linux-hardened/drivers/net/myri10ge/myri10ge.c
David Howells 7d12e780e0 IRQ: Maintain regs pointer globally rather than passing to IRQ handlers
Maintain a per-CPU global "struct pt_regs *" variable which can be used instead
of passing regs around manually through all ~1800 interrupt handlers in the
Linux kernel.

The regs pointer is used in few places, but it potentially costs both stack
space and code to pass it around.  On the FRV arch, removing the regs parameter
from all the genirq function results in a 20% speed up of the IRQ exit path
(ie: from leaving timer_interrupt() to leaving do_IRQ()).

Where appropriate, an arch may override the generic storage facility and do
something different with the variable.  On FRV, for instance, the address is
maintained in GR28 at all times inside the kernel as part of general exception
handling.

Having looked over the code, it appears that the parameter may be handed down
through up to twenty or so layers of functions.  Consider a USB character
device attached to a USB hub, attached to a USB controller that posts its
interrupts through a cascaded auxiliary interrupt controller.  A character
device driver may want to pass regs to the sysrq handler through the input
layer which adds another few layers of parameter passing.

I've build this code with allyesconfig for x86_64 and i386.  I've runtested the
main part of the code on FRV and i386, though I can't test most of the drivers.
I've also done partial conversion for powerpc and MIPS - these at least compile
with minimal configurations.

This will affect all archs.  Mostly the changes should be relatively easy.
Take do_IRQ(), store the regs pointer at the beginning, saving the old one:

	struct pt_regs *old_regs = set_irq_regs(regs);

And put the old one back at the end:

	set_irq_regs(old_regs);

Don't pass regs through to generic_handle_irq() or __do_IRQ().

In timer_interrupt(), this sort of change will be necessary:

	-	update_process_times(user_mode(regs));
	-	profile_tick(CPU_PROFILING, regs);
	+	update_process_times(user_mode(get_irq_regs()));
	+	profile_tick(CPU_PROFILING);

I'd like to move update_process_times()'s use of get_irq_regs() into itself,
except that i386, alone of the archs, uses something other than user_mode().

Some notes on the interrupt handling in the drivers:

 (*) input_dev() is now gone entirely.  The regs pointer is no longer stored in
     the input_dev struct.

 (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking.  It does
     something different depending on whether it's been supplied with a regs
     pointer or not.

 (*) Various IRQ handler function pointers have been moved to type
     irq_handler_t.

Signed-Off-By: David Howells <dhowells@redhat.com>
(cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 15:10:12 +01:00

