linux-hardened/lib/idr.c
Tejun Heo 859ddf0974 idr: fix a critical misallocation bug
Eric Paris located a bug in idr.  With IDR_BITS of 6, it grows to three
layers when id 4096 is first allocated.  When that happens, idr wraps
incorrectly and searches the idr array ignoring the high bits.  The
following test code from Eric demonstrates the bug nicely.

#include <linux/idr.h>
#include <linux/kernel.h>
#include <linux/module.h>

static DEFINE_IDR(test_idr);

int init_module(void)
{
	int ret, forty95, forty96;
	void *addr;

	/* add 2 entries both with 4095 as the start address */
again1:
	if (!idr_pre_get(&test_idr, GFP_KERNEL))
		return -ENOMEM;
	ret = idr_get_new_above(&test_idr, (void *)4095, 4095, &forty95);
	if (ret) {
		if (ret == -EAGAIN)
			goto again1;
		return ret;
	}
	if (forty95 != 4095)
		printk(KERN_ERR "hmmm, forty95=%d\n", forty95);

again2:
	if (!idr_pre_get(&test_idr, GFP_KERNEL))
		return -ENOMEM;
	ret = idr_get_new_above(&test_idr, (void *)4096, 4095, &forty96);
	if (ret) {
		if (ret == -EAGAIN)
			goto again2;
		return ret;
	}
	if (forty96 != 4096)
		printk(KERN_ERR "hmmm, forty96=%d\n", forty96);

	/* try to find the 2 entries, noticing that 4096 broke */
	addr = idr_find(&test_idr, forty95);
	if ((int)addr != forty95)
		printk(KERN_ERR "hmmm, after find forty95=%d addr=%d\n", forty95, (int)addr);
	addr = idr_find(&test_idr, forty96);
	if ((int)addr != forty96)
		printk(KERN_ERR "hmmm, after find forty96=%d addr=%d\n", forty96, (int)addr);
	/* really weird, the entry which should be at 4096 is actually at 0!! */
	addr = idr_find(&test_idr, 0);
	if ((int)addr)
		printk(KERN_ERR "found an entry at id=0 for addr=%d\n", (int)addr);

	idr_remove(&test_idr, forty95);
	idr_remove(&test_idr, forty96);

	return 0;
}

void cleanup_module(void)
{
}

MODULE_AUTHOR("Eric Paris <eparis@redhat.com>");
MODULE_DESCRIPTION("Simple idr test");
MODULE_LICENSE("GPL");

This happens because when sub_alloc() back tracks it doesn't always do it
step-by-step while the over-the-limit detection assumes step-by-step
backtracking.  The logic in sub_alloc() looks like the following.

  restart:
    clear pa[top level + 1] for end cond detection
    l = top level
    while (true) {
	search for empty slot at this level
	if (not found) {
	    push id to the next possible value
	    l++
A:	    if (pa[l] is clear)
	        failed, return asking caller to grow the tree
	    if (going up 1 level gives more slots to search)
	        continue the while loop above with the incremented l
	    else
C:	        goto restart
	}
	adjust id accordingly to the found slot
	if (l == 0)
	    return found id;
	create lower level if not there yet
	record pa[l] and l--
    }

Test A is the fail exit condition but this assumes that failure is
propagated upwared one level at a time but the B optimization path breaks
the assumption and restarts the whole thing with a start value which is
above the possible limit with the current layers.  sub_alloc() assumes the
start id value is inside the limit when called and test A is the only exit
condition check, so it ends up searching for empty slot while ignoring
high set bit.

So, for 4095->4096 test, level0 search fails but pa[1] contains a valid
pointer.  However, going up 1 level wouldn't give any more empty slot so
it takes C and when the whole thing restarts nobody notices the high bit
set beyond the top level.

This patch fixes the bug by changing the fail exit condition check to full
id limit check.

