linux-hardened/mm/vmalloc.c
Arjan van de Ven 4c8573e25f Use WARN() in mm/vmalloc.c
Use WARN() instead of a printk+WARN_ON() pair; this way the message becomes
part of the warning section for better reporting/collection.

Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 12:00:07 -07:00

999 lines
23 KiB
C

/*
* linux/mm/vmalloc.c
*
* Copyright (C) 1993 Linus Torvalds
* Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
* SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
* Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
* Numa awareness, Christoph Lameter, SGI, June 2005
*/
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/highmem.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/seq_file.h>
#include <linux/debugobjects.h>
#include <linux/vmalloc.h>
#include <linux/kallsyms.h>
#include <asm/uaccess.h>
#include <asm/tlbflush.h>
DEFINE_RWLOCK(vmlist_lock);
struct vm_struct *vmlist;
static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
int node, void *caller);
static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
{
pte_t *pte;
pte = pte_offset_kernel(pmd, addr);
do {
pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
WARN_ON(!pte_none(ptent) && !pte_present(ptent));
} while (pte++, addr += PAGE_SIZE, addr != end);
}
static inline void vunmap_pmd_range(pud_t *pud, unsigned long addr,
unsigned long end)
{
pmd_t *pmd;
unsigned long next;
pmd = pmd_offset(pud, addr);
do {
next = pmd_addr_end(addr, end);
if (pmd_none_or_clear_bad(pmd))
continue;
vunmap_pte_range(pmd, addr, next);
} while (pmd++, addr = next, addr != end);
}
static inline void vunmap_pud_range(pgd_t *pgd, unsigned long addr,
unsigned long end)
{
pud_t *pud;
unsigned long next;
pud = pud_offset(pgd, addr);
do {
next = pud_addr_end(addr, end);
if (pud_none_or_clear_bad(pud))
continue;
vunmap_pmd_range(pud, addr, next);
} while (pud++, addr = next, addr != end);
}
void unmap_kernel_range(unsigned long addr, unsigned long size)
{
pgd_t *pgd;
unsigned long next;
unsigned long start = addr;
unsigned long end = addr + size;
BUG_ON(addr >= end);
pgd = pgd_offset_k(addr);
flush_cache_vunmap(addr, end);
do {
next = pgd_addr_end(addr, end);
if (pgd_none_or_clear_bad(pgd))
continue;
vunmap_pud_range(pgd, addr, next);
} while (pgd++, addr = next, addr != end);
flush_tlb_kernel_range(start, end);
}
static void unmap_vm_area(struct vm_struct *area)
{
unmap_kernel_range((unsigned long)area->addr, area->size);
}
static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
unsigned long end, pgprot_t prot, struct page ***pages)
{
pte_t *pte;
pte = pte_alloc_kernel(pmd, addr);
if (!pte)
return -ENOMEM;
do {
struct page *page = **pages;
WARN_ON(!pte_none(*pte));
if (!page)
return -ENOMEM;
set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
(*pages)++;
} while (pte++, addr += PAGE_SIZE, addr != end);
return 0;
}
static inline int vmap_pmd_range(pud_t *pud, unsigned long addr,
unsigned long end, pgprot_t prot, struct page ***pages)
{
pmd_t *pmd;
unsigned long next;
pmd = pmd_alloc(&init_mm, pud, addr);
if (!pmd)
return -ENOMEM;
do {
next = pmd_addr_end(addr, end);
if (vmap_pte_range(pmd, addr, next, prot, pages))
return -ENOMEM;
} while (pmd++, addr = next, addr != end);
return 0;
}
static inline int vmap_pud_range(pgd_t *pgd, unsigned long addr,
unsigned long end, pgprot_t prot, struct page ***pages)
{
pud_t *pud;
unsigned long next;
pud = pud_alloc(&init_mm, pgd, addr);
if (!pud)
return -ENOMEM;
do {
next = pud_addr_end(addr, end);
if (vmap_pmd_range(pud, addr, next, prot, pages))
return -ENOMEM;
} while (pud++, addr = next, addr != end);
return 0;
}
int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
{
pgd_t *pgd;
unsigned long next;
unsigned long addr = (unsigned long) area->addr;
unsigned long end = addr + area->size - PAGE_SIZE;
int err;
BUG_ON(addr >= end);
pgd = pgd_offset_k(addr);
do {
next = pgd_addr_end(addr, end);
err = vmap_pud_range(pgd, addr, next, prot, pages);
if (err)
break;
} while (pgd++, addr = next, addr != end);
flush_cache_vmap((unsigned long) area->addr, end);
return err;
}
EXPORT_SYMBOL_GPL(map_vm_area);
/*
* Map a vmalloc()-space virtual address to the physical page.