3016 lines
84 KiB
C

/*************************************************************************
* myri10ge.c: Myricom Myri-10G Ethernet driver.
*
* Copyright (C) 2005, 2006 Myricom, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Myricom, Inc. nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*
* If the eeprom on your board is not recent enough, you will need to get a
* newer firmware image at:
* http://www.myri.com/scs/download-Myri10GE.html
*
* Contact Information:
* <help@myri.com>
* Myricom, Inc., 325N Santa Anita Avenue, Arcadia, CA 91006
*************************************************************************/
#include <linux/tcp.h>
#include <linux/netdevice.h>
#include <linux/skbuff.h>
#include <linux/string.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <linux/ip.h>
#include <linux/inet.h>
#include <linux/in.h>
#include <linux/ethtool.h>
#include <linux/firmware.h>
#include <linux/delay.h>
#include <linux/version.h>
#include <linux/timer.h>
#include <linux/vmalloc.h>
#include <linux/crc32.h>
#include <linux/moduleparam.h>
#include <linux/io.h>
#include <net/checksum.h>
#include <asm/byteorder.h>
#include <asm/io.h>
#include <asm/processor.h>
#ifdef CONFIG_MTRR
#include <asm/mtrr.h>
#endif
#include "myri10ge_mcp.h"
#include "myri10ge_mcp_gen_header.h"
#define MYRI10GE_VERSION_STR "1.0.0"
MODULE_DESCRIPTION("Myricom 10G driver (10GbE)");
MODULE_AUTHOR("Maintainer: help@myri.com");
MODULE_VERSION(MYRI10GE_VERSION_STR);
MODULE_LICENSE("Dual BSD/GPL");
#define MYRI10GE_MAX_ETHER_MTU 9014
#define MYRI10GE_ETH_STOPPED 0
#define MYRI10GE_ETH_STOPPING 1
#define MYRI10GE_ETH_STARTING 2
#define MYRI10GE_ETH_RUNNING 3
#define MYRI10GE_ETH_OPEN_FAILED 4
#define MYRI10GE_EEPROM_STRINGS_SIZE 256
#define MYRI10GE_MAX_SEND_DESC_TSO ((65536 / 2048) * 2)
#define MYRI10GE_NO_CONFIRM_DATA 0xffffffff
#define MYRI10GE_NO_RESPONSE_RESULT 0xffffffff
struct myri10ge_rx_buffer_state {
struct sk_buff *skb;
DECLARE_PCI_UNMAP_ADDR(bus)
DECLARE_PCI_UNMAP_LEN(len)
};
struct myri10ge_tx_buffer_state {
struct sk_buff *skb;
int last;
DECLARE_PCI_UNMAP_ADDR(bus)
DECLARE_PCI_UNMAP_LEN(len)
};
struct myri10ge_cmd {
u32 data0;
u32 data1;
u32 data2;
};
struct myri10ge_rx_buf {
struct mcp_kreq_ether_recv __iomem *lanai; /* lanai ptr for recv ring */
u8 __iomem *wc_fifo; /* w/c rx dma addr fifo address */
struct mcp_kreq_ether_recv *shadow; /* host shadow of recv ring */
struct myri10ge_rx_buffer_state *info;
int cnt;
int alloc_fail;
int mask; /* number of rx slots -1 */
};
struct myri10ge_tx_buf {
struct mcp_kreq_ether_send __iomem *lanai; /* lanai ptr for sendq */
u8 __iomem *wc_fifo; /* w/c send fifo address */
struct mcp_kreq_ether_send *req_list; /* host shadow of sendq */
char *req_bytes;
struct myri10ge_tx_buffer_state *info;
int mask; /* number of transmit slots -1 */
int boundary; /* boundary transmits cannot cross */
int req ____cacheline_aligned; /* transmit slots submitted */
int pkt_start; /* packets started */
int done ____cacheline_aligned; /* transmit slots completed */
int pkt_done; /* packets completed */
};
struct myri10ge_rx_done {
struct mcp_slot *entry;
dma_addr_t bus;
int cnt;
int idx;
};
struct myri10ge_priv {
int running; /* running? */
int csum_flag; /* rx_csums? */
struct myri10ge_tx_buf tx; /* transmit ring */
struct myri10ge_rx_buf rx_small;
struct myri10ge_rx_buf rx_big;
struct myri10ge_rx_done rx_done;
int small_bytes;
struct net_device *dev;
struct net_device_stats stats;
u8 __iomem *sram;
int sram_size;
unsigned long board_span;
unsigned long iomem_base;
u32 __iomem *irq_claim;
u32 __iomem *irq_deassert;
char *mac_addr_string;
struct mcp_cmd_response *cmd;
dma_addr_t cmd_bus;
struct mcp_irq_data *fw_stats;
dma_addr_t fw_stats_bus;
struct pci_dev *pdev;
int msi_enabled;
unsigned int link_state;
unsigned int rdma_tags_available;
int intr_coal_delay;
u32 __iomem *intr_coal_delay_ptr;
int mtrr;
int wake_queue;
int stop_queue;
int down_cnt;
wait_queue_head_t down_wq;
struct work_struct watchdog_work;
struct timer_list watchdog_timer;
int watchdog_tx_done;
int watchdog_tx_req;
int watchdog_resets;
int tx_linearized;
int pause;
char *fw_name;
char eeprom_strings[MYRI10GE_EEPROM_STRINGS_SIZE];
char fw_version[128];
u8 mac_addr[6]; /* eeprom mac address */
unsigned long serial_number;
int vendor_specific_offset;
int fw_multicast_support;
u32 devctl;
u16 msi_flags;
u32 read_dma;
u32 write_dma;
u32 read_write_dma;
u32 link_changes;
u32 msg_enable;
};
static char *myri10ge_fw_unaligned = "myri10ge_ethp_z8e.dat";
static char *myri10ge_fw_aligned = "myri10ge_eth_z8e.dat";
static char *myri10ge_fw_name = NULL;
module_param(myri10ge_fw_name, charp, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(myri10ge_fw_name, "Firmware image name\n");
static int myri10ge_ecrc_enable = 1;
module_param(myri10ge_ecrc_enable, int, S_IRUGO);
MODULE_PARM_DESC(myri10ge_ecrc_enable, "Enable Extended CRC on PCI-E\n");
static int myri10ge_max_intr_slots = 1024;
module_param(myri10ge_max_intr_slots, int, S_IRUGO);
MODULE_PARM_DESC(myri10ge_max_intr_slots, "Interrupt queue slots\n");
static int myri10ge_small_bytes = -1; /* -1 == auto */
module_param(myri10ge_small_bytes, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(myri10ge_small_bytes, "Threshold of small packets\n");
static int myri10ge_msi = 1; /* enable msi by default */
module_param(myri10ge_msi, int, S_IRUGO);
MODULE_PARM_DESC(myri10ge_msi, "Enable Message Signalled Interrupts\n");
static int myri10ge_intr_coal_delay = 25;
module_param(myri10ge_intr_coal_delay, int, S_IRUGO);
MODULE_PARM_DESC(myri10ge_intr_coal_delay, "Interrupt coalescing delay\n");
static int myri10ge_flow_control = 1;
module_param(myri10ge_flow_control, int, S_IRUGO);
MODULE_PARM_DESC(myri10ge_flow_control, "Pause parameter\n");
static int myri10ge_deassert_wait = 1;
module_param(myri10ge_deassert_wait, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(myri10ge_deassert_wait,
"Wait when deasserting legacy interrupts\n");
static int myri10ge_force_firmware = 0;
module_param(myri10ge_force_firmware, int, S_IRUGO);
MODULE_PARM_DESC(myri10ge_force_firmware,
"Force firmware to assume aligned completions\n");
static int myri10ge_skb_cross_4k = 0;
module_param(myri10ge_skb_cross_4k, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(myri10ge_skb_cross_4k,
"Can a small skb cross a 4KB boundary?\n");
static int myri10ge_initial_mtu = MYRI10GE_MAX_ETHER_MTU - ETH_HLEN;
module_param(myri10ge_initial_mtu, int, S_IRUGO);
MODULE_PARM_DESC(myri10ge_initial_mtu, "Initial MTU\n");
static int myri10ge_napi_weight = 64;
module_param(myri10ge_napi_weight, int, S_IRUGO);
MODULE_PARM_DESC(myri10ge_napi_weight, "Set NAPI weight\n");
static int myri10ge_watchdog_timeout = 1;
module_param(myri10ge_watchdog_timeout, int, S_IRUGO);
MODULE_PARM_DESC(myri10ge_watchdog_timeout, "Set watchdog timeout\n");
static int myri10ge_max_irq_loops = 1048576;
module_param(myri10ge_max_irq_loops, int, S_IRUGO);
MODULE_PARM_DESC(myri10ge_max_irq_loops,
"Set stuck legacy IRQ detection threshold\n");
#define MYRI10GE_MSG_DEFAULT NETIF_MSG_LINK
static int myri10ge_debug = -1; /* defaults above */
module_param(myri10ge_debug, int, 0);
MODULE_PARM_DESC(myri10ge_debug, "Debug level (0=none,...,16=all)");
#define MYRI10GE_FW_OFFSET 1024*1024
#define MYRI10GE_HIGHPART_TO_U32(X) \
(sizeof (X) == 8) ? ((u32)((u64)(X) >> 32)) : (0)
#define MYRI10GE_LOWPART_TO_U32(X) ((u32)(X))
#define myri10ge_pio_copy(to,from,size) __iowrite64_copy(to,from,size/8)
static int
myri10ge_send_cmd(struct myri10ge_priv *mgp, u32 cmd,
struct myri10ge_cmd *data, int atomic)
{
struct mcp_cmd *buf;
char buf_bytes[sizeof(*buf) + 8];
struct mcp_cmd_response *response = mgp->cmd;
char __iomem *cmd_addr = mgp->sram + MXGEFW_ETH_CMD;
u32 dma_low, dma_high, result, value;
int sleep_total = 0;
/* ensure buf is aligned to 8 bytes */
buf = (struct mcp_cmd *)ALIGN((unsigned long)buf_bytes, 8);
buf->data0 = htonl(data->data0);
buf->data1 = htonl(data->data1);
buf->data2 = htonl(data->data2);
buf->cmd = htonl(cmd);
dma_low = MYRI10GE_LOWPART_TO_U32(mgp->cmd_bus);
dma_high = MYRI10GE_HIGHPART_TO_U32(mgp->cmd_bus);
buf->response_addr.low = htonl(dma_low);
buf->response_addr.high = htonl(dma_high);
response->result = MYRI10GE_NO_RESPONSE_RESULT;
mb();
myri10ge_pio_copy(cmd_addr, buf, sizeof(*buf));
/* wait up to 15ms. Longest command is the DMA benchmark,
* which is capped at 5ms, but runs from a timeout handler
* that runs every 7.8ms. So a 15ms timeout leaves us with
* a 2.2ms margin
*/
if (atomic) {
/* if atomic is set, do not sleep,
* and try to get the completion quickly
* (1ms will be enough for those commands) */
for (sleep_total = 0;
sleep_total < 1000
&& response->result == MYRI10GE_NO_RESPONSE_RESULT;
sleep_total += 10)
udelay(10);
} else {
/* use msleep for most command */
for (sleep_total = 0;
sleep_total < 15
&& response->result == MYRI10GE_NO_RESPONSE_RESULT;
sleep_total++)
msleep(1);
}
result = ntohl(response->result);
value = ntohl(response->data);
if (result != MYRI10GE_NO_RESPONSE_RESULT) {
if (result == 0) {
data->data0 = value;
return 0;
} else if (result == MXGEFW_CMD_UNKNOWN) {
return -ENOSYS;
} else {
dev_err(&mgp->pdev->dev,
"command %d failed, result = %d\n",
cmd, result);
return -ENXIO;
}
}
dev_err(&mgp->pdev->dev, "command %d timed out, result = %d\n",
cmd, result);
return -EAGAIN;
}
/*
* The eeprom strings on the lanaiX have the format
* SN=x\0
* MAC=x:x:x:x:x:x\0
* PT:ddd mmm xx xx:xx:xx xx\0
* PV:ddd mmm xx xx:xx:xx xx\0
*/
static int myri10ge_read_mac_addr(struct myri10ge_priv *mgp)
{
char *ptr, *limit;
int i;
ptr = mgp->eeprom_strings;
limit = mgp->eeprom_strings + MYRI10GE_EEPROM_STRINGS_SIZE;
while (*ptr != '\0' && ptr < limit) {
if (memcmp(ptr, "MAC=", 4) == 0) {
ptr += 4;
mgp->mac_addr_string = ptr;
for (i = 0; i < 6; i++) {
if ((ptr + 2) > limit)
goto abort;
mgp->mac_addr[i] =
simple_strtoul(ptr, &ptr, 16);
ptr += 1;
}
}
if (memcmp((const void *)ptr, "SN=", 3) == 0) {
ptr += 3;
mgp->serial_number = simple_strtoul(ptr, &ptr, 10);
}
while (ptr < limit && *ptr++) ;
}
return 0;
abort:
dev_err(&mgp->pdev->dev, "failed to parse eeprom_strings\n");
return -ENXIO;
}
/*
* Enable or disable periodic RDMAs from the host to make certain
* chipsets resend dropped PCIe messages
*/
static void myri10ge_dummy_rdma(struct myri10ge_priv *mgp, int enable)
{
char __iomem *submit;
u32 buf[16];
u32 dma_low, dma_high;
int i;
/* clear confirmation addr */
mgp->cmd->data = 0;
mb();
/* send a rdma command to the PCIe engine, and wait for the
* response in the confirmation address. The firmware should
* write a -1 there to indicate it is alive and well
*/
dma_low = MYRI10GE_LOWPART_TO_U32(mgp->cmd_bus);
dma_high = MYRI10GE_HIGHPART_TO_U32(mgp->cmd_bus);
buf[0] = htonl(dma_high); /* confirm addr MSW */
buf[1] = htonl(dma_low); /* confirm addr LSW */
buf[2] = htonl(MYRI10GE_NO_CONFIRM_DATA); /* confirm data */
buf[3] = htonl(dma_high); /* dummy addr MSW */
buf[4] = htonl(dma_low); /* dummy addr LSW */
buf[5] = htonl(enable); /* enable? */
submit = mgp->sram + MXGEFW_BOOT_DUMMY_RDMA;
myri10ge_pio_copy(submit, &buf, sizeof(buf));
for (i = 0; mgp->cmd->data != MYRI10GE_NO_CONFIRM_DATA && i < 20; i++)
msleep(1);
if (mgp->cmd->data != MYRI10GE_NO_CONFIRM_DATA)
dev_err(&mgp->pdev->dev, "dummy rdma %s failed\n",
(enable ? "enable" : "disable"));
}
static int
myri10ge_validate_firmware(struct myri10ge_priv *mgp,