Based-on-patch-from: Eric Paris <eparis@redhat.com>
Reported-by: Eric Paris <eparis@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-02-02 18:11:21 -08:00

931 lines
21 KiB
C

/*
* 2002-10-18 written by Jim Houston jim.houston@ccur.com
* Copyright (C) 2002 by Concurrent Computer Corporation
* Distributed under the GNU GPL license version 2.
*
* Modified by George Anzinger to reuse immediately and to use
* find bit instructions. Also removed _irq on spinlocks.
*
* Modified by Nadia Derbey to make it RCU safe.
*
* Small id to pointer translation service.
*
* It uses a radix tree like structure as a sparse array indexed
* by the id to obtain the pointer. The bitmap makes allocating
* a new id quick.
*
* You call it to allocate an id (an int) an associate with that id a
* pointer or what ever, we treat it as a (void *). You can pass this
* id to a user for him to pass back at a later time. You then pass
* that id to this code and it returns your pointer.
* You can release ids at any time. When all ids are released, most of
* the memory is returned (we keep IDR_FREE_MAX) in a local pool so we
* don't need to go to the memory "store" during an id allocate, just
* so you don't need to be too concerned about locking and conflicts
* with the slab allocator.
*/
#ifndef TEST // to test in user space...
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/module.h>
#endif
#include <linux/err.h>
#include <linux/string.h>
#include <linux/idr.h>
static struct kmem_cache *idr_layer_cache;
static struct idr_layer *get_from_free_list(struct idr *idp)
{
struct idr_layer *p;
unsigned long flags;
spin_lock_irqsave(&idp->lock, flags);
if ((p = idp->id_free)) {
idp->id_free = p->ary[0];
idp->id_free_cnt--;
p->ary[0] = NULL;
}
spin_unlock_irqrestore(&idp->lock, flags);
return(p);
}
static void idr_layer_rcu_free(struct rcu_head *head)
{
struct idr_layer *layer;
layer = container_of(head, struct idr_layer, rcu_head);
kmem_cache_free(idr_layer_cache, layer);
}
static inline void free_layer(struct idr_layer *p)
{
call_rcu(&p->rcu_head, idr_layer_rcu_free);
}
/* only called when idp->lock is held */
static void __move_to_free_list(struct idr *idp, struct idr_layer *p)
{
p->ary[0] = idp->id_free;
idp->id_free = p;
idp->id_free_cnt++;
}
static void move_to_free_list(struct idr *idp, struct idr_layer *p)
{
unsigned long flags;
/*
* Depends on the return element being zeroed.
*/
spin_lock_irqsave(&idp->lock, flags);
__move_to_free_list(idp, p);
spin_unlock_irqrestore(&idp->lock, flags);
}
static void idr_mark_full(struct idr_layer **pa, int id)
{
struct idr_layer *p = pa[0];
int l = 0;
__set_bit(id & IDR_MASK, &p->bitmap);
/*
* If this layer is full mark the bit in the layer above to
* show that this part of the radix tree is full. This may
* complete the layer above and require walking up the radix
* tree.
*/
while (p->bitmap == IDR_FULL) {
if (!(p = pa[++l]))
break;
id = id >> IDR_BITS;
__set_bit((id & IDR_MASK), &p->bitmap);
}
}
/**
* idr_pre_get - reserver resources for idr allocation
* @idp: idr handle
* @gfp_mask: memory allocation flags
*
* This function should be called prior to locking and calling the
* idr_get_new* functions. It preallocates enough memory to satisfy
* the worst possible allocation.
*
* If the system is REALLY out of memory this function returns 0,
* otherwise 1.
*/
int idr_pre_get(struct idr *idp, gfp_t gfp_mask)
{
while (idp->id_free_cnt < IDR_FREE_MAX) {
struct idr_layer *new;
