct platform_device *dev)
{
pr_debug("mpsc_drv_exit: Removing MPSC %d\n", dev->id);
if (dev->id < MPSC_NUM_CTLRS) {
uart_remove_one_port(&mpsc_reg, &mpsc_ports[dev->id].port);
mpsc_release_port((struct uart_port *)
&mpsc_ports[dev->id].port);
mpsc_drv_unmap_regs(&mpsc_ports[dev->id]);
return 0;
} else {
return -ENODEV;
}
}
static struct platform_driver mpsc_driver = {
.probe = mpsc_drv_probe,
.remove = mpsc_drv_remove,
.driver = {
.name = MPSC_CTLR_NAME,
.owner = THIS_MODULE,
},
};
static int __init mpsc_drv_init(void)
{
int rc;
printk(KERN_INFO "Serial: MPSC driver\n");
memset(mpsc_ports, 0, sizeof(mpsc_ports));
memset(&mpsc_shared_regs, 0, sizeof(mpsc_shared_regs));
if (!(rc = uart_register_driver(&mpsc_reg))) {
if (!(rc = platform_driver_register(&mpsc_shared_driver))) {
if ((rc = platform_driver_register(&mpsc_driver))) {
platform_driver_unregister(&mpsc_shared_driver);
uart_unregister_driver(&mpsc_reg);
}
} else {
uart_unregister_driver(&mpsc_reg);
}
}
return rc;
}
static void __exit mpsc_drv_exit(void)
{
platform_driver_unregister(&mpsc_driver);
platform_driver_unregister(&mpsc_shared_driver);
uart_unregister_driver(&mpsc_reg);
memset(mpsc_ports, 0, sizeof(mpsc_ports));
memset(&mpsc_shared_regs, 0, sizeof(mpsc_shared_regs));
}
module_init(mpsc_drv_init);
module_exit(mpsc_drv_exit);
MODULE_AUTHOR("Mark A. Greer <mgreer@mvista.com>");
MODULE_DESCRIPTION("Generic Marvell MPSC serial/UART driver");
MODULE_VERSION(MPSC_VERSION);
MODULE_LICENSE("GPL");
MODULE_ALIAS_CHARDEV_MAJOR(MPSC_MAJOR);
MODULE_ALIAS("platform:" MPSC_CTLR_NAME);