struct mcp_gen_header *hdr)
{
struct device *dev = &mgp->pdev->dev;
int major, minor;
/* check firmware type */
if (ntohl(hdr->mcp_type) != MCP_TYPE_ETH) {
dev_err(dev, "Bad firmware type: 0x%x\n", ntohl(hdr->mcp_type));
return -EINVAL;
}
/* save firmware version for ethtool */
strncpy(mgp->fw_version, hdr->version, sizeof(mgp->fw_version));
sscanf(mgp->fw_version, "%d.%d", &major, &minor);
if (!(major == MXGEFW_VERSION_MAJOR && minor == MXGEFW_VERSION_MINOR)) {
dev_err(dev, "Found firmware version %s\n", mgp->fw_version);
dev_err(dev, "Driver needs %d.%d\n", MXGEFW_VERSION_MAJOR,
MXGEFW_VERSION_MINOR);
return -EINVAL;
}
return 0;
}
static int myri10ge_load_hotplug_firmware(struct myri10ge_priv *mgp, u32 * size)
{
unsigned crc, reread_crc;
const struct firmware *fw;
struct device *dev = &mgp->pdev->dev;
struct mcp_gen_header *hdr;
size_t hdr_offset;
int status;
unsigned i;
if ((status = request_firmware(&fw, mgp->fw_name, dev)) < 0) {
dev_err(dev, "Unable to load %s firmware image via hotplug\n",
mgp->fw_name);
status = -EINVAL;
goto abort_with_nothing;
}
/* check size */
if (fw->size >= mgp->sram_size - MYRI10GE_FW_OFFSET ||
fw->size < MCP_HEADER_PTR_OFFSET + 4) {
dev_err(dev, "Firmware size invalid:%d\n", (int)fw->size);
status = -EINVAL;
goto abort_with_fw;
}
/* check id */
hdr_offset = ntohl(*(u32 *) (fw->data + MCP_HEADER_PTR_OFFSET));
if ((hdr_offset & 3) || hdr_offset + sizeof(*hdr) > fw->size) {
dev_err(dev, "Bad firmware file\n");
status = -EINVAL;
goto abort_with_fw;
}
hdr = (void *)(fw->data + hdr_offset);
status = myri10ge_validate_firmware(mgp, hdr);
if (status != 0)
goto abort_with_fw;
crc = crc32(~0, fw->data, fw->size);
for (i = 0; i < fw->size; i += 256) {
myri10ge_pio_copy(mgp->sram + MYRI10GE_FW_OFFSET + i,
fw->data + i,
min(256U, (unsigned)(fw->size - i)));
mb();
readb(mgp->sram);
}
/* corruption checking is good for parity recovery and buggy chipset */
memcpy_fromio(fw->data, mgp->sram + MYRI10GE_FW_OFFSET, fw->size);
reread_crc = crc32(~0, fw->data, fw->size);
if (crc != reread_crc) {
dev_err(dev, "CRC failed(fw-len=%u), got 0x%x (expect 0x%x)\n",
(unsigned)fw->size, reread_crc, crc);
status = -EIO;
goto abort_with_fw;
}
*size = (u32) fw->size;
abort_with_fw:
release_firmware(fw);
abort_with_nothing:
return status;
}
static int myri10ge_adopt_running_firmware(struct myri10ge_priv *mgp)
{
struct mcp_gen_header *hdr;
struct device *dev = &mgp->pdev->dev;
const size_t bytes = sizeof(struct mcp_gen_header);
size_t hdr_offset;
int status;
/* find running firmware header */
hdr_offset = ntohl(__raw_readl(mgp->sram + MCP_HEADER_PTR_OFFSET));
if ((hdr_offset & 3) || hdr_offset + sizeof(*hdr) > mgp->sram_size) {
dev_err(dev, "Running firmware has bad header offset (%d)\n",
(int)hdr_offset);
return -EIO;
}
/* copy header of running firmware from SRAM to host memory to
* validate firmware */
hdr = kmalloc(bytes, GFP_KERNEL);
if (hdr == NULL) {
dev_err(dev, "could not malloc firmware hdr\n");
return -ENOMEM;
}
memcpy_fromio(hdr, mgp->sram + hdr_offset, bytes);
status = myri10ge_validate_firmware(mgp, hdr);
kfree(hdr);
return status;
}
static int myri10ge_load_firmware(struct myri10ge_priv *mgp)
{
char __iomem *submit;
u32 buf[16];
u32 dma_low, dma_high, size;
int status, i;
size = 0;
status = myri10ge_load_hotplug_firmware(mgp, &size);
if (status) {
dev_warn(&mgp->pdev->dev, "hotplug firmware loading failed\n");
/* Do not attempt to adopt firmware if there
* was a bad crc */
if (status == -EIO)
return status;
status = myri10ge_adopt_running_firmware(mgp);
if (status != 0) {
dev_err(&mgp->pdev->dev,
"failed to adopt running firmware\n");
return status;
}
dev_info(&mgp->pdev->dev,
"Successfully adopted running firmware\n");
if (mgp->tx.boundary == 4096) {
dev_warn(&mgp->pdev->dev,
"Using firmware currently running on NIC"
". For optimal\n");
dev_warn(&mgp->pdev->dev,
"performance consider loading optimized "
"firmware\n");
dev_warn(&mgp->pdev->dev, "via hotplug\n");
}
mgp->fw_name = "adopted";
mgp->tx.boundary = 2048;
return status;
}
/* clear confirmation addr */
mgp->cmd->data = 0;
mb();
/* send a reload command to the bootstrap MCP, and wait for the
* response in the confirmation address. The firmware should
* write a -1 there to indicate it is alive and well
*/
dma_low = MYRI10GE_LOWPART_TO_U32(mgp->cmd_bus);
dma_high = MYRI10GE_HIGHPART_TO_U32(mgp->cmd_bus);
buf[0] = htonl(dma_high); /* confirm addr MSW */
buf[1] = htonl(dma_low); /* confirm addr LSW */
buf[2] = htonl(MYRI10GE_NO_CONFIRM_DATA); /* confirm data */
/* FIX: All newest firmware should un-protect the bottom of
* the sram before handoff. However, the very first interfaces
* do not. Therefore the handoff copy must skip the first 8 bytes
*/
buf[3] = htonl(MYRI10GE_FW_OFFSET + 8); /* where the code starts */
buf[4] = htonl(size - 8); /* length of code */
buf[5] = htonl(8); /* where to copy to */
buf[6] = htonl(0); /* where to jump to */
submit = mgp->sram + MXGEFW_BOOT_HANDOFF;
myri10ge_pio_copy(submit, &buf, sizeof(buf));
mb();
msleep(1);
mb();
i = 0;
while (mgp->cmd->data != MYRI10GE_NO_CONFIRM_DATA && i < 20) {
msleep(1);
i++;
}
if (mgp->cmd->data != MYRI10GE_NO_CONFIRM_DATA) {
dev_err(&mgp->pdev->dev, "handoff failed\n");
return -ENXIO;
}
dev_info(&mgp->pdev->dev, "handoff confirmed\n");
myri10ge_dummy_rdma(mgp, 1);
return 0;
}
static int myri10ge_update_mac_address(struct myri10ge_priv *mgp, u8 * addr)
{
struct myri10ge_cmd cmd;
int status;
cmd.data0 = ((addr[0] << 24) | (addr[1] << 16)
| (addr[2] << 8) | addr[3]);
cmd.data1 = ((addr[4] << 8) | (addr[5]));
status = myri10ge_send_cmd(mgp, MXGEFW_SET_MAC_ADDRESS, &cmd, 0);
return status;
}
static int myri10ge_change_pause(struct myri10ge_priv *mgp, int pause)
{
struct myri10ge_cmd cmd;
int status, ctl;
ctl = pause ? MXGEFW_ENABLE_FLOW_CONTROL : MXGEFW_DISABLE_FLOW_CONTROL;
status = myri10ge_send_cmd(mgp, ctl, &cmd, 0);
if (status) {
printk(KERN_ERR
"myri10ge: %s: Failed to set flow control mode\n",
mgp->dev->name);
return status;
}
mgp->pause = pause;
return 0;
}
static void
myri10ge_change_promisc(struct myri10ge_priv *mgp, int promisc, int atomic)
{
struct myri10ge_cmd cmd;
int status, ctl;
ctl = promisc ? MXGEFW_ENABLE_PROMISC : MXGEFW_DISABLE_PROMISC;
status = myri10ge_send_cmd(mgp, ctl, &cmd, atomic);
if (status)
printk(KERN_ERR "myri10ge: %s: Failed to set promisc mode\n",
mgp->dev->name);
}
static int myri10ge_reset(struct myri10ge_priv *mgp)
{
struct myri10ge_cmd cmd;
int status;
size_t bytes;
u32 len;
/* try to send a reset command to the card to see if it
* is alive */
memset(&cmd, 0, sizeof(cmd));
status = myri10ge_send_cmd(mgp, MXGEFW_CMD_RESET, &cmd, 0);
if (status != 0) {
dev_err(&mgp->pdev->dev, "failed reset\n");
return -ENXIO;
}
/* Now exchange information about interrupts */
bytes = myri10ge_max_intr_slots * sizeof(*mgp->rx_done.entry);
memset(mgp->rx_done.entry, 0, bytes);
cmd.data0 = (u32) bytes;
status = myri10ge_send_cmd(mgp, MXGEFW_CMD_SET_INTRQ_SIZE, &cmd, 0);
cmd.data0 = MYRI10GE_LOWPART_TO_U32(mgp->rx_done.bus);
cmd.data1 = MYRI10GE_HIGHPART_TO_U32(mgp->rx_done.bus);
status |= myri10ge_send_cmd(mgp, MXGEFW_CMD_SET_INTRQ_DMA, &cmd, 0);
status |=
myri10ge_send_cmd(mgp, MXGEFW_CMD_GET_IRQ_ACK_OFFSET, &cmd, 0);
mgp->irq_claim = (__iomem u32 *) (mgp->sram + cmd.data0);
if (!mgp->msi_enabled) {
status |= myri10ge_send_cmd
(mgp, MXGEFW_CMD_GET_IRQ_DEASSERT_OFFSET, &cmd, 0);
mgp->irq_deassert = (__iomem u32 *) (mgp->sram + cmd.data0);
}
status |= myri10ge_send_cmd
(mgp, MXGEFW_CMD_GET_INTR_COAL_DELAY_OFFSET, &cmd, 0);
mgp->intr_coal_delay_ptr = (__iomem u32 *) (mgp->sram + cmd.data0);
if (status != 0) {
dev_err(&mgp->pdev->dev, "failed set interrupt parameters\n");
return status;
}
__raw_writel(htonl(mgp->intr_coal_delay), mgp->intr_coal_delay_ptr);
/* Run a small DMA test.
* The magic multipliers to the length tell the firmware
* to do DMA read, write, or read+write tests. The
* results are returned in cmd.data0. The upper 16
* bits or the return is the number of transfers completed.
* The lower 16 bits is the time in 0.5us ticks that the
* transfers took to complete.
*/
len = mgp->tx.boundary;
cmd.data0 = MYRI10GE_LOWPART_TO_U32(mgp->rx_done.bus);
cmd.data1 = MYRI10GE_HIGHPART_TO_U32(mgp->rx_done.bus);
cmd.data2 = len * 0x10000;
status = myri10ge_send_cmd(mgp, MXGEFW_DMA_TEST, &cmd, 0);
if (status == 0)
mgp->read_dma = ((cmd.data0 >> 16) * len * 2) /
(cmd.data0 & 0xffff);
else
dev_warn(&mgp->pdev->dev, "DMA read benchmark failed: %d\n",
status);
cmd.data0 = MYRI10GE_LOWPART_TO_U32(mgp->rx_done.bus);
cmd.data1 = MYRI10GE_HIGHPART_TO_U32(mgp->rx_done.bus);
cmd.data2 = len * 0x1;
status = myri10ge_send_cmd(mgp, MXGEFW_DMA_TEST, &cmd, 0);
if (status == 0)
mgp->write_dma = ((cmd.data0 >> 16) * len * 2) /
(cmd.data0 & 0xffff);
else
dev_warn(&mgp->pdev->dev, "DMA write benchmark failed: %d\n",
status);
cmd.data0 = MYRI10GE_LOWPART_TO_U32(mgp->rx_done.bus);
cmd.data1 = MYRI10GE_HIGHPART_TO_U32(mgp->rx_done.bus);
cmd.data2 = len * 0x10001;
status = myri10ge_send_cmd(mgp, MXGEFW_DMA_TEST, &cmd, 0);
if (status == 0)
mgp->read_write_dma = ((cmd.data0 >> 16) * len * 2 * 2) /
(cmd.data0 & 0xffff);
else
dev_warn(&mgp->pdev->dev,
"DMA read/write benchmark failed: %d\n", status);
memset(mgp->rx_done.entry, 0, bytes);
/* reset mcp/driver shared state back to 0 */
mgp->tx.req = 0;
mgp->tx.done = 0;
mgp->tx.pkt_start = 0;
mgp->tx.pkt_done = 0;
mgp->rx_big.cnt = 0;
mgp->rx_small.cnt = 0;
mgp->rx_done.idx = 0;
mgp->rx_done.cnt = 0;
mgp->link_changes = 0;
status = myri10ge_update_mac_address(mgp, mgp->dev->dev_addr);
myri10ge_change_promisc(mgp, 0, 0);
myri10ge_change_pause(mgp, mgp->pause);
return status;
}
static inline void
myri10ge_submit_8rx(struct mcp_kreq_ether_recv __iomem * dst,
struct mcp_kreq_ether_recv *src)
{
u32 low;
low = src->addr_low;
src->addr_low = DMA_32BIT_MASK;
myri10ge_pio_copy(dst, src, 8 * sizeof(*src));
mb();
src->addr_low = low;
__raw_writel(low, &dst->addr_low);
mb();
}
/*
* Set of routines to get a new receive buffer. Any buffer which
* crosses a 4KB boundary must start on a 4KB boundary due to PCIe
* wdma restrictions. We also try to align any smaller allocation to
* at least a 16 byte boundary for efficiency. We assume the linux
* memory allocator works by powers of 2, and will not return memory
* smaller than 2KB which crosses a 4KB boundary. If it does, we fall
* back to allocating 2x as much space as required.
*
* We intend to replace large (>4KB) skb allocations by using
* pages directly and building a fraglist in the near future.
*/
static inline struct sk_buff *myri10ge_alloc_big(struct net_device *dev,
int bytes)
{
struct sk_buff *skb;
unsigned long data, roundup;
skb = netdev_alloc_skb(dev, bytes + 4096 + MXGEFW_PAD);
if (skb == NULL)
return NULL;
/* Correct skb->truesize so that socket buffer
* accounting is not confused the rounding we must
* do to satisfy alignment constraints.
*/
skb->truesize -= 4096;
data = (unsigned long)(skb->data);
roundup = (-data) & (4095);
skb_reserve(skb, roundup);
return skb;
}
/* Allocate 2x as much space as required and use whichever portion
* does not cross a 4KB boundary */
static inline struct sk_buff *myri10ge_alloc_small_safe(struct net_device *dev,
unsigned int bytes)
{
struct sk_buff *skb;
unsigned long data, boundary;
skb = netdev_alloc_skb(dev, 2 * (bytes + MXGEFW_PAD) - 1);
if (unlikely(skb == NULL))