new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
if (new == NULL)
return (0);
move_to_free_list(idp, new);
}
return 1;
}
EXPORT_SYMBOL(idr_pre_get);
static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa)
{
int n, m, sh;
struct idr_layer *p, *new;
int l, id, oid;
unsigned long bm;
id = *starting_id;
restart:
p = idp->top;
l = p->layer;
while (1) {
/*
* We run around this while until we reach the leaf node...
*/
n = (id >> (IDR_BITS*l)) & IDR_MASK;
bm = ~p->bitmap;
m = find_next_bit(&bm, IDR_SIZE, n);
if (m == IDR_SIZE) {
/* no space available go back to previous layer. */
l++;
oid = id;
id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1;
/* did id go over the limit? */
if (id >= (1 << (idp->layers * IDR_BITS))) {
*starting_id = id;
return IDR_NEED_TO_GROW;
}
/* If we need to go up one layer, continue the
* loop; otherwise, restart from the top.
*/
sh = IDR_BITS * (l + 1);
if (oid >> sh == id >> sh)
continue;
else
goto restart;
}
if (m != n) {
sh = IDR_BITS*l;
id = ((id >> sh) ^ n ^ m) << sh;
}
if ((id >= MAX_ID_BIT) || (id < 0))
return IDR_NOMORE_SPACE;
if (l == 0)
break;
/*
* Create the layer below if it is missing.
*/
if (!p->ary[m]) {
new = get_from_free_list(idp);
if (!new)
return -1;
new->layer = l-1;
rcu_assign_pointer(p->ary[m], new);
p->count++;
}
pa[l--] = p;
p = p->ary[m];
}
pa[l] = p;
return id;
}
static int idr_get_empty_slot(struct idr *idp, int starting_id,
struct idr_layer **pa)
{
struct idr_layer *p, *new;
int layers, v, id;
unsigned long flags;
id = starting_id;
build_up:
p = idp->top;
layers = idp->layers;
if (unlikely(!p)) {
if (!(p = get_from_free_list(idp)))
return -1;
p->layer = 0;
layers = 1;
}
/*
* Add a new layer to the top of the tree if the requested
* id is larger than the currently allocated space.
*/
while ((layers < (MAX_LEVEL - 1)) && (id >= (1 << (layers*IDR_BITS)))) {
layers++;
if (!p->count) {
/* special case: if the tree is currently empty,
* then we grow the tree by moving the top node
* upwards.
*/
p->layer++;
continue;
}
if (!(new = get_from_free_list(idp))) {
/*
* The allocation failed. If we built part of
* the structure tear it down.
*/
spin_lock_irqsave(&idp->lock, flags);
for (new = p; p && p != idp->top; new = p) {
p = p->ary[0];
new->ary[0] = NULL;
new->bitmap = new->count = 0;
__move_to_free_list(idp, new);
}
spin_unlock_irqrestore(&idp->lock, flags);
return -1;
}
new->ary[0] = p;
new->count = 1;
new->layer = layers-1;
if (p->bitmap == IDR_FULL)
__set_bit(0, &new->bitmap);
p = new;
}
rcu_assign_pointer(idp->top, p);
idp->layers = layers;
v = sub_alloc(idp, &id, pa);
if (v == IDR_NEED_TO_GROW)
goto build_up;
return(v);
}
static int idr_get_new_above_int(struct idr *idp, void *ptr, int starting_id)
{
struct idr_layer *pa[MAX_LEVEL];
int id;
id = idr_get_empty_slot(idp, starting_id, pa);
if (id >= 0) {
/*
* Successfully found an empty slot. Install the user
* pointer and mark the slot full.
*/
rcu_assign_pointer(pa[0]->ary[id & IDR_MASK],
(struct idr_layer *)ptr);
pa[0]->count++;
idr_mark_full(pa, id);
}
return id;
}
/**
* idr_get_new_above - allocate new idr entry above or equal to a start id
* @idp: idr handle
* @ptr: pointer you want associated with the id
* @start_id: id to start search at
* @id: pointer to the allocated handle
*
* This is the allocate id function. It should be called with any
* required locks.
*
* If memory is required, it will return -EAGAIN, you should unlock
* and go back to the idr_pre_get() call. If the idr is full, it will