*/
struct page *vmalloc_to_page(const void *vmalloc_addr)
{
unsigned long addr = (unsigned long) vmalloc_addr;
struct page *page = NULL;
pgd_t *pgd = pgd_offset_k(addr);
pud_t *pud;
pmd_t *pmd;
pte_t *ptep, pte;
if (!pgd_none(*pgd)) {
pud = pud_offset(pgd, addr);
if (!pud_none(*pud)) {
pmd = pmd_offset(pud, addr);
if (!pmd_none(*pmd)) {
ptep = pte_offset_map(pmd, addr);
pte = *ptep;
if (pte_present(pte))
page = pte_page(pte);
pte_unmap(ptep);
}
}
}
return page;
}
EXPORT_SYMBOL(vmalloc_to_page);
/*
* Map a vmalloc()-space virtual address to the physical page frame number.
*/
unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
{
return page_to_pfn(vmalloc_to_page(vmalloc_addr));
}
EXPORT_SYMBOL(vmalloc_to_pfn);
static struct vm_struct *
__get_vm_area_node(unsigned long size, unsigned long flags, unsigned long start,
unsigned long end, int node, gfp_t gfp_mask, void *caller)
{
struct vm_struct **p, *tmp, *area;
unsigned long align = 1;
unsigned long addr;
BUG_ON(in_interrupt());
if (flags & VM_IOREMAP) {
int bit = fls(size);
if (bit > IOREMAP_MAX_ORDER)
bit = IOREMAP_MAX_ORDER;
else if (bit < PAGE_SHIFT)
bit = PAGE_SHIFT;
align = 1ul << bit;
}
addr = ALIGN(start, align);
size = PAGE_ALIGN(size);
if (unlikely(!size))
return NULL;
area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
if (unlikely(!area))
return NULL;
/*
* We always allocate a guard page.
*/
size += PAGE_SIZE;
write_lock(&vmlist_lock);
for (p = &vmlist; (tmp = *p) != NULL ;p = &tmp->next) {
if ((unsigned long)tmp->addr < addr) {
if((unsigned long)tmp->addr + tmp->size >= addr)
addr = ALIGN(tmp->size +
(unsigned long)tmp->addr, align);
continue;
}
if ((size + addr) < addr)
goto out;
if (size + addr <= (unsigned long)tmp->addr)
goto found;
addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align);
if (addr > end - size)
goto out;
}
if ((size + addr) < addr)
goto out;
if (addr > end - size)
goto out;
found:
area->next = *p;
*p = area;
area->flags = flags;
area->addr = (void *)addr;
area->size = size;
area->pages = NULL;
area->nr_pages = 0;
area->phys_addr = 0;
area->caller = caller;
write_unlock(&vmlist_lock);
return area;
out:
write_unlock(&vmlist_lock);
kfree(area);
if (printk_ratelimit())
printk(KERN_WARNING "allocation failed: out of vmalloc space - use vmalloc=<size> to increase size.\n");
return NULL;
}
struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
unsigned long start, unsigned long end)
{
return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
__builtin_return_address(0));
}
EXPORT_SYMBOL_GPL(__get_vm_area);
/**
* get_vm_area - reserve a contiguous kernel virtual area
* @size: size of the area
* @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
*
* Search an area of @size in the kernel virtual mapping area,
* and reserved it for out purposes. Returns the area descriptor
* on success or %NULL on failure.