return NULL;
/* Correct skb->truesize so that socket buffer
* accounting is not confused the rounding we must
* do to satisfy alignment constraints.
*/
skb->truesize -= bytes + MXGEFW_PAD;
data = (unsigned long)(skb->data);
boundary = (data + 4095UL) & ~4095UL;
if ((boundary - data) >= (bytes + MXGEFW_PAD))
return skb;
skb_reserve(skb, boundary - data);
return skb;
}
/* Allocate just enough space, and verify that the allocated
* space does not cross a 4KB boundary */
static inline struct sk_buff *myri10ge_alloc_small(struct net_device *dev,
int bytes)
{
struct sk_buff *skb;
unsigned long roundup, data, end;
skb = netdev_alloc_skb(dev, bytes + 16 + MXGEFW_PAD);
if (unlikely(skb == NULL))
return NULL;
/* Round allocated buffer to 16 byte boundary */
data = (unsigned long)(skb->data);
roundup = (-data) & 15UL;
skb_reserve(skb, roundup);
/* Verify that the data buffer does not cross a page boundary */
data = (unsigned long)(skb->data);
end = data + bytes + MXGEFW_PAD - 1;
if (unlikely(((end >> 12) != (data >> 12)) && (data & 4095UL))) {
printk(KERN_NOTICE
"myri10ge_alloc_small: small skb crossed 4KB boundary\n");
myri10ge_skb_cross_4k = 1;
dev_kfree_skb_any(skb);
skb = myri10ge_alloc_small_safe(dev, bytes);
}
return skb;
}
static inline int
myri10ge_getbuf(struct myri10ge_rx_buf *rx, struct myri10ge_priv *mgp,
int bytes, int idx)
{
struct net_device *dev = mgp->dev;
struct pci_dev *pdev = mgp->pdev;
struct sk_buff *skb;
dma_addr_t bus;
int len, retval = 0;
bytes += VLAN_HLEN; /* account for 802.1q vlan tag */
if ((bytes + MXGEFW_PAD) > (4096 - 16) /* linux overhead */ )
skb = myri10ge_alloc_big(dev, bytes);
else if (myri10ge_skb_cross_4k)
skb = myri10ge_alloc_small_safe(dev, bytes);
else
skb = myri10ge_alloc_small(dev, bytes);
if (unlikely(skb == NULL)) {
rx->alloc_fail++;
retval = -ENOBUFS;
goto done;
}
/* set len so that it only covers the area we
* need mapped for DMA */
len = bytes + MXGEFW_PAD;
bus = pci_map_single(pdev, skb->data, len, PCI_DMA_FROMDEVICE);
rx->info[idx].skb = skb;
pci_unmap_addr_set(&rx->info[idx], bus, bus);
pci_unmap_len_set(&rx->info[idx], len, len);
rx->shadow[idx].addr_low = htonl(MYRI10GE_LOWPART_TO_U32(bus));
rx->shadow[idx].addr_high = htonl(MYRI10GE_HIGHPART_TO_U32(bus));
done:
/* copy 8 descriptors (64-bytes) to the mcp at a time */
if ((idx & 7) == 7) {
if (rx->wc_fifo == NULL)
myri10ge_submit_8rx(&rx->lanai[idx - 7],
&rx->shadow[idx - 7]);
else {
mb();
myri10ge_pio_copy(rx->wc_fifo,
&rx->shadow[idx - 7], 64);
}
}
return retval;
}
static inline void myri10ge_vlan_ip_csum(struct sk_buff *skb, u16 hw_csum)
{
struct vlan_hdr *vh = (struct vlan_hdr *)(skb->data);
if ((skb->protocol == ntohs(ETH_P_8021Q)) &&
(vh->h_vlan_encapsulated_proto == htons(ETH_P_IP) ||
vh->h_vlan_encapsulated_proto == htons(ETH_P_IPV6))) {
skb->csum = hw_csum;
skb->ip_summed = CHECKSUM_COMPLETE;
}
}
static inline unsigned long
myri10ge_rx_done(struct myri10ge_priv *mgp, struct myri10ge_rx_buf *rx,
int bytes, int len, int csum)
{
dma_addr_t bus;
struct sk_buff *skb;
int idx, unmap_len;
idx = rx->cnt & rx->mask;
rx->cnt++;
/* save a pointer to the received skb */
skb = rx->info[idx].skb;
bus = pci_unmap_addr(&rx->info[idx], bus);
unmap_len = pci_unmap_len(&rx->info[idx], len);
/* try to replace the received skb */
if (myri10ge_getbuf(rx, mgp, bytes, idx)) {
/* drop the frame -- the old skbuf is re-cycled */
mgp->stats.rx_dropped += 1;
return 0;
}
/* unmap the recvd skb */
pci_unmap_single(mgp->pdev, bus, unmap_len, PCI_DMA_FROMDEVICE);
/* mcp implicitly skips 1st bytes so that packet is properly
* aligned */
skb_reserve(skb, MXGEFW_PAD);
/* set the length of the frame */
skb_put(skb, len);
skb->protocol = eth_type_trans(skb, mgp->dev);
if (mgp->csum_flag) {
if ((skb->protocol == ntohs(ETH_P_IP)) ||
(skb->protocol == ntohs(ETH_P_IPV6))) {
skb->csum = ntohs((u16) csum);
skb->ip_summed = CHECKSUM_COMPLETE;
} else
myri10ge_vlan_ip_csum(skb, ntohs((u16) csum));
}
netif_receive_skb(skb);
mgp->dev->last_rx = jiffies;
return 1;
}
static inline void myri10ge_tx_done(struct myri10ge_priv *mgp, int mcp_index)
{
struct pci_dev *pdev = mgp->pdev;
struct myri10ge_tx_buf *tx = &mgp->tx;
struct sk_buff *skb;
int idx, len;
int limit = 0;
while (tx->pkt_done != mcp_index) {
idx = tx->done & tx->mask;
skb = tx->info[idx].skb;
/* Mark as free */
tx->info[idx].skb = NULL;
if (tx->info[idx].last) {
tx->pkt_done++;
tx->info[idx].last = 0;
}
tx->done++;
len = pci_unmap_len(&tx->info[idx], len);
pci_unmap_len_set(&tx->info[idx], len, 0);
if (skb) {
mgp->stats.tx_bytes += skb->len;
mgp->stats.tx_packets++;
dev_kfree_skb_irq(skb);
if (len)
pci_unmap_single(pdev,
pci_unmap_addr(&tx->info[idx],
bus), len,
PCI_DMA_TODEVICE);
} else {
if (len)
pci_unmap_page(pdev,
pci_unmap_addr(&tx->info[idx],
bus), len,
PCI_DMA_TODEVICE);
}
/* limit potential for livelock by only handling
* 2 full tx rings per call */
if (unlikely(++limit > 2 * tx->mask))
break;
}
/* start the queue if we've stopped it */
if (netif_queue_stopped(mgp->dev)
&& tx->req - tx->done < (tx->mask >> 1)) {
mgp->wake_queue++;
netif_wake_queue(mgp->dev);
}
}
static inline void myri10ge_clean_rx_done(struct myri10ge_priv *mgp, int *limit)
{
struct myri10ge_rx_done *rx_done = &mgp->rx_done;
unsigned long rx_bytes = 0;
unsigned long rx_packets = 0;
unsigned long rx_ok;
int idx = rx_done->idx;
int cnt = rx_done->cnt;
u16 length;
u16 checksum;
while (rx_done->entry[idx].length != 0 && *limit != 0) {
length = ntohs(rx_done->entry[idx].length);
rx_done->entry[idx].length = 0;
checksum = ntohs(rx_done->entry[idx].checksum);
if (length <= mgp->small_bytes)
rx_ok = myri10ge_rx_done(mgp, &mgp->rx_small,
mgp->small_bytes,
length, checksum);
else
rx_ok = myri10ge_rx_done(mgp, &mgp->rx_big,
mgp->dev->mtu + ETH_HLEN,
length, checksum);
rx_packets += rx_ok;
rx_bytes += rx_ok * (unsigned long)length;
cnt++;
idx = cnt & (myri10ge_max_intr_slots - 1);
/* limit potential for livelock by only handling a
* limited number of frames. */
(*limit)--;
}
rx_done->idx = idx;
rx_done->cnt = cnt;
mgp->stats.rx_packets += rx_packets;
mgp->stats.rx_bytes += rx_bytes;
}
static inline void myri10ge_check_statblock(struct myri10ge_priv *mgp)
{
struct mcp_irq_data *stats = mgp->fw_stats;
if (unlikely(stats->stats_updated)) {
if (mgp->link_state != stats->link_up) {
mgp->link_state = stats->link_up;
if (mgp->link_state) {
if (netif_msg_link(mgp))
printk(KERN_INFO
"myri10ge: %s: link up\n",
mgp->dev->name);
netif_carrier_on(mgp->dev);
mgp->link_changes++;
} else {
if (netif_msg_link(mgp))
printk(KERN_INFO
"myri10ge: %s: link down\n",
mgp->dev->name);
netif_carrier_off(mgp->dev);
mgp->link_changes++;
}
}
if (mgp->rdma_tags_available !=
ntohl(mgp->fw_stats->rdma_tags_available)) {
mgp->rdma_tags_available =
ntohl(mgp->fw_stats->rdma_tags_available);
printk(KERN_WARNING "myri10ge: %s: RDMA timed out! "
"%d tags left\n", mgp->dev->name,
mgp->rdma_tags_available);
}
mgp->down_cnt += stats->link_down;
if (stats->link_down)
wake_up(&mgp->down_wq);
}
}
static int myri10ge_poll(struct net_device *netdev, int *budget)
{
struct myri10ge_priv *mgp = netdev_priv(netdev);
struct myri10ge_rx_done *rx_done = &mgp->rx_done;
int limit, orig_limit, work_done;
/* process as many rx events as NAPI will allow */
limit = min(*budget, netdev->quota);
orig_limit = limit;
myri10ge_clean_rx_done(mgp, &limit);
work_done = orig_limit - limit;
*budget -= work_done;
netdev->quota -= work_done;
if (rx_done->entry[rx_done->idx].length == 0 || !netif_running(netdev)) {
netif_rx_complete(netdev);
__raw_writel(htonl(3), mgp->irq_claim);
return 0;
}
return 1;
}
static irqreturn_t myri10ge_intr(int irq, void *arg)
{
struct myri10ge_priv *mgp = arg;
struct mcp_irq_data *stats = mgp->fw_stats;
struct myri10ge_tx_buf *tx = &mgp->tx;
u32 send_done_count;
int i;
/* make sure it is our IRQ, and that the DMA has finished */
if (unlikely(!stats->valid))
return (IRQ_NONE);
/* low bit indicates receives are present, so schedule
* napi poll handler */
if (stats->valid & 1)
netif_rx_schedule(mgp->dev);
if (!mgp->msi_enabled) {
__raw_writel(0, mgp->irq_deassert);
if (!myri10ge_deassert_wait)
stats->valid = 0;
mb();
} else
stats->valid = 0;
/* Wait for IRQ line to go low, if using INTx */
i = 0;
while (1) {
i++;
/* check for transmit completes and receives */
send_done_count = ntohl(stats->send_done_count);
if (send_done_count != tx->pkt_done)
myri10ge_tx_done(mgp, (int)send_done_count);
if (unlikely(i > myri10ge_max_irq_loops)) {
printk(KERN_WARNING "myri10ge: %s: irq stuck?\n",
mgp->dev->name);
stats->valid = 0;
schedule_work(&mgp->watchdog_work);
}
if (likely(stats->valid == 0))
break;
cpu_relax();
barrier();
}
myri10ge_check_statblock(mgp);
__raw_writel(htonl(3), mgp->irq_claim + 1);
return (IRQ_HANDLED);
}
static int
myri10ge_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
{
cmd->autoneg = AUTONEG_DISABLE;
cmd->speed = SPEED_10000;
cmd->duplex = DUPLEX_FULL;
return 0;
}
static void
myri10ge_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *info)
{
struct myri10ge_priv *mgp = netdev_priv(netdev);
strlcpy(info->driver, "myri10ge", sizeof(info->driver));
strlcpy(info->version, MYRI10GE_VERSION_STR, sizeof(info->version));
strlcpy(info->fw_version, mgp->fw_version, sizeof(info->fw_version));
strlcpy(info->bus_info, pci_name(mgp->pdev), sizeof(info->bus_info));
}
static int
myri10ge_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *coal)
{
struct myri10ge_priv *mgp = netdev_priv(netdev);
coal->rx_coalesce_usecs = mgp->intr_coal_delay;
return 0;
}
static int
myri10ge_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *coal)
{
struct myri10ge_priv *mgp = netdev_priv(netdev);
mgp->intr_coal_delay = coal->rx_coalesce_usecs;
__raw_writel(htonl(mgp->intr_coal_delay), mgp->intr_coal_delay_ptr);
return 0;
}
static void
myri10ge_get_pauseparam(struct net_device *netdev,
struct ethtool_pauseparam *pause)
{
struct myri10ge_priv *mgp = netdev_priv(netdev);
pause->autoneg = 0;
pause->rx_pause = mgp->pause;
pause->tx_pause = mgp->pause;
}
static int
myri10ge_set_pauseparam(struct net_device *netdev,
struct ethtool_pauseparam *pause)
{
struct myri10ge_priv *mgp = netdev_priv(netdev);
if (pause->tx_pause != mgp->pause)
return myri10ge_change_pause(mgp, pause->tx_pause);
if (pause->rx_pause != mgp->pause)
return myri10ge_change_pause(mgp, pause->tx_pause);
if (pause->autoneg != 0)
return -EINVAL;
return 0;
}
static void
myri10ge_get_ringparam(struct net_device *netdev,
struct ethtool_ringparam *ring)
{
struct myri10ge_priv *mgp = netdev_priv(netdev);
ring->rx_mini_max_pending = mgp->rx_small.mask + 1;
ring->rx_max_pending = mgp->rx_big.mask + 1;
ring->rx_jumbo_max_pending = 0;
ring->tx_max_pending = mgp->rx_small.mask + 1;
ring->rx_mini_pending = ring->rx_mini_max_pending;
ring->rx_pending = ring->rx_max_pending;
ring->rx_jumbo_pending = ring->rx_jumbo_max_pending;
ring->tx_pending = ring->tx_max_pending;
}
static u32 myri10ge_get_rx_csum(struct net_device *netdev)
{
struct myri10ge_priv *mgp = netdev_priv(netdev);
if (mgp->csum_flag)
return 1;
else
return 0;
}
static int myri10ge_set_rx_csum(struct net_device *netdev, u32 csum_enabled)
{
struct myri10ge_priv *mgp = netdev_priv(netdev);
if (csum_enabled)
mgp->csum_flag = MXGEFW_FLAGS_CKSUM;
else
mgp->csum_flag = 0;
return 0;
}
static const char myri10ge_gstrings_stats[][ETH_GSTRING_LEN] = {
"rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
"tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
"rx_length_errors", "rx_over_errors", "rx_crc_errors",
"rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
"tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
"tx_heartbeat_errors", "tx_window_errors",
/* device-specific stats */
"tx_boundary", "WC", "irq", "MSI",
"read_dma_bw_MBs", "write_dma_bw_MBs", "read_write_dma_bw_MBs",
"serial_number", "tx_pkt_start", "tx_pkt_done",
"tx_req", "tx_done", "rx_small_cnt", "rx_big_cnt",
"wake_queue", "stop_queue", "watchdog_resets", "tx_linearized",
"link_changes", "link_up", "dropped_link_overflow",
"dropped_link_error_or_filtered", "dropped_multicast_filtered",
"dropped_runt", "dropped_overrun", "dropped_no_small_buffer",
"dropped_no_big_buffer"
};
#define MYRI10GE_NET_STATS_LEN 21
#define MYRI10GE_STATS_LEN sizeof(myri10ge_gstrings_stats) / ETH_GSTRING_LEN
static void
myri10ge_get_strings(struct net_device *netdev, u32 stringset, u8 * data)
{
switch (stringset) {
case ETH_SS_STATS:
memcpy(data, *myri10ge_gstrings_stats,
sizeof(myri10ge_gstrings_stats));
break;
}
}
static int myri10ge_get_stats_count(struct net_device *netdev)
{
return MYRI10GE_STATS_LEN;
}
static void
myri10ge_get_ethtool_stats(struct net_device *netdev,
struct ethtool_stats *stats, u64 * data)
{
struct myri10ge_priv *mgp = netdev_priv(netdev);
int i;
for (i = 0; i < MYRI10GE_NET_STATS_LEN; i++)
data[i] = ((unsigned long *)&mgp->stats)[i];
data[i++] = (unsigned int)mgp->tx.boundary;
data[i++] = (unsigned int)(mgp->mtrr >= 0);
data[i++] = (unsigned int)mgp->pdev->irq;
data[i++] = (unsigned int)mgp->msi_enabled;
data[i++] = (unsigned int)mgp->read_dma;
data[i++] = (unsigned int)mgp->write_dma;
data[i++] = (unsigned int)mgp->read_write_dma;
data[i++] = (unsigned int)mgp->serial_number;
data[i++] = (unsigned int)mgp->tx.pkt_start;
data[i++] = (unsigned int)mgp->tx.pkt_done;
data[i++] = (unsigned int)mgp->tx.req;
data[i++] = (unsigned int)mgp->tx.done;
data[i++] = (unsigned int)mgp->rx_small.cnt;
data[i++] = (unsigned int)mgp->rx_big.cnt;
data[i++] = (unsigned int)mgp->wake_queue;
data[i++] = (unsigned int)mgp->stop_queue;
data[i++] = (unsigned int)mgp->watchdog_resets;
data[i++] = (unsigned int)mgp->tx_linearized;
data[i++] = (unsigned int)mgp->link_changes;
data[i++] = (unsigned int)ntohl(mgp->fw_stats->link_up);
data[i++] = (unsigned int)ntohl(mgp->fw_stats->dropped_link_overflow);
data[i++] =
(unsigned int)ntohl(mgp->fw_stats->dropped_link_error_or_filtered);
data[i++] =
(unsigned int)ntohl(mgp->fw_stats->dropped_multicast_filtered);
data[i++] = (unsigned int)ntohl(mgp->fw_stats->dropped_runt);
data[i++] = (unsigned int)ntohl(mgp->fw_stats->dropped_overrun);
data[i++] = (unsigned int)ntohl(mgp->fw_stats->dropped_no_small_buffer);
data[i++] = (unsigned int)ntohl(mgp->fw_stats->dropped_no_big_buffer);
}
static void myri10ge_set_msglevel(struct net_device *netdev, u32 value)
{
struct myri10ge_priv *mgp = netdev_priv(netdev);
mgp->msg_enable = value;
}
static u32 myri10ge_get_msglevel(struct net_device *netdev)
{
struct myri10ge_priv *mgp = netdev_priv(netdev);
return mgp->msg_enable;
}
static const struct ethtool_ops myri10ge_ethtool_ops = {
.get_settings = myri10ge_get_settings,
.get_drvinfo = myri10ge_get_drvinfo,
.get_coalesce = myri10ge_get_coalesce,
.set_coalesce = myri10ge_set_coalesce,
.get_pauseparam = myri10ge_get_pauseparam,
.set_pauseparam = myri10ge_set_pauseparam,
.get_ringparam = myri10ge_get_ringparam,
.get_rx_csum = myri10ge_get_rx_csum,
.set_rx_csum = myri10ge_set_rx_csum,
.get_tx_csum = ethtool_op_get_tx_csum,
.set_tx_csum = ethtool_op_set_tx_hw_csum,
.get_sg = ethtool_op_get_sg,
.set_sg = ethtool_op_set_sg,
#ifdef NETIF_F_TSO
.get_tso = ethtool_op_get_tso,
.set_tso = ethtool_op_set_tso,
#endif
.get_strings = myri10ge_get_strings,
.get_stats_count = myri10ge_get_stats_count,
.get_ethtool_stats = myri10ge_get_ethtool_stats,
.set_msglevel = myri10ge_set_msglevel,
.get_msglevel = myri10ge_get_msglevel
};
static int myri10ge_allocate_rings(struct net_device *dev)
{
struct myri10ge_priv *mgp;
struct myri10ge_cmd cmd;
int tx_ring_size, rx_ring_size;
int tx_ring_entries, rx_ring_entries;
int i, status;
size_t bytes;
mgp = netdev_priv(dev);
/* get ring sizes */
status = myri10ge_send_cmd(mgp, MXGEFW_CMD_GET_SEND_RING_SIZE, &cmd, 0);
tx_ring_size = cmd.data0;
status |= myri10ge_send_cmd(mgp, MXGEFW_CMD_GET_RX_RING_SIZE, &cmd, 0);
rx_ring_size = cmd.data0;
tx_ring_entries = tx_ring_size / sizeof(struct mcp_kreq_ether_send);
rx_ring_entries = rx_ring_size / sizeof(struct mcp_dma_addr);
mgp->tx.mask = tx_ring_entries - 1;
mgp->rx_small.mask = mgp->rx_big.mask = rx_ring_entries - 1;
/* allocate the host shadow rings */
bytes = 8 + (MYRI10GE_MAX_SEND_DESC_TSO + 4)
* sizeof(*mgp->tx.req_list);
mgp->tx.req_bytes = kzalloc(bytes, GFP_KERNEL);
if (mgp->tx.req_bytes == NULL)
goto abort_with_nothing;
/* ensure req_list entries are aligned to 8 bytes */
mgp->tx.req_list = (struct mcp_kreq_ether_send *)
ALIGN((unsigned long)mgp->tx.req_bytes, 8);
bytes = rx_ring_entries * sizeof(*mgp->rx_small.shadow);
mgp->rx_small.shadow = kzalloc(bytes, GFP_KERNEL);
if (mgp->rx_small.shadow == NULL)
goto abort_with_tx_req_bytes;
bytes = rx_ring_entries * sizeof(*mgp->rx_big.shadow);
mgp->rx_big.shadow = kzalloc(bytes, GFP_KERNEL);
if (mgp->rx_big.shadow == NULL)
goto abort_with_rx_small_shadow;
/* allocate the host info rings */
bytes = tx_ring_entries * sizeof(*mgp->tx.info);
mgp->tx.info = kzalloc(bytes, GFP_KERNEL);
if (mgp->tx.info == NULL)
goto abort_with_rx_big_shadow;
bytes = rx_ring_entries * sizeof(*mgp->rx_small.info);
mgp->rx_small.info = kzalloc(bytes, GFP_KERNEL);
if (mgp->rx_small.info == NULL)
goto abort_with_tx_info;
bytes = rx_ring_entries * sizeof(*mgp->rx_big.info);
mgp->rx_big.info = kzalloc(bytes, GFP_KERNEL);
if (mgp->rx_big.info == NULL)
goto abort_with_rx_small_info;
/* Fill the receive rings */
for (i = 0; i <= mgp->rx_small.mask; i++) {
status = myri10ge_getbuf(&mgp->rx_small, mgp,
mgp->small_bytes, i);
if (status) {
printk(KERN_ERR
"myri10ge: %s: alloced only %d small bufs\n",
dev->name, i);
goto abort_with_rx_small_ring;
}
}
for (i = 0; i <= mgp->rx_big.mask; i++) {
status =
myri10ge_getbuf(&mgp->rx_big, mgp, dev->mtu + ETH_HLEN, i);
if (status) {
printk(KERN_ERR
"myri10ge: %s: alloced only %d big bufs\n",
dev->name, i);
goto abort_with_rx_big_ring;
}
}
return 0;
abort_with_rx_big_ring:
for (i = 0; i <= mgp->rx_big.mask; i++) {
if (mgp->rx_big.info[i].skb != NULL)
dev_kfree_skb_any(mgp->rx_big.info[i].skb);
if (pci_unmap_len(&mgp->rx_big.info[i], len))
pci_unmap_single(mgp->pdev,
pci_unmap_addr(&mgp->rx_big.info[i],
bus),
pci_unmap_len(&mgp->rx_big.info[i],
len),
PCI_DMA_FROMDEVICE);
}
abort_with_rx_small_ring:
for (i = 0; i <= mgp->rx_small.mask; i++) {
if (mgp->rx_small.info[i].skb != NULL)
dev_kfree_skb_any(mgp->rx_small.info[i].skb);
if (pci_unmap_len(&mgp->rx_small.info[i], len))
pci_unmap_single(mgp->pdev,
pci_unmap_addr(&mgp->rx_small.info[i],
bus),
pci_unmap_len(&mgp->rx_small.info[i],
len),
PCI_DMA_FROMDEVICE);
}
kfree(mgp->rx_big.info);
abort_with_rx_small_info:
kfree(mgp->rx_small.info);
abort_with_tx_info:
kfree(mgp->tx.info);
abort_with_rx_big_shadow:
kfree(mgp->rx_big.shadow);
abort_with_rx_small_shadow:
kfree(mgp->rx_small.shadow);
abort_with_tx_req_bytes:
kfree(mgp->tx.req_bytes);
mgp->tx.req_bytes = NULL;
mgp->tx.req_list = NULL;
abort_with_nothing:
return status;
}
static void myri10ge_free_rings(struct net_device *dev)
{
struct myri10ge_priv *mgp;
struct sk_buff *skb;
struct myri10ge_tx_buf *tx;
int i, len, idx;
mgp = netdev_priv(dev);
for (i = 0; i <= mgp->rx_big.mask; i++) {
if (mgp->rx_big.info[i].skb != NULL)
dev_kfree_skb_any(mgp->rx_big.info[i].skb);
if (pci_unmap_len(&mgp->rx_big.info[i], len))
pci_unmap_single(mgp->pdev,
pci_unmap_addr(&mgp->rx_big.info[i],
bus),
pci_unmap_len(&mgp->rx_big.info[i],
len),
PCI_DMA_FROMDEVICE);
}
for (i = 0; i <= mgp->rx_small.mask; i++) {
if (mgp->rx_small.info[i].skb != NULL)
dev_kfree_skb_any(mgp->rx_small.info[i].skb);
if (pci_unmap_len(&mgp->rx_small.info[i], len))
pci_unmap_single(mgp->pdev,
pci_unmap_addr(&mgp->rx_small.info[i],
bus),
pci_unmap_len(&mgp->rx_small.info[i],
len),
PCI_DMA_FROMDEVICE);
}
tx = &mgp->tx;
while (tx->done != tx->req) {
idx = tx->done & tx->mask;
skb = tx->info[idx].skb;
/* Mark as free */
tx->info[idx].skb = NULL;
tx->done++;
len = pci_unmap_len(&tx->info[idx], len);
pci_unmap_len_set(&tx->info[idx], len, 0);
if (skb) {
mgp->stats.tx_dropped++;
dev_kfree_skb_any(skb);
if (len)
pci_unmap_single(mgp->pdev,
pci_unmap_addr(&tx->info[idx],
bus), len,
PCI_DMA_TODEVICE);
} else {
if (len)
pci_unmap_page(mgp->pdev,
pci_unmap_addr(&tx->info[idx],
bus), len,
PCI_DMA_TODEVICE);
}
}
kfree(mgp->rx_big.info);
kfree(mgp->rx_small.info);
kfree(mgp->tx.info);
kfree(mgp->rx_big.shadow);
kfree(mgp->rx_small.shadow);
kfree(mgp->tx.req_bytes);
mgp->tx.req_bytes = NULL;
mgp->tx.req_list = NULL;
}
static int myri10ge_open(struct net_device *dev)
{
struct myri10ge_priv *mgp;
struct myri10ge_cmd cmd;
int status, big_pow2;
mgp = netdev_priv(dev);
if (mgp->running != MYRI10GE_ETH_STOPPED)
return -EBUSY;
mgp->running = MYRI10GE_ETH_STARTING;
status = myri10ge_reset(mgp);
if (status != 0) {
printk(KERN_ERR "myri10ge: %s: failed reset\n", dev->name);
mgp->running = MYRI10GE_ETH_STOPPED;
return -ENXIO;
}
/* decide what small buffer size to use. For good TCP rx
* performance, it is important to not receive 1514 byte
* frames into jumbo buffers, as it confuses the socket buffer
* accounting code, leading to drops and erratic performance.
*/
if (dev->mtu <= ETH_DATA_LEN)
mgp->small_bytes = 128; /* enough for a TCP header */
else
mgp->small_bytes = ETH_FRAME_LEN; /* enough for an ETH_DATA_LEN frame */
/* Override the small buffer size? */
if (myri10ge_small_bytes > 0)
mgp->small_bytes = myri10ge_small_bytes;
/* If the user sets an obscenely small MTU, adjust the small
* bytes down to nearly nothing */
if (mgp->small_bytes >= (dev->mtu + ETH_HLEN))
mgp->small_bytes = 64;
/* get the lanai pointers to the send and receive rings */
status |= myri10ge_send_cmd(mgp, MXGEFW_CMD_GET_SEND_OFFSET, &cmd, 0);
mgp->tx.lanai =
(struct mcp_kreq_ether_send __iomem *)(mgp->sram + cmd.data0);
status |=
myri10ge_send_cmd(mgp, MXGEFW_CMD_GET_SMALL_RX_OFFSET, &cmd, 0);
mgp->rx_small.lanai =
(struct mcp_kreq_ether_recv __iomem *)(mgp->sram + cmd.data0);
status |= myri10ge_send_cmd(mgp, MXGEFW_CMD_GET_BIG_RX_OFFSET, &cmd, 0);
mgp->rx_big.lanai =
(struct mcp_kreq_ether_recv __iomem *)(mgp->sram + cmd.data0);
if (status != 0) {
printk(KERN_ERR
"myri10ge: %s: failed to get ring sizes or locations\n",
dev->name);
mgp->running = MYRI10GE_ETH_STOPPED;
return -ENXIO;
}
if (mgp->mtrr >= 0) {
mgp->tx.wc_fifo = (u8 __iomem *) mgp->sram + MXGEFW_ETH_SEND_4;
mgp->rx_small.wc_fifo =
(u8 __iomem *) mgp->sram + MXGEFW_ETH_RECV_SMALL;
mgp->rx_big.wc_fifo =
(u8 __iomem *) mgp->sram + MXGEFW_ETH_RECV_BIG;
} else {
mgp->tx.wc_fifo = NULL;
mgp->rx_small.wc_fifo = NULL;
mgp->rx_big.wc_fifo = NULL;
}
status = myri10ge_allocate_rings(dev);
if (status != 0)
goto abort_with_nothing;
/* Firmware needs the big buff size as a power of 2. Lie and
* tell him the buffer is larger, because we only use 1
* buffer/pkt, and the mtu will prevent overruns.
*/
big_pow2 = dev->mtu + ETH_HLEN + MXGEFW_PAD;
while ((big_pow2 & (big_pow2 - 1)) != 0)