* return -ENOSPC.
*
* @id returns a value in the range @starting_id ... 0x7fffffff
*/
int idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id)
{
int rv;
rv = idr_get_new_above_int(idp, ptr, starting_id);
/*
* This is a cheap hack until the IDR code can be fixed to
* return proper error values.
*/
if (rv < 0)
return _idr_rc_to_errno(rv);
*id = rv;
return 0;
}
EXPORT_SYMBOL(idr_get_new_above);
/**
* idr_get_new - allocate new idr entry
* @idp: idr handle
* @ptr: pointer you want associated with the id
* @id: pointer to the allocated handle
*
* This is the allocate id function. It should be called with any
* required locks.
*
* If memory is required, it will return -EAGAIN, you should unlock
* and go back to the idr_pre_get() call. If the idr is full, it will
* return -ENOSPC.
*
* @id returns a value in the range 0 ... 0x7fffffff
*/
int idr_get_new(struct idr *idp, void *ptr, int *id)
{
int rv;
rv = idr_get_new_above_int(idp, ptr, 0);
/*
* This is a cheap hack until the IDR code can be fixed to
* return proper error values.
*/
if (rv < 0)
return _idr_rc_to_errno(rv);
*id = rv;
return 0;
}
EXPORT_SYMBOL(idr_get_new);
static void idr_remove_warning(int id)
{
printk(KERN_WARNING
"idr_remove called for id=%d which is not allocated.\n", id);
dump_stack();
}
static void sub_remove(struct idr *idp, int shift, int id)
{
struct idr_layer *p = idp->top;
struct idr_layer **pa[MAX_LEVEL];
struct idr_layer ***paa = &pa[0];
struct idr_layer *to_free;
int n;
*paa = NULL;
*++paa = &idp->top;
while ((shift > 0) && p) {
n = (id >> shift) & IDR_MASK;
__clear_bit(n, &p->bitmap);
*++paa = &p->ary[n];
p = p->ary[n];
shift -= IDR_BITS;
}
n = id & IDR_MASK;
if (likely(p != NULL && test_bit(n, &p->bitmap))){
__clear_bit(n, &p->bitmap);
rcu_assign_pointer(p->ary[n], NULL);
to_free = NULL;
while(*paa && ! --((**paa)->count)){
if (to_free)
free_layer(to_free);
to_free = **paa;
**paa-- = NULL;
}
if (!*paa)
idp->layers = 0;
if (to_free)
free_layer(to_free);
} else
idr_remove_warning(id);
}
/**
* idr_remove - remove the given id and free it's slot
* @idp: idr handle
* @id: unique key
*/
void idr_remove(struct idr *idp, int id)
{
struct idr_layer *p;
struct idr_layer *to_free;
/* Mask off upper bits we don't use for the search. */
id &= MAX_ID_MASK;
sub_remove(idp, (idp->layers - 1) * IDR_BITS, id);
if (idp->top && idp->top->count == 1 && (idp->layers > 1) &&
idp->top->ary[0]) {
/*
* Single child at leftmost slot: we can shrink the tree.
* This level is not needed anymore since when layers are
* inserted, they are inserted at the top of the existing
* tree.
*/
to_free = idp->top;
p = idp->top->ary[0];
rcu_assign_pointer(idp->top, p);
--idp->layers;
to_free->bitmap = to_free->count = 0;
free_layer(to_free);
}
while (idp->id_free_cnt >= IDR_FREE_MAX) {
p = get_from_free_list(idp);
/*
* Note: we don't call the rcu callback here, since the only
* layers that fall into the freelist are those that have been
* preallocated.
*/
kmem_cache_free(idr_layer_cache, p);
}
return;
}
EXPORT_SYMBOL(idr_remove);
/**
* idr_remove_all - remove all ids from the given idr tree
* @idp: idr handle
*
* idr_destroy() only frees up unused, cached idp_layers, but this
* function will remove all id mappings and leave all idp_layers
* unused.
*
* A typical clean-up sequence for objects stored in an idr tree, will
* use idr_for_each() to free all objects, if necessay, then
* idr_remove_all() to remove all ids, and idr_destroy() to free