*/
struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
{
return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
-1, GFP_KERNEL, __builtin_return_address(0));
}
struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
void *caller)
{
return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
-1, GFP_KERNEL, caller);
}
struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
int node, gfp_t gfp_mask)
{
return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
gfp_mask, __builtin_return_address(0));
}
/* Caller must hold vmlist_lock */
static struct vm_struct *__find_vm_area(const void *addr)
{
struct vm_struct *tmp;
for (tmp = vmlist; tmp != NULL; tmp = tmp->next) {
if (tmp->addr == addr)
break;
}
return tmp;
}
/* Caller must hold vmlist_lock */
static struct vm_struct *__remove_vm_area(const void *addr)
{
struct vm_struct **p, *tmp;
for (p = &vmlist ; (tmp = *p) != NULL ;p = &tmp->next) {
if (tmp->addr == addr)
goto found;
}
return NULL;
found:
unmap_vm_area(tmp);
*p = tmp->next;
/*
* Remove the guard page.
*/
tmp->size -= PAGE_SIZE;
return tmp;
}
/**
* remove_vm_area - find and remove a continuous kernel virtual area
* @addr: base address
*
* Search for the kernel VM area starting at @addr, and remove it.
* This function returns the found VM area, but using it is NOT safe
* on SMP machines, except for its size or flags.
*/
struct vm_struct *remove_vm_area(const void *addr)
{
struct vm_struct *v;
write_lock(&vmlist_lock);
v = __remove_vm_area(addr);
write_unlock(&vmlist_lock);
return v;
}
static void __vunmap(const void *addr, int deallocate_pages)
{
struct vm_struct *area;
if (!addr)
return;
if ((PAGE_SIZE-1) & (unsigned long)addr) {
WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
return;
}
area = remove_vm_area(addr);
if (unlikely(!area)) {
WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
addr);
return;
}
debug_check_no_locks_freed(addr, area->size);
debug_check_no_obj_freed(addr, area->size);
if (deallocate_pages) {
int i;
for (i = 0; i < area->nr_pages; i++) {
struct page *page = area->pages[i];
BUG_ON(!page);
__free_page(page);
}
if (area->flags & VM_VPAGES)
vfree(area->pages);
else
kfree(area->pages);
}
kfree(area);
return;
}
/**
* vfree - release memory allocated by vmalloc()
* @addr: memory base address
*
* Free the virtually continuous memory area starting at @addr, as
* obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
* NULL, no operation is performed.
*
* Must not be called in interrupt context.
*/
void vfree(const void *addr)
{
BUG_ON(in_interrupt());
__vunmap(addr, 1);
}
EXPORT_SYMBOL(vfree);
/**
* vunmap - release virtual mapping obtained by vmap()
* @addr: memory base address
*
* Free the virtually contiguous memory area starting at @addr,
* which was created from the page array passed to vmap().
*
* Must not be called in interrupt context.
*/
void vunmap(const void *addr)
{
BUG_ON(in_interrupt());
__vunmap(addr, 0);
}
EXPORT_SYMBOL(vunmap);
/**
* vmap - map an array of pages into virtually contiguous space
* @pages: array of page pointers
* @count: number of pages to map
* @flags: vm_area->flags
* @prot: page protection for the mapping
*
* Maps @count pages from @pages into contiguous kernel virtual
* space.
*/
void *vmap(struct page **pages, unsigned int count,
unsigned long flags, pgprot_t prot)
{
struct vm_struct *area;
if (count > num_physpages)
return NULL;
area = get_vm_area_caller((count << PAGE_SHIFT), flags,
__builtin_return_address(0));
if (!area)
return NULL;
if (map_vm_area(area, prot, &pages)) {
vunmap(area->addr);
return NULL;
}
return area->addr;
}
EXPORT_SYMBOL(vmap);
static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
pgprot_t prot, int node, void *caller)
{
struct page **pages;
unsigned int nr_pages, array_size, i;
nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
array_size = (nr_pages * sizeof(struct page *));
area->nr_pages = nr_pages;
/* Please note that the recursion is strictly bounded. */
if (array_size > PAGE_SIZE) {
pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
PAGE_KERNEL, node, caller);
area->flags |= VM_VPAGES;
} else {
pages = kmalloc_node(array_size,
(gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
node);
}
area->pages = pages;
area->caller = caller;
if (!area->pages) {
remove_vm_area(area->addr);
kfree(area);
return NULL;
}
for (i = 0; i < area->nr_pages; i++) {
struct page *page;
if (node < 0)
page = alloc_page(gfp_mask);
else
page = alloc_pages_node(node, gfp_mask, 0);
if (unlikely(!page)) {
/* Successfully allocated i pages, free them in __vunmap() */
area->nr_pages = i;
goto fail;
}
area->pages[i] = page;
}
if (map_vm_area(area, prot, &pages))
goto fail;
return area->addr;
fail:
vfree(area->addr);
return NULL;
}
void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
{
return __vmalloc_area_node(area, gfp_mask, prot, -1,
__builtin_return_address(0));
}
/**
* __vmalloc_node - allocate virtually contiguous memory
* @size: allocation size
* @gfp_mask: flags for the page level allocator
* @prot: protection mask for the allocated pages
* @node: node to use for allocation or -1
* @caller: caller's return address
*
* Allocate enough pages to cover @size from the page level
* allocator with @gfp_mask flags. Map them into contiguous
* kernel virtual space, using a pagetable protection of @prot.