big_pow2++;
/* now give firmware buffers sizes, and MTU */
cmd.data0 = dev->mtu + ETH_HLEN + VLAN_HLEN;
status = myri10ge_send_cmd(mgp, MXGEFW_CMD_SET_MTU, &cmd, 0);
cmd.data0 = mgp->small_bytes;
status |=
myri10ge_send_cmd(mgp, MXGEFW_CMD_SET_SMALL_BUFFER_SIZE, &cmd, 0);
cmd.data0 = big_pow2;
status |=
myri10ge_send_cmd(mgp, MXGEFW_CMD_SET_BIG_BUFFER_SIZE, &cmd, 0);
if (status) {
printk(KERN_ERR "myri10ge: %s: Couldn't set buffer sizes\n",
dev->name);
goto abort_with_rings;
}
cmd.data0 = MYRI10GE_LOWPART_TO_U32(mgp->fw_stats_bus);
cmd.data1 = MYRI10GE_HIGHPART_TO_U32(mgp->fw_stats_bus);
cmd.data2 = sizeof(struct mcp_irq_data);
status = myri10ge_send_cmd(mgp, MXGEFW_CMD_SET_STATS_DMA_V2, &cmd, 0);
if (status == -ENOSYS) {
dma_addr_t bus = mgp->fw_stats_bus;
bus += offsetof(struct mcp_irq_data, send_done_count);
cmd.data0 = MYRI10GE_LOWPART_TO_U32(bus);
cmd.data1 = MYRI10GE_HIGHPART_TO_U32(bus);
status = myri10ge_send_cmd(mgp,
MXGEFW_CMD_SET_STATS_DMA_OBSOLETE,
&cmd, 0);
/* Firmware cannot support multicast without STATS_DMA_V2 */
mgp->fw_multicast_support = 0;
} else {
mgp->fw_multicast_support = 1;
}
if (status) {
printk(KERN_ERR "myri10ge: %s: Couldn't set stats DMA\n",
dev->name);
goto abort_with_rings;
}
mgp->link_state = -1;
mgp->rdma_tags_available = 15;
netif_poll_enable(mgp->dev); /* must happen prior to any irq */
status = myri10ge_send_cmd(mgp, MXGEFW_CMD_ETHERNET_UP, &cmd, 0);
if (status) {
printk(KERN_ERR "myri10ge: %s: Couldn't bring up link\n",
dev->name);
goto abort_with_rings;
}
mgp->wake_queue = 0;
mgp->stop_queue = 0;
mgp->running = MYRI10GE_ETH_RUNNING;
mgp->watchdog_timer.expires = jiffies + myri10ge_watchdog_timeout * HZ;
add_timer(&mgp->watchdog_timer);
netif_wake_queue(dev);
return 0;
abort_with_rings:
myri10ge_free_rings(dev);
abort_with_nothing:
mgp->running = MYRI10GE_ETH_STOPPED;
return -ENOMEM;
}
static int myri10ge_close(struct net_device *dev)
{
struct myri10ge_priv *mgp;
struct myri10ge_cmd cmd;
int status, old_down_cnt;
mgp = netdev_priv(dev);
if (mgp->running != MYRI10GE_ETH_RUNNING)
return 0;
if (mgp->tx.req_bytes == NULL)
return 0;
del_timer_sync(&mgp->watchdog_timer);
mgp->running = MYRI10GE_ETH_STOPPING;
netif_poll_disable(mgp->dev);
netif_carrier_off(dev);
netif_stop_queue(dev);
old_down_cnt = mgp->down_cnt;
mb();
status = myri10ge_send_cmd(mgp, MXGEFW_CMD_ETHERNET_DOWN, &cmd, 0);
if (status)
printk(KERN_ERR "myri10ge: %s: Couldn't bring down link\n",
dev->name);
wait_event_timeout(mgp->down_wq, old_down_cnt != mgp->down_cnt, HZ);
if (old_down_cnt == mgp->down_cnt)
printk(KERN_ERR "myri10ge: %s never got down irq\n", dev->name);
netif_tx_disable(dev);
myri10ge_free_rings(dev);
mgp->running = MYRI10GE_ETH_STOPPED;
return 0;
}
/* copy an array of struct mcp_kreq_ether_send's to the mcp. Copy
* backwards one at a time and handle ring wraps */
static inline void
myri10ge_submit_req_backwards(struct myri10ge_tx_buf *tx,
struct mcp_kreq_ether_send *src, int cnt)
{
int idx, starting_slot;
starting_slot = tx->req;
while (cnt > 1) {
cnt--;
idx = (starting_slot + cnt) & tx->mask;
myri10ge_pio_copy(&tx->lanai[idx], &src[cnt], sizeof(*src));
mb();
}
}
/*
* copy an array of struct mcp_kreq_ether_send's to the mcp. Copy
* at most 32 bytes at a time, so as to avoid involving the software
* pio handler in the nic. We re-write the first segment's flags
* to mark them valid only after writing the entire chain.
*/
static inline void
myri10ge_submit_req(struct myri10ge_tx_buf *tx, struct mcp_kreq_ether_send *src,
int cnt)
{
int idx, i;
struct mcp_kreq_ether_send __iomem *dstp, *dst;
struct mcp_kreq_ether_send *srcp;
u8 last_flags;
idx = tx->req & tx->mask;
last_flags = src->flags;
src->flags = 0;
mb();
dst = dstp = &tx->lanai[idx];
srcp = src;
if ((idx + cnt) < tx->mask) {
for (i = 0; i < (cnt - 1); i += 2) {
myri10ge_pio_copy(dstp, srcp, 2 * sizeof(*src));
mb(); /* force write every 32 bytes */
srcp += 2;
dstp += 2;
}
} else {
/* submit all but the first request, and ensure
* that it is submitted below */
myri10ge_submit_req_backwards(tx, src, cnt);
i = 0;
}
if (i < cnt) {
/* submit the first request */
myri10ge_pio_copy(dstp, srcp, sizeof(*src));
mb(); /* barrier before setting valid flag */
}
/* re-write the last 32-bits with the valid flags */
src->flags = last_flags;
__raw_writel(*((u32 *) src + 3), (u32 __iomem *) dst + 3);
tx->req += cnt;
mb();
}
static inline void
myri10ge_submit_req_wc(struct myri10ge_tx_buf *tx,
struct mcp_kreq_ether_send *src, int cnt)
{
tx->req += cnt;
mb();
while (cnt >= 4) {
myri10ge_pio_copy(tx->wc_fifo, src, 64);
mb();
src += 4;
cnt -= 4;
}
if (cnt > 0) {
/* pad it to 64 bytes. The src is 64 bytes bigger than it
* needs to be so that we don't overrun it */
myri10ge_pio_copy(tx->wc_fifo + MXGEFW_ETH_SEND_OFFSET(cnt),
src, 64);
mb();
}
}
/*
* Transmit a packet. We need to split the packet so that a single
* segment does not cross myri10ge->tx.boundary, so this makes segment
* counting tricky. So rather than try to count segments up front, we
* just give up if there are too few segments to hold a reasonably
* fragmented packet currently available. If we run
* out of segments while preparing a packet for DMA, we just linearize
* it and try again.
*/
static int myri10ge_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct myri10ge_priv *mgp = netdev_priv(dev);
struct mcp_kreq_ether_send *req;
struct myri10ge_tx_buf *tx = &mgp->tx;
struct skb_frag_struct *frag;
dma_addr_t bus;
u32 low, high_swapped;
unsigned int len;
int idx, last_idx, avail, frag_cnt, frag_idx, count, mss, max_segments;
u16 pseudo_hdr_offset, cksum_offset;
int cum_len, seglen, boundary, rdma_count;
u8 flags, odd_flag;
again:
req = tx->req_list;
avail = tx->mask - 1 - (tx->req - tx->done);
mss = 0;
max_segments = MXGEFW_MAX_SEND_DESC;
#ifdef NETIF_F_TSO
if (skb->len > (dev->mtu + ETH_HLEN)) {
mss = skb_shinfo(skb)->gso_size;
if (mss != 0)
max_segments = MYRI10GE_MAX_SEND_DESC_TSO;
}
#endif /*NETIF_F_TSO */
if ((unlikely(avail < max_segments))) {
/* we are out of transmit resources */
mgp->stop_queue++;
netif_stop_queue(dev);
return 1;
}
/* Setup checksum offloading, if needed */
cksum_offset = 0;
pseudo_hdr_offset = 0;
odd_flag = 0;
flags = (MXGEFW_FLAGS_NO_TSO | MXGEFW_FLAGS_FIRST);
if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
cksum_offset = (skb->h.raw - skb->data);
pseudo_hdr_offset = (skb->h.raw + skb->csum) - skb->data;
/* If the headers are excessively large, then we must
* fall back to a software checksum */
if (unlikely(cksum_offset > 255 || pseudo_hdr_offset > 127)) {
if (skb_checksum_help(skb))
goto drop;
cksum_offset = 0;
pseudo_hdr_offset = 0;
} else {
pseudo_hdr_offset = htons(pseudo_hdr_offset);
odd_flag = MXGEFW_FLAGS_ALIGN_ODD;
flags |= MXGEFW_FLAGS_CKSUM;
}
}
cum_len = 0;
#ifdef NETIF_F_TSO
if (mss) { /* TSO */
/* this removes any CKSUM flag from before */
flags = (MXGEFW_FLAGS_TSO_HDR | MXGEFW_FLAGS_FIRST);
/* negative cum_len signifies to the
* send loop that we are still in the
* header portion of the TSO packet.
* TSO header must be at most 134 bytes long */
cum_len = -((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
/* for TSO, pseudo_hdr_offset holds mss.
* The firmware figures out where to put
* the checksum by parsing the header. */
pseudo_hdr_offset = htons(mss);
} else
#endif /*NETIF_F_TSO */
/* Mark small packets, and pad out tiny packets */
if (skb->len <= MXGEFW_SEND_SMALL_SIZE) {
flags |= MXGEFW_FLAGS_SMALL;
/* pad frames to at least ETH_ZLEN bytes */
if (unlikely(skb->len < ETH_ZLEN)) {
if (skb_padto(skb, ETH_ZLEN)) {
/* The packet is gone, so we must
* return 0 */
mgp->stats.tx_dropped += 1;
return 0;
}
/* adjust the len to account for the zero pad
* so that the nic can know how long it is */
skb->len = ETH_ZLEN;
}
}
/* map the skb for DMA */
len = skb->len - skb->data_len;
idx = tx->req & tx->mask;
tx->info[idx].skb = skb;
bus = pci_map_single(mgp->pdev, skb->data, len, PCI_DMA_TODEVICE);
pci_unmap_addr_set(&tx->info[idx], bus, bus);
pci_unmap_len_set(&tx->info[idx], len, len);
frag_cnt = skb_shinfo(skb)->nr_frags;
frag_idx = 0;
count = 0;
rdma_count = 0;
/* "rdma_count" is the number of RDMAs belonging to the
* current packet BEFORE the current send request. For
* non-TSO packets, this is equal to "count".
* For TSO packets, rdma_count needs to be reset
* to 0 after a segment cut.
*
* The rdma_count field of the send request is
* the number of RDMAs of the packet starting at
* that request. For TSO send requests with one ore more cuts
* in the middle, this is the number of RDMAs starting
* after the last cut in the request. All previous
* segments before the last cut implicitly have 1 RDMA.
*
* Since the number of RDMAs is not known beforehand,
* it must be filled-in retroactively - after each
* segmentation cut or at the end of the entire packet.
*/
while (1) {
/* Break the SKB or Fragment up into pieces which
* do not cross mgp->tx.boundary */
low = MYRI10GE_LOWPART_TO_U32(bus);
high_swapped = htonl(MYRI10GE_HIGHPART_TO_U32(bus));
while (len) {
u8 flags_next;
int cum_len_next;
if (unlikely(count == max_segments))
goto abort_linearize;
boundary = (low + tx->boundary) & ~(tx->boundary - 1);
seglen = boundary - low;
if (seglen > len)
seglen = len;
flags_next = flags & ~MXGEFW_FLAGS_FIRST;
cum_len_next = cum_len + seglen;
#ifdef NETIF_F_TSO
if (mss) { /* TSO */
(req - rdma_count)->rdma_count = rdma_count + 1;
if (likely(cum_len >= 0)) { /* payload */
int next_is_first, chop;
chop = (cum_len_next > mss);
cum_len_next = cum_len_next % mss;
next_is_first = (cum_len_next == 0);
flags |= chop * MXGEFW_FLAGS_TSO_CHOP;
flags_next |= next_is_first *
MXGEFW_FLAGS_FIRST;
rdma_count |= -(chop | next_is_first);
rdma_count += chop & !next_is_first;
} else if (likely(cum_len_next >= 0)) { /* header ends */
int small;
rdma_count = -1;
cum_len_next = 0;
seglen = -cum_len;
small = (mss <= MXGEFW_SEND_SMALL_SIZE);
flags_next = MXGEFW_FLAGS_TSO_PLD |
MXGEFW_FLAGS_FIRST |
(small * MXGEFW_FLAGS_SMALL);
}
}
#endif /* NETIF_F_TSO */
req->addr_high = high_swapped;
req->addr_low = htonl(low);
req->pseudo_hdr_offset = pseudo_hdr_offset;
req->pad = 0; /* complete solid 16-byte block; does this matter? */
req->rdma_count = 1;
req->length = htons(seglen);
req->cksum_offset = cksum_offset;
req->flags = flags | ((cum_len & 1) * odd_flag);
low += seglen;
len -= seglen;
cum_len = cum_len_next;
flags = flags_next;
req++;
count++;
rdma_count++;
if (unlikely(cksum_offset > seglen))
cksum_offset -= seglen;
else
cksum_offset = 0;
}
if (frag_idx == frag_cnt)
break;
/* map next fragment for DMA */
idx = (count + tx->req) & tx->mask;
frag = &skb_shinfo(skb)->frags[frag_idx];
frag_idx++;
len = frag->size;
bus = pci_map_page(mgp->pdev, frag->page, frag->page_offset,
len, PCI_DMA_TODEVICE);
pci_unmap_addr_set(&tx->info[idx], bus, bus);
pci_unmap_len_set(&tx->info[idx], len, len);
}
(req - rdma_count)->rdma_count = rdma_count;
#ifdef NETIF_F_TSO
if (mss)
do {
req--;
req->flags |= MXGEFW_FLAGS_TSO_LAST;
} while (!(req->flags & (MXGEFW_FLAGS_TSO_CHOP |
MXGEFW_FLAGS_FIRST)));
#endif
idx = ((count - 1) + tx->req) & tx->mask;
tx->info[idx].last = 1;
if (tx->wc_fifo == NULL)
myri10ge_submit_req(tx, tx->req_list, count);
else
myri10ge_submit_req_wc(tx, tx->req_list, count);
tx->pkt_start++;
if ((avail - count) < MXGEFW_MAX_SEND_DESC) {
mgp->stop_queue++;
netif_stop_queue(dev);
}
dev->trans_start = jiffies;