* up the cached idr_layers.
*/
void idr_remove_all(struct idr *idp)
{
int n, id, max;
struct idr_layer *p;
struct idr_layer *pa[MAX_LEVEL];
struct idr_layer **paa = &pa[0];
n = idp->layers * IDR_BITS;
p = idp->top;
rcu_assign_pointer(idp->top, NULL);
max = 1 << n;
id = 0;
while (id < max) {
while (n > IDR_BITS && p) {
n -= IDR_BITS;
*paa++ = p;
p = p->ary[(id >> n) & IDR_MASK];
}
id += 1 << n;
while (n < fls(id)) {
if (p)
free_layer(p);
n += IDR_BITS;
p = *--paa;
}
}
idp->layers = 0;
}
EXPORT_SYMBOL(idr_remove_all);
/**
* idr_destroy - release all cached layers within an idr tree
* idp: idr handle
*/
void idr_destroy(struct idr *idp)
{
while (idp->id_free_cnt) {
struct idr_layer *p = get_from_free_list(idp);
kmem_cache_free(idr_layer_cache, p);
}
}
EXPORT_SYMBOL(idr_destroy);
/**
* idr_find - return pointer for given id
* @idp: idr handle
* @id: lookup key
*
* Return the pointer given the id it has been registered with. A %NULL
* return indicates that @id is not valid or you passed %NULL in
* idr_get_new().
*
* This function can be called under rcu_read_lock(), given that the leaf
* pointers lifetimes are correctly managed.
*/
void *idr_find(struct idr *idp, int id)
{
int n;
struct idr_layer *p;
p = rcu_dereference(idp->top);
if (!p)
return NULL;
n = (p->layer+1) * IDR_BITS;
/* Mask off upper bits we don't use for the search. */
id &= MAX_ID_MASK;
if (id >= (1 << n))
return NULL;
BUG_ON(n == 0);
while (n > 0 && p) {
n -= IDR_BITS;
BUG_ON(n != p->layer*IDR_BITS);
p = rcu_dereference(p->ary[(id >> n) & IDR_MASK]);
}
return((void *)p);
}
EXPORT_SYMBOL(idr_find);
/**
* idr_for_each - iterate through all stored pointers
* @idp: idr handle
* @fn: function to be called for each pointer
* @data: data passed back to callback function
*
* Iterate over the pointers registered with the given idr. The
* callback function will be called for each pointer currently
* registered, passing the id, the pointer and the data pointer passed
* to this function. It is not safe to modify the idr tree while in
* the callback, so functions such as idr_get_new and idr_remove are
* not allowed.
*
* We check the return of @fn each time. If it returns anything other
* than 0, we break out and return that value.
*
* The caller must serialize idr_for_each() vs idr_get_new() and idr_remove().
*/
int idr_for_each(struct idr *idp,
int (*fn)(int id, void *p, void *data), void *data)
{
int n, id, max, error = 0;
struct idr_layer *p;
struct idr_layer *pa[MAX_LEVEL];
struct idr_layer **paa = &pa[0];
n = idp->layers * IDR_BITS;
p = rcu_dereference(idp->top);
max = 1 << n;
id = 0;
while (id < max) {
while (n > 0 && p) {
n -= IDR_BITS;
*paa++ = p;
p = rcu_dereference(p->ary[(id >> n) & IDR_MASK]);
}
if (p) {
error = fn(id, (void *)p, data);
if (error)
break;
}
id += 1 << n;
while (n < fls(id)) {
n += IDR_BITS;
p = *--paa;
}
}
return error;
}
EXPORT_SYMBOL(idr_for_each);
/**
* idr_get_next - lookup next object of id to given id.
* @idp: idr handle
* @id: pointer to lookup key
*
* Returns pointer to registered object with id, which is next number to
* given id.
*/
void *idr_get_next(struct idr *idp, int *nextidp)
{
struct idr_layer *p, *pa[MAX_LEVEL];
struct idr_layer **paa = &pa[0];
int id = *nextidp;
int n, max;
/* find first ent */
n = idp->layers * IDR_BITS;
max = 1 << n;
p = rcu_dereference(idp->top);
if (!p)
return NULL;
while (id < max) {
while (n > 0 && p) {
n -= IDR_BITS;
*paa++ = p;
p = rcu_dereference(p->ary[(id >> n) & IDR_MASK]);