*/
static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
int node, void *caller)
{
struct vm_struct *area;
size = PAGE_ALIGN(size);
if (!size || (size >> PAGE_SHIFT) > num_physpages)
return NULL;
area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END,
node, gfp_mask, caller);
if (!area)
return NULL;
return __vmalloc_area_node(area, gfp_mask, prot, node, caller);
}
void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
{
return __vmalloc_node(size, gfp_mask, prot, -1,
__builtin_return_address(0));
}
EXPORT_SYMBOL(__vmalloc);
/**
* vmalloc - allocate virtually contiguous memory
* @size: allocation size
* Allocate enough pages to cover @size from the page level
* allocator and map them into contiguous kernel virtual space.
*
* For tight control over page level allocator and protection flags
* use __vmalloc() instead.
*/
void *vmalloc(unsigned long size)
{
return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
-1, __builtin_return_address(0));
}
EXPORT_SYMBOL(vmalloc);
/**
* vmalloc_user - allocate zeroed virtually contiguous memory for userspace
* @size: allocation size
*
* The resulting memory area is zeroed so it can be mapped to userspace
* without leaking data.
*/
void *vmalloc_user(unsigned long size)
{
struct vm_struct *area;
void *ret;
ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL);
if (ret) {
write_lock(&vmlist_lock);
area = __find_vm_area(ret);
area->flags |= VM_USERMAP;
write_unlock(&vmlist_lock);
}
return ret;
}
EXPORT_SYMBOL(vmalloc_user);
/**
* vmalloc_node - allocate memory on a specific node
* @size: allocation size
* @node: numa node
*
* Allocate enough pages to cover @size from the page level
* allocator and map them into contiguous kernel virtual space.
*
* For tight control over page level allocator and protection flags
* use __vmalloc() instead.
*/
void *vmalloc_node(unsigned long size, int node)
{
return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
node, __builtin_return_address(0));
}
EXPORT_SYMBOL(vmalloc_node);
#ifndef PAGE_KERNEL_EXEC
# define PAGE_KERNEL_EXEC PAGE_KERNEL
#endif
/**
* vmalloc_exec - allocate virtually contiguous, executable memory
* @size: allocation size
*
* Kernel-internal function to allocate enough pages to cover @size
* the page level allocator and map them into contiguous and
* executable kernel virtual space.
*
* For tight control over page level allocator and protection flags
* use __vmalloc() instead.
*/
void *vmalloc_exec(unsigned long size)
{
return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
}
#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
#else
#define GFP_VMALLOC32 GFP_KERNEL
#endif
/**
* vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
* @size: allocation size
*
* Allocate enough 32bit PA addressable pages to cover @size from the
* page level allocator and map them into contiguous kernel virtual space.
*/
void *vmalloc_32(unsigned long size)
{
return __vmalloc(size, GFP_VMALLOC32, PAGE_KERNEL);
}
EXPORT_SYMBOL(vmalloc_32);
/**
* vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
* @size: allocation size
*
* The resulting memory area is 32bit addressable and zeroed so it can be
* mapped to userspace without leaking data.