return 0;
abort_linearize:
/* Free any DMA resources we've alloced and clear out the skb
* slot so as to not trip up assertions, and to avoid a
* double-free if linearizing fails */
last_idx = (idx + 1) & tx->mask;
idx = tx->req & tx->mask;
tx->info[idx].skb = NULL;
do {
len = pci_unmap_len(&tx->info[idx], len);
if (len) {
if (tx->info[idx].skb != NULL)
pci_unmap_single(mgp->pdev,
pci_unmap_addr(&tx->info[idx],
bus), len,
PCI_DMA_TODEVICE);
else
pci_unmap_page(mgp->pdev,
pci_unmap_addr(&tx->info[idx],
bus), len,
PCI_DMA_TODEVICE);
pci_unmap_len_set(&tx->info[idx], len, 0);
tx->info[idx].skb = NULL;
}
idx = (idx + 1) & tx->mask;
} while (idx != last_idx);
if (skb_is_gso(skb)) {
printk(KERN_ERR
"myri10ge: %s: TSO but wanted to linearize?!?!?\n",
mgp->dev->name);
goto drop;
}
if (skb_linearize(skb))
goto drop;
mgp->tx_linearized++;
goto again;
drop:
dev_kfree_skb_any(skb);
mgp->stats.tx_dropped += 1;
return 0;
}
static struct net_device_stats *myri10ge_get_stats(struct net_device *dev)
{
struct myri10ge_priv *mgp = netdev_priv(dev);
return &mgp->stats;
}
static void myri10ge_set_multicast_list(struct net_device *dev)
{
struct myri10ge_cmd cmd;
struct myri10ge_priv *mgp;
struct dev_mc_list *mc_list;
int err;
mgp = netdev_priv(dev);
/* can be called from atomic contexts,
* pass 1 to force atomicity in myri10ge_send_cmd() */
myri10ge_change_promisc(mgp, dev->flags & IFF_PROMISC, 1);
/* This firmware is known to not support multicast */
if (!mgp->fw_multicast_support)
return;
/* Disable multicast filtering */
err = myri10ge_send_cmd(mgp, MXGEFW_ENABLE_ALLMULTI, &cmd, 1);
if (err != 0) {
printk(KERN_ERR "myri10ge: %s: Failed MXGEFW_ENABLE_ALLMULTI,"
" error status: %d\n", dev->name, err);
goto abort;
}
if (dev->flags & IFF_ALLMULTI) {
/* request to disable multicast filtering, so quit here */
return;
}
/* Flush the filters */
err = myri10ge_send_cmd(mgp, MXGEFW_LEAVE_ALL_MULTICAST_GROUPS,
&cmd, 1);
if (err != 0) {
printk(KERN_ERR
"myri10ge: %s: Failed MXGEFW_LEAVE_ALL_MULTICAST_GROUPS"
", error status: %d\n", dev->name, err);
goto abort;
}
/* Walk the multicast list, and add each address */
for (mc_list = dev->mc_list; mc_list != NULL; mc_list = mc_list->next) {
memcpy(&cmd.data0, &mc_list->dmi_addr, 4);
memcpy(&cmd.data1, ((char *)&mc_list->dmi_addr) + 4, 2);
cmd.data0 = htonl(cmd.data0);
cmd.data1 = htonl(cmd.data1);
err = myri10ge_send_cmd(mgp, MXGEFW_JOIN_MULTICAST_GROUP,
&cmd, 1);
if (err != 0) {
printk(KERN_ERR "myri10ge: %s: Failed "
"MXGEFW_JOIN_MULTICAST_GROUP, error status:"
"%d\t", dev->name, err);
printk(KERN_ERR "MAC %02x:%02x:%02x:%02x:%02x:%02x\n",
((unsigned char *)&mc_list->dmi_addr)[0],
((unsigned char *)&mc_list->dmi_addr)[1],
((unsigned char *)&mc_list->dmi_addr)[2],
((unsigned char *)&mc_list->dmi_addr)[3],
((unsigned char *)&mc_list->dmi_addr)[4],
((unsigned char *)&mc_list->dmi_addr)[5]
);
goto abort;
}
}
/* Enable multicast filtering */
err = myri10ge_send_cmd(mgp, MXGEFW_DISABLE_ALLMULTI, &cmd, 1);
if (err != 0) {
printk(KERN_ERR "myri10ge: %s: Failed MXGEFW_DISABLE_ALLMULTI,"
"error status: %d\n", dev->name, err);
goto abort;
}
return;
abort:
return;
}
static int myri10ge_set_mac_address(struct net_device *dev, void *addr)
{
struct sockaddr *sa = addr;
struct myri10ge_priv *mgp = netdev_priv(dev);
int status;
if (!is_valid_ether_addr(sa->sa_data))
return -EADDRNOTAVAIL;
status = myri10ge_update_mac_address(mgp, sa->sa_data);
if (status != 0) {
printk(KERN_ERR
"myri10ge: %s: changing mac address failed with %d\n",
dev->name, status);
return status;
}
/* change the dev structure */
memcpy(dev->dev_addr, sa->sa_data, 6);
return 0;
}
static int myri10ge_change_mtu(struct net_device *dev, int new_mtu)
{
struct myri10ge_priv *mgp = netdev_priv(dev);
int error = 0;
if ((new_mtu < 68) || (ETH_HLEN + new_mtu > MYRI10GE_MAX_ETHER_MTU)) {
printk(KERN_ERR "myri10ge: %s: new mtu (%d) is not valid\n",
dev->name, new_mtu);
return -EINVAL;
}
printk(KERN_INFO "%s: changing mtu from %d to %d\n",
dev->name, dev->mtu, new_mtu);
if (mgp->running) {
/* if we change the mtu on an active device, we must
* reset the device so the firmware sees the change */
myri10ge_close(dev);
dev->mtu = new_mtu;
myri10ge_open(dev);
} else
dev->mtu = new_mtu;
return error;
}
/*
* Enable ECRC to align PCI-E Completion packets on an 8-byte boundary.
* Only do it if the bridge is a root port since we don't want to disturb
* any other device, except if forced with myri10ge_ecrc_enable > 1.
*/
static void myri10ge_enable_ecrc(struct myri10ge_priv *mgp)
{
struct pci_dev *bridge = mgp->pdev->bus->self;
struct device *dev = &mgp->pdev->dev;
unsigned cap;
unsigned err_cap;
u16 val;
u8 ext_type;
int ret;
if (!myri10ge_ecrc_enable || !bridge)
return;
/* check that the bridge is a root port */
cap = pci_find_capability(bridge, PCI_CAP_ID_EXP);
pci_read_config_word(bridge, cap + PCI_CAP_FLAGS, &val);
ext_type = (val & PCI_EXP_FLAGS_TYPE) >> 4;
if (ext_type != PCI_EXP_TYPE_ROOT_PORT) {
if (myri10ge_ecrc_enable > 1) {
struct pci_dev *old_bridge = bridge;
/* Walk the hierarchy up to the root port
* where ECRC has to be enabled */
do {
bridge = bridge->bus->self;
if (!bridge) {
dev_err(dev,
"Failed to find root port"
" to force ECRC\n");
return;
}
cap =
pci_find_capability(bridge, PCI_CAP_ID_EXP);
pci_read_config_word(bridge,
cap + PCI_CAP_FLAGS, &val);
ext_type = (val & PCI_EXP_FLAGS_TYPE) >> 4;
} while (ext_type != PCI_EXP_TYPE_ROOT_PORT);
dev_info(dev,
"Forcing ECRC on non-root port %s"
" (enabling on root port %s)\n",
pci_name(old_bridge), pci_name(bridge));
} else {
dev_err(dev,
"Not enabling ECRC on non-root port %s\n",
pci_name(bridge));
return;
}
}
cap = pci_find_ext_capability(bridge, PCI_EXT_CAP_ID_ERR);
if (!cap)
return;
ret = pci_read_config_dword(bridge, cap + PCI_ERR_CAP, &err_cap);
if (ret) {
dev_err(dev, "failed reading ext-conf-space of %s\n",
pci_name(bridge));
dev_err(dev, "\t pci=nommconf in use? "
"or buggy/incomplete/absent ACPI MCFG attr?\n");
return;
}
if (!(err_cap & PCI_ERR_CAP_ECRC_GENC))
return;
err_cap |= PCI_ERR_CAP_ECRC_GENE;
pci_write_config_dword(bridge, cap + PCI_ERR_CAP, err_cap);
dev_info(dev, "Enabled ECRC on upstream bridge %s\n", pci_name(bridge));
mgp->tx.boundary = 4096;
mgp->fw_name = myri10ge_fw_aligned;
}
/*
* The Lanai Z8E PCI-E interface achieves higher Read-DMA throughput
* when the PCI-E Completion packets are aligned on an 8-byte
* boundary. Some PCI-E chip sets always align Completion packets; on
* the ones that do not, the alignment can be enforced by enabling
* ECRC generation (if supported).
*
* When PCI-E Completion packets are not aligned, it is actually more
* efficient to limit Read-DMA transactions to 2KB, rather than 4KB.
*
* If the driver can neither enable ECRC nor verify that it has
* already been enabled, then it must use a firmware image which works
* around unaligned completion packets (myri10ge_ethp_z8e.dat), and it
* should also ensure that it never gives the device a Read-DMA which is
* larger than 2KB by setting the tx.boundary to 2KB. If ECRC is
* enabled, then the driver should use the aligned (myri10ge_eth_z8e.dat)
* firmware image, and set tx.boundary to 4KB.
*/
#define PCI_DEVICE_ID_SERVERWORKS_HT2000_PCIE 0x0132
#define PCI_DEVICE_ID_INTEL_E5000_PCIE23 0x25f7
#define PCI_DEVICE_ID_INTEL_E5000_PCIE47 0x25fa
static void myri10ge_select_firmware(struct myri10ge_priv *mgp)
{
struct pci_dev *bridge = mgp->pdev->bus->self;
mgp->tx.boundary = 2048;
mgp->fw_name = myri10ge_fw_unaligned;
if (myri10ge_force_firmware == 0) {
int link_width, exp_cap;
u16 lnk;
exp_cap = pci_find_capability(mgp->pdev, PCI_CAP_ID_EXP);
pci_read_config_word(mgp->pdev, exp_cap + PCI_EXP_LNKSTA, &lnk);
link_width = (lnk >> 4) & 0x3f;
myri10ge_enable_ecrc(mgp);
/* Check to see if Link is less than 8 or if the
* upstream bridge is known to provide aligned
* completions */
if (link_width < 8) {
dev_info(&mgp->pdev->dev, "PCIE x%d Link\n",
link_width);
mgp->tx.boundary = 4096;
mgp->fw_name = myri10ge_fw_aligned;
} else if (bridge &&
/* ServerWorks HT2000/HT1000 */
((bridge->vendor == PCI_VENDOR_ID_SERVERWORKS
&& bridge->device ==
PCI_DEVICE_ID_SERVERWORKS_HT2000_PCIE)
/* All Intel E5000 PCIE ports */
|| (bridge->vendor == PCI_VENDOR_ID_INTEL
&& bridge->device >=
PCI_DEVICE_ID_INTEL_E5000_PCIE23
&& bridge->device <=
PCI_DEVICE_ID_INTEL_E5000_PCIE47))) {
dev_info(&mgp->pdev->dev,
"Assuming aligned completions (0x%x:0x%x)\n",
bridge->vendor, bridge->device);
mgp->tx.boundary = 4096;
mgp->fw_name = myri10ge_fw_aligned;
}
} else {
if (myri10ge_force_firmware == 1) {
dev_info(&mgp->pdev->dev,
"Assuming aligned completions (forced)\n");
mgp->tx.boundary = 4096;
mgp->fw_name = myri10ge_fw_aligned;
} else {
dev_info(&mgp->pdev->dev,
"Assuming unaligned completions (forced)\n");
mgp->tx.boundary = 2048;
mgp->fw_name = myri10ge_fw_unaligned;
}
}
if (myri10ge_fw_name != NULL) {
dev_info(&mgp->pdev->dev, "overriding firmware to %s\n",
myri10ge_fw_name);
mgp->fw_name = myri10ge_fw_name;
}
}
static void myri10ge_save_state(struct myri10ge_priv *mgp)
{
struct pci_dev *pdev = mgp->pdev;
int cap;
pci_save_state(pdev);
/* now save PCIe and MSI state that Linux will not
* save for us */
cap = pci_find_capability(pdev, PCI_CAP_ID_EXP);
pci_read_config_dword(pdev, cap + PCI_EXP_DEVCTL, &mgp->devctl);
cap = pci_find_capability(pdev, PCI_CAP_ID_MSI);
pci_read_config_word(pdev, cap + PCI_MSI_FLAGS, &mgp->msi_flags);
}
static void myri10ge_restore_state(struct myri10ge_priv *mgp)
{
struct pci_dev *pdev = mgp->pdev;
int cap;
/* restore PCIe and MSI state that linux will not */
cap = pci_find_capability(pdev, PCI_CAP_ID_EXP);
pci_write_config_dword(pdev, cap + PCI_CAP_ID_EXP, mgp->devctl);
cap = pci_find_capability(pdev, PCI_CAP_ID_MSI);
pci_write_config_word(pdev, cap + PCI_MSI_FLAGS, mgp->msi_flags);
pci_restore_state(pdev);
}
#ifdef CONFIG_PM
static int myri10ge_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct myri10ge_priv *mgp;
struct net_device *netdev;
mgp = pci_get_drvdata(pdev);
if (mgp == NULL)
return -EINVAL;
netdev = mgp->dev;
netif_device_detach(netdev);
if (netif_running(netdev)) {
printk(KERN_INFO "myri10ge: closing %s\n", netdev->name);
rtnl_lock();
myri10ge_close(netdev);
rtnl_unlock();
}
myri10ge_dummy_rdma(mgp, 0);
free_irq(pdev->irq, mgp);
myri10ge_save_state(mgp);
pci_disable_device(pdev);
pci_set_power_state(pdev, pci_choose_state(pdev, state));
return 0;
}
static int myri10ge_resume(struct pci_dev *pdev)
{
struct myri10ge_priv *mgp;
struct net_device *netdev;
int status;
u16 vendor;
mgp = pci_get_drvdata(pdev);
if (mgp == NULL)
return -EINVAL;
netdev = mgp->dev;
pci_set_power_state(pdev, 0); /* zeros conf space as a side effect */
msleep(5); /* give card time to respond */
pci_read_config_word(mgp->pdev, PCI_VENDOR_ID, &vendor);
if (vendor == 0xffff) {
printk(KERN_ERR "myri10ge: %s: device disappeared!\n",
mgp->dev->name);
return -EIO;
}
myri10ge_restore_state(mgp);
status = pci_enable_device(pdev);
if (status < 0) {
dev_err(&pdev->dev, "failed to enable device\n");
return -EIO;
}
pci_set_master(pdev);
status = request_irq(pdev->irq, myri10ge_intr, IRQF_SHARED,
netdev->name, mgp);
if (status != 0) {
dev_err(&pdev->dev, "failed to allocate IRQ\n");
goto abort_with_enabled;
}
myri10ge_reset(mgp);
myri10ge_dummy_rdma(mgp, 1);
/* Save configuration space to be restored if the
* nic resets due to a parity error */
myri10ge_save_state(mgp);