}
if (p) {
*nextidp = id;
return p;
}
id += 1 << n;
while (n < fls(id)) {
n += IDR_BITS;
p = *--paa;
}
}
return NULL;
}
/**
* idr_replace - replace pointer for given id
* @idp: idr handle
* @ptr: pointer you want associated with the id
* @id: lookup key
*
* Replace the pointer registered with an id and return the old value.
* A -ENOENT return indicates that @id was not found.
* A -EINVAL return indicates that @id was not within valid constraints.
*
* The caller must serialize with writers.
*/
void *idr_replace(struct idr *idp, void *ptr, int id)
{
int n;
struct idr_layer *p, *old_p;
p = idp->top;
if (!p)
return ERR_PTR(-EINVAL);
n = (p->layer+1) * IDR_BITS;
id &= MAX_ID_MASK;
if (id >= (1 << n))
return ERR_PTR(-EINVAL);
n -= IDR_BITS;
while ((n > 0) && p) {
p = p->ary[(id >> n) & IDR_MASK];
n -= IDR_BITS;
}
n = id & IDR_MASK;
if (unlikely(p == NULL || !test_bit(n, &p->bitmap)))
return ERR_PTR(-ENOENT);
old_p = p->ary[n];
rcu_assign_pointer(p->ary[n], ptr);
return old_p;
}
EXPORT_SYMBOL(idr_replace);
void __init idr_init_cache(void)
{
idr_layer_cache = kmem_cache_create("idr_layer_cache",
sizeof(struct idr_layer), 0, SLAB_PANIC, NULL);
}
/**
* idr_init - initialize idr handle
* @idp: idr handle
*
* This function is use to set up the handle (@idp) that you will pass
* to the rest of the functions.
*/
void idr_init(struct idr *idp)
{
memset(idp, 0, sizeof(struct idr));
spin_lock_init(&idp->lock);
}
EXPORT_SYMBOL(idr_init);
/*
* IDA - IDR based ID allocator
*
* this is id allocator without id -> pointer translation. Memory
* usage is much lower than full blown idr because each id only
* occupies a bit. ida uses a custom leaf node which contains
* IDA_BITMAP_BITS slots.
*
* 2007-04-25 written by Tejun Heo <htejun@gmail.com>
*/
static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap)
{
unsigned long flags;
if (!ida->free_bitmap) {
spin_lock_irqsave(&ida->idr.lock, flags);
if (!ida->free_bitmap) {
ida->free_bitmap = bitmap;
bitmap = NULL;
}
spin_unlock_irqrestore(&ida->idr.lock, flags);
}
kfree(bitmap);
}
/**
* ida_pre_get - reserve resources for ida allocation
* @ida: ida handle
* @gfp_mask: memory allocation flag
*
* This function should be called prior to locking and calling the
* following function. It preallocates enough memory to satisfy the
* worst possible allocation.
*
* If the system is REALLY out of memory this function returns 0,
* otherwise 1.
*/
int ida_pre_get(struct ida *ida, gfp_t gfp_mask)
{
/* allocate idr_layers */
if (!idr_pre_get(&ida->idr, gfp_mask))
return 0;
/* allocate free_bitmap */
if (!ida->free_bitmap) {
struct ida_bitmap *bitmap;
bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask);
if (!bitmap)
return 0;
free_bitmap(ida, bitmap);
}
return 1;
}
EXPORT_SYMBOL(ida_pre_get);
/**
* ida_get_new_above - allocate new ID above or equal to a start id
* @ida: ida handle
* @staring_id: id to start search at
* @p_id: pointer to the allocated handle
*
* Allocate new ID above or equal to @ida. It should be called with
* any required locks.
*
* If memory is required, it will return -EAGAIN, you should unlock
* and go back to the ida_pre_get() call. If the ida is full, it will
* return -ENOSPC.
*
* @p_id returns a value in the range @starting_id ... 0x7fffffff.
*/
int ida_get_new_above(struct ida *ida, int starting_id, int *p_id)
{
struct idr_layer *pa[MAX_LEVEL];
struct ida_bitmap *bitmap;
unsigned long flags;
int idr_id = starting_id / IDA_BITMAP_BITS;