if (netif_running(netdev)) {
rtnl_lock();
myri10ge_open(netdev);
rtnl_unlock();
}
netif_device_attach(netdev);
return 0;
abort_with_enabled:
pci_disable_device(pdev);
return -EIO;
}
#endif /* CONFIG_PM */
static u32 myri10ge_read_reboot(struct myri10ge_priv *mgp)
{
struct pci_dev *pdev = mgp->pdev;
int vs = mgp->vendor_specific_offset;
u32 reboot;
/*enter read32 mode */
pci_write_config_byte(pdev, vs + 0x10, 0x3);
/*read REBOOT_STATUS (0xfffffff0) */
pci_write_config_dword(pdev, vs + 0x18, 0xfffffff0);
pci_read_config_dword(pdev, vs + 0x14, &reboot);
return reboot;
}
/*
* This watchdog is used to check whether the board has suffered
* from a parity error and needs to be recovered.
*/
static void myri10ge_watchdog(void *arg)
{
struct myri10ge_priv *mgp = arg;
u32 reboot;
int status;
u16 cmd, vendor;
mgp->watchdog_resets++;
pci_read_config_word(mgp->pdev, PCI_COMMAND, &cmd);
if ((cmd & PCI_COMMAND_MASTER) == 0) {
/* Bus master DMA disabled? Check to see
* if the card rebooted due to a parity error
* For now, just report it */
reboot = myri10ge_read_reboot(mgp);
printk(KERN_ERR
"myri10ge: %s: NIC rebooted (0x%x), resetting\n",
mgp->dev->name, reboot);
/*
* A rebooted nic will come back with config space as
* it was after power was applied to PCIe bus.
* Attempt to restore config space which was saved
* when the driver was loaded, or the last time the
* nic was resumed from power saving mode.
*/
myri10ge_restore_state(mgp);
} else {
/* if we get back -1's from our slot, perhaps somebody
* powered off our card. Don't try to reset it in
* this case */
if (cmd == 0xffff) {
pci_read_config_word(mgp->pdev, PCI_VENDOR_ID, &vendor);
if (vendor == 0xffff) {
printk(KERN_ERR
"myri10ge: %s: device disappeared!\n",
mgp->dev->name);
return;
}
}
/* Perhaps it is a software error. Try to reset */
printk(KERN_ERR "myri10ge: %s: device timeout, resetting\n",
mgp->dev->name);
printk(KERN_INFO "myri10ge: %s: %d %d %d %d %d\n",
mgp->dev->name, mgp->tx.req, mgp->tx.done,
mgp->tx.pkt_start, mgp->tx.pkt_done,
(int)ntohl(mgp->fw_stats->send_done_count));
msleep(2000);
printk(KERN_INFO "myri10ge: %s: %d %d %d %d %d\n",
mgp->dev->name, mgp->tx.req, mgp->tx.done,
mgp->tx.pkt_start, mgp->tx.pkt_done,
(int)ntohl(mgp->fw_stats->send_done_count));
}
rtnl_lock();
myri10ge_close(mgp->dev);
status = myri10ge_load_firmware(mgp);
if (status != 0)
printk(KERN_ERR "myri10ge: %s: failed to load firmware\n",
mgp->dev->name);
else
myri10ge_open(mgp->dev);
rtnl_unlock();
}
/*
* We use our own timer routine rather than relying upon
* netdev->tx_timeout because we have a very large hardware transmit
* queue. Due to the large queue, the netdev->tx_timeout function
* cannot detect a NIC with a parity error in a timely fashion if the
* NIC is lightly loaded.
*/
static void myri10ge_watchdog_timer(unsigned long arg)
{
struct myri10ge_priv *mgp;
mgp = (struct myri10ge_priv *)arg;
if (mgp->tx.req != mgp->tx.done &&
mgp->tx.done == mgp->watchdog_tx_done &&
mgp->watchdog_tx_req != mgp->watchdog_tx_done)
/* nic seems like it might be stuck.. */
schedule_work(&mgp->watchdog_work);
else
/* rearm timer */
mod_timer(&mgp->watchdog_timer,
jiffies + myri10ge_watchdog_timeout * HZ);
mgp->watchdog_tx_done = mgp->tx.done;
mgp->watchdog_tx_req = mgp->tx.req;
}
static int myri10ge_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct net_device *netdev;
struct myri10ge_priv *mgp;
struct device *dev = &pdev->dev;
size_t bytes;
int i;
int status = -ENXIO;
int cap;
int dac_enabled;
u16 val;
netdev = alloc_etherdev(sizeof(*mgp));
if (netdev == NULL) {
dev_err(dev, "Could not allocate ethernet device\n");
return -ENOMEM;
}
mgp = netdev_priv(netdev);
memset(mgp, 0, sizeof(*mgp));
mgp->dev = netdev;
mgp->pdev = pdev;
mgp->csum_flag = MXGEFW_FLAGS_CKSUM;
mgp->pause = myri10ge_flow_control;
mgp->intr_coal_delay = myri10ge_intr_coal_delay;
mgp->msg_enable = netif_msg_init(myri10ge_debug, MYRI10GE_MSG_DEFAULT);
init_waitqueue_head(&mgp->down_wq);
if (pci_enable_device(pdev)) {
dev_err(&pdev->dev, "pci_enable_device call failed\n");
status = -ENODEV;
goto abort_with_netdev;
}
myri10ge_select_firmware(mgp);
/* Find the vendor-specific cap so we can check
* the reboot register later on */
mgp->vendor_specific_offset
= pci_find_capability(pdev, PCI_CAP_ID_VNDR);
/* Set our max read request to 4KB */
cap = pci_find_capability(pdev, PCI_CAP_ID_EXP);
if (cap < 64) {
dev_err(&pdev->dev, "Bad PCI_CAP_ID_EXP location %d\n", cap);
goto abort_with_netdev;
}
status = pci_read_config_word(pdev, cap + PCI_EXP_DEVCTL, &val);
if (status != 0) {
dev_err(&pdev->dev, "Error %d reading PCI_EXP_DEVCTL\n",
status);
goto abort_with_netdev;
}
val = (val & ~PCI_EXP_DEVCTL_READRQ) | (5 << 12);
status = pci_write_config_word(pdev, cap + PCI_EXP_DEVCTL, val);
if (status != 0) {
dev_err(&pdev->dev, "Error %d writing PCI_EXP_DEVCTL\n",
status);
goto abort_with_netdev;
}
pci_set_master(pdev);
dac_enabled = 1;
status = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
if (status != 0) {
dac_enabled = 0;
dev_err(&pdev->dev,
"64-bit pci address mask was refused, trying 32-bit");
status = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
}
if (status != 0) {
dev_err(&pdev->dev, "Error %d setting DMA mask\n", status);
goto abort_with_netdev;
}
mgp->cmd = dma_alloc_coherent(&pdev->dev, sizeof(*mgp->cmd),
&mgp->cmd_bus, GFP_KERNEL);
if (mgp->cmd == NULL)
goto abort_with_netdev;
mgp->fw_stats = dma_alloc_coherent(&pdev->dev, sizeof(*mgp->fw_stats),
&mgp->fw_stats_bus, GFP_KERNEL);
if (mgp->fw_stats == NULL)
goto abort_with_cmd;
mgp->board_span = pci_resource_len(pdev, 0);
mgp->iomem_base = pci_resource_start(pdev, 0);
mgp->mtrr = -1;
#ifdef CONFIG_MTRR
mgp->mtrr = mtrr_add(mgp->iomem_base, mgp->board_span,
MTRR_TYPE_WRCOMB, 1);
#endif
/* Hack. need to get rid of these magic numbers */
mgp->sram_size =
2 * 1024 * 1024 - (2 * (48 * 1024) + (32 * 1024)) - 0x100;
if (mgp->sram_size > mgp->board_span) {
dev_err(&pdev->dev, "board span %ld bytes too small\n",
mgp->board_span);
goto abort_with_wc;
}
mgp->sram = ioremap(mgp->iomem_base, mgp->board_span);
if (mgp->sram == NULL) {
dev_err(&pdev->dev, "ioremap failed for %ld bytes at 0x%lx\n",
mgp->board_span, mgp->iomem_base);
status = -ENXIO;
goto abort_with_wc;
}
memcpy_fromio(mgp->eeprom_strings,
mgp->sram + mgp->sram_size - MYRI10GE_EEPROM_STRINGS_SIZE,
MYRI10GE_EEPROM_STRINGS_SIZE);
memset(mgp->eeprom_strings + MYRI10GE_EEPROM_STRINGS_SIZE - 2, 0, 2);
status = myri10ge_read_mac_addr(mgp);
if (status)
goto abort_with_ioremap;
for (i = 0; i < ETH_ALEN; i++)
netdev->dev_addr[i] = mgp->mac_addr[i];
/* allocate rx done ring */
bytes = myri10ge_max_intr_slots * sizeof(*mgp->rx_done.entry);
mgp->rx_done.entry = dma_alloc_coherent(&pdev->dev, bytes,
&mgp->rx_done.bus, GFP_KERNEL);
if (mgp->rx_done.entry == NULL)
goto abort_with_ioremap;
memset(mgp->rx_done.entry, 0, bytes);
status = myri10ge_load_firmware(mgp);
if (status != 0) {
dev_err(&pdev->dev, "failed to load firmware\n");
goto abort_with_rx_done;
}
status = myri10ge_reset(mgp);
if (status != 0) {
dev_err(&pdev->dev, "failed reset\n");
goto abort_with_firmware;
}
if (myri10ge_msi) {
status = pci_enable_msi(pdev);
if (status != 0)
dev_err(&pdev->dev,
"Error %d setting up MSI; falling back to xPIC\n",
status);
else
mgp->msi_enabled = 1;
}
status = request_irq(pdev->irq, myri10ge_intr, IRQF_SHARED,
netdev->name, mgp);
if (status != 0) {
dev_err(&pdev->dev, "failed to allocate IRQ\n");
goto abort_with_firmware;
}
pci_set_drvdata(pdev, mgp);
if ((myri10ge_initial_mtu + ETH_HLEN) > MYRI10GE_MAX_ETHER_MTU)
myri10ge_initial_mtu = MYRI10GE_MAX_ETHER_MTU - ETH_HLEN;
if ((myri10ge_initial_mtu + ETH_HLEN) < 68)
myri10ge_initial_mtu = 68;
netdev->mtu = myri10ge_initial_mtu;
netdev->open = myri10ge_open;
netdev->stop = myri10ge_close;
netdev->hard_start_xmit = myri10ge_xmit;
netdev->get_stats = myri10ge_get_stats;
netdev->base_addr = mgp->iomem_base;
netdev->irq = pdev->irq;
netdev->change_mtu = myri10ge_change_mtu;
netdev->set_multicast_list = myri10ge_set_multicast_list;
netdev->set_mac_address = myri10ge_set_mac_address;
netdev->features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_TSO;
if (dac_enabled)
netdev->features |= NETIF_F_HIGHDMA;
netdev->poll = myri10ge_poll;
netdev->weight = myri10ge_napi_weight;
/* Save configuration space to be restored if the
* nic resets due to a parity error */
myri10ge_save_state(mgp);
/* Setup the watchdog timer */
setup_timer(&mgp->watchdog_timer, myri10ge_watchdog_timer,
(unsigned long)mgp);
SET_ETHTOOL_OPS(netdev, &myri10ge_ethtool_ops);
INIT_WORK(&mgp->watchdog_work, myri10ge_watchdog, mgp);
status = register_netdev(netdev);
if (status != 0) {
dev_err(&pdev->dev, "register_netdev failed: %d\n", status);
goto abort_with_irq;
}
dev_info(dev, "%s IRQ %d, tx bndry %d, fw %s, WC %s\n",
(mgp->msi_enabled ? "MSI" : "xPIC"),
pdev->irq, mgp->tx.boundary, mgp->fw_name,
(mgp->mtrr >= 0 ? "Enabled" : "Disabled"));
return 0;
abort_with_irq:
free_irq(pdev->irq, mgp);
if (mgp->msi_enabled)
pci_disable_msi(pdev);
abort_with_firmware:
myri10ge_dummy_rdma(mgp, 0);
abort_with_rx_done:
bytes = myri10ge_max_intr_slots * sizeof(*mgp->rx_done.entry);
dma_free_coherent(&pdev->dev, bytes,
mgp->rx_done.entry, mgp->rx_done.bus);
abort_with_ioremap:
iounmap(mgp->sram);
abort_with_wc:
#ifdef CONFIG_MTRR
if (mgp->mtrr >= 0)
mtrr_del(mgp->mtrr, mgp->iomem_base, mgp->board_span);
#endif
dma_free_coherent(&pdev->dev, sizeof(*mgp->fw_stats),
mgp->fw_stats, mgp->fw_stats_bus);
abort_with_cmd:
dma_free_coherent(&pdev->dev, sizeof(*mgp->cmd),
mgp->cmd, mgp->cmd_bus);
abort_with_netdev:
free_netdev(netdev);
return status;
}
/*
* myri10ge_remove
*
* Does what is necessary to shutdown one Myrinet device. Called
* once for each Myrinet card by the kernel when a module is
* unloaded.
*/
static void myri10ge_remove(struct pci_dev *pdev)
{
struct myri10ge_priv *mgp;
struct net_device *netdev;
size_t bytes;
mgp = pci_get_drvdata(pdev);
if (mgp == NULL)
return;
flush_scheduled_work();
netdev = mgp->dev;
unregister_netdev(netdev);
free_irq(pdev->irq, mgp);
if (mgp->msi_enabled)
pci_disable_msi(pdev);
myri10ge_dummy_rdma(mgp, 0);
bytes = myri10ge_max_intr_slots * sizeof(*mgp->rx_done.entry);
dma_free_coherent(&pdev->dev, bytes,
mgp->rx_done.entry, mgp->rx_done.bus);
iounmap(mgp->sram);
#ifdef CONFIG_MTRR
if (mgp->mtrr >= 0)
mtrr_del(mgp->mtrr, mgp->iomem_base, mgp->board_span);
#endif
dma_free_coherent(&pdev->dev, sizeof(*mgp->fw_stats),
mgp->fw_stats, mgp->fw_stats_bus);
dma_free_coherent(&pdev->dev, sizeof(*mgp->cmd),
mgp->cmd, mgp->cmd_bus);
free_netdev(netdev);
pci_set_drvdata(pdev, NULL);
}
#define PCI_DEVICE_ID_MYRICOM_MYRI10GE_Z8E 0x0008
static struct pci_device_id myri10ge_pci_tbl[] = {
{PCI_DEVICE(PCI_VENDOR_ID_MYRICOM, PCI_DEVICE_ID_MYRICOM_MYRI10GE_Z8E)},
{0},
};
static struct pci_driver myri10ge_driver = {
.name = "myri10ge",
.probe = myri10ge_probe,
.remove = myri10ge_remove,
.id_table = myri10ge_pci_tbl,
#ifdef CONFIG_PM
.suspend = myri10ge_suspend,
.resume = myri10ge_resume,
#endif
};
static __init int myri10ge_init_module(void)
{
printk(KERN_INFO "%s: Version %s\n", myri10ge_driver.name,
MYRI10GE_VERSION_STR);
return pci_register_driver(&myri10ge_driver);
}
module_init(myri10ge_init_module);
static __exit void myri10ge_cleanup_module(void)
{
pci_unregister_driver(&myri10ge_driver);
}
module_exit(myri10ge_cleanup_module);