int offset = starting_id % IDA_BITMAP_BITS;
int t, id;
restart:
/* get vacant slot */
t = idr_get_empty_slot(&ida->idr, idr_id, pa);
if (t < 0)
return _idr_rc_to_errno(t);
if (t * IDA_BITMAP_BITS >= MAX_ID_BIT)
return -ENOSPC;
if (t != idr_id)
offset = 0;
idr_id = t;
/* if bitmap isn't there, create a new one */
bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK];
if (!bitmap) {
spin_lock_irqsave(&ida->idr.lock, flags);
bitmap = ida->free_bitmap;
ida->free_bitmap = NULL;
spin_unlock_irqrestore(&ida->idr.lock, flags);
if (!bitmap)
return -EAGAIN;
memset(bitmap, 0, sizeof(struct ida_bitmap));
rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK],
(void *)bitmap);
pa[0]->count++;
}
/* lookup for empty slot */
t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset);
if (t == IDA_BITMAP_BITS) {
/* no empty slot after offset, continue to the next chunk */
idr_id++;
offset = 0;
goto restart;
}
id = idr_id * IDA_BITMAP_BITS + t;
if (id >= MAX_ID_BIT)
return -ENOSPC;
__set_bit(t, bitmap->bitmap);
if (++bitmap->nr_busy == IDA_BITMAP_BITS)
idr_mark_full(pa, idr_id);
*p_id = id;
/* Each leaf node can handle nearly a thousand slots and the
* whole idea of ida is to have small memory foot print.
* Throw away extra resources one by one after each successful
* allocation.
*/
if (ida->idr.id_free_cnt || ida->free_bitmap) {
struct idr_layer *p = get_from_free_list(&ida->idr);
if (p)
kmem_cache_free(idr_layer_cache, p);
}
return 0;
}
EXPORT_SYMBOL(ida_get_new_above);
/**
* ida_get_new - allocate new ID
* @ida: idr handle
* @p_id: pointer to the allocated handle
*
* Allocate new ID. It should be called with any required locks.
*
* If memory is required, it will return -EAGAIN, you should unlock
* and go back to the idr_pre_get() call. If the idr is full, it will
* return -ENOSPC.
*
* @id returns a value in the range 0 ... 0x7fffffff.
*/
int ida_get_new(struct ida *ida, int *p_id)
{
return ida_get_new_above(ida, 0, p_id);
}
EXPORT_SYMBOL(ida_get_new);
/**
* ida_remove - remove the given ID
* @ida: ida handle
* @id: ID to free
*/
void ida_remove(struct ida *ida, int id)
{
struct idr_layer *p = ida->idr.top;
int shift = (ida->idr.layers - 1) * IDR_BITS;
int idr_id = id / IDA_BITMAP_BITS;
int offset = id % IDA_BITMAP_BITS;
int n;
struct ida_bitmap *bitmap;
/* clear full bits while looking up the leaf idr_layer */
while ((shift > 0) && p) {
n = (idr_id >> shift) & IDR_MASK;
__clear_bit(n, &p->bitmap);
p = p->ary[n];
shift -= IDR_BITS;
}
if (p == NULL)
goto err;
n = idr_id & IDR_MASK;
__clear_bit(n, &p->bitmap);
bitmap = (void *)p->ary[n];
if (!test_bit(offset, bitmap->bitmap))
goto err;
/* update bitmap and remove it if empty */
__clear_bit(offset, bitmap->bitmap);
if (--bitmap->nr_busy == 0) {
__set_bit(n, &p->bitmap); /* to please idr_remove() */
idr_remove(&ida->idr, idr_id);
free_bitmap(ida, bitmap);
}
return;
err:
printk(KERN_WARNING
"ida_remove called for id=%d which is not allocated.\n", id);
}
EXPORT_SYMBOL(ida_remove);
/**
* ida_destroy - release all cached layers within an ida tree
* ida: ida handle
*/
void ida_destroy(struct ida *ida)
{
idr_destroy(&ida->idr);
kfree(ida->free_bitmap);
}
EXPORT_SYMBOL(ida_destroy);
/**
* ida_init - initialize ida handle
* @ida: ida handle
*
* This function is use to set up the handle (@ida) that you will pass
* to the rest of the functions.
*/
void ida_init(struct ida *ida)
{
memset(ida, 0, sizeof(struct ida));
idr_init(&ida->idr);
}
EXPORT_SYMBOL(ida_init);