*/
void *vmalloc_32_user(unsigned long size)
{
struct vm_struct *area;
void *ret;
ret = __vmalloc(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL);
if (ret) {
write_lock(&vmlist_lock);
area = __find_vm_area(ret);
area->flags |= VM_USERMAP;
write_unlock(&vmlist_lock);
}
return ret;
}
EXPORT_SYMBOL(vmalloc_32_user);
long vread(char *buf, char *addr, unsigned long count)
{
struct vm_struct *tmp;
char *vaddr, *buf_start = buf;
unsigned long n;
/* Don't allow overflow */
if ((unsigned long) addr + count < count)
count = -(unsigned long) addr;
read_lock(&vmlist_lock);
for (tmp = vmlist; tmp; tmp = tmp->next) {
vaddr = (char *) tmp->addr;
if (addr >= vaddr + tmp->size - PAGE_SIZE)
continue;
while (addr < vaddr) {
if (count == 0)
goto finished;
*buf = '\0';
buf++;
addr++;
count--;
}
n = vaddr + tmp->size - PAGE_SIZE - addr;
do {
if (count == 0)
goto finished;
*buf = *addr;
buf++;
addr++;
count--;
} while (--n > 0);
}
finished:
read_unlock(&vmlist_lock);
return buf - buf_start;
}
long vwrite(char *buf, char *addr, unsigned long count)
{
struct vm_struct *tmp;
char *vaddr, *buf_start = buf;
unsigned long n;
/* Don't allow overflow */
if ((unsigned long) addr + count < count)
count = -(unsigned long) addr;
read_lock(&vmlist_lock);
for (tmp = vmlist; tmp; tmp = tmp->next) {
vaddr = (char *) tmp->addr;
if (addr >= vaddr + tmp->size - PAGE_SIZE)
continue;
while (addr < vaddr) {
if (count == 0)
goto finished;
buf++;
addr++;
count--;
}
n = vaddr + tmp->size - PAGE_SIZE - addr;
do {
if (count == 0)
goto finished;
*addr = *buf;
buf++;
addr++;
count--;
} while (--n > 0);
}
finished:
read_unlock(&vmlist_lock);
return buf - buf_start;
}
/**
* remap_vmalloc_range - map vmalloc pages to userspace
* @vma: vma to cover (map full range of vma)
* @addr: vmalloc memory
* @pgoff: number of pages into addr before first page to map
*
* Returns: 0 for success, -Exxx on failure
*
* This function checks that addr is a valid vmalloc'ed area, and
* that it is big enough to cover the vma. Will return failure if
* that criteria isn't met.
*
* Similar to remap_pfn_range() (see mm/memory.c)
*/
int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
unsigned long pgoff)
{
struct vm_struct *area;
unsigned long uaddr = vma->vm_start;
unsigned long usize = vma->vm_end - vma->vm_start;
int ret;
if ((PAGE_SIZE-1) & (unsigned long)addr)
return -EINVAL;
read_lock(&vmlist_lock);
area = __find_vm_area(addr);
if (!area)
goto out_einval_locked;
if (!(area->flags & VM_USERMAP))
goto out_einval_locked;
if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
goto out_einval_locked;
read_unlock(&vmlist_lock);
addr += pgoff << PAGE_SHIFT;
do {
struct page *page = vmalloc_to_page(addr);
ret = vm_insert_page(vma, uaddr, page);
if (ret)
return ret;
uaddr += PAGE_SIZE;
addr += PAGE_SIZE;
usize -= PAGE_SIZE;
} while (usize > 0);
/* Prevent "things" like memory migration? VM_flags need a cleanup... */
vma->vm_flags |= VM_RESERVED;
return ret;
out_einval_locked:
read_unlock(&vmlist_lock);
return -EINVAL;
}
EXPORT_SYMBOL(remap_vmalloc_range);
/*
* Implement a stub for vmalloc_sync_all() if the architecture chose not to
* have one.
*/
void __attribute__((weak)) vmalloc_sync_all(void)
{
}
static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
{
/* apply_to_page_range() does all the hard work. */
return 0;
}
/**
* alloc_vm_area - allocate a range of kernel address space
* @size: size of the area
*
* Returns: NULL on failure, vm_struct on success
*
* This function reserves a range of kernel address space, and
* allocates pagetables to map that range. No actual mappings
* are created. If the kernel address space is not shared
* between processes, it syncs the pagetable across all
* processes.
*/
struct vm_struct *alloc_vm_area(size_t size)
{
struct vm_struct *area;
area = get_vm_area_caller(size, VM_IOREMAP,
__builtin_return_address(0));
if (area == NULL)
return NULL;
/*
* This ensures that page tables are constructed for this region
* of kernel virtual address space and mapped into init_mm.
*/
if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
area->size, f, NULL)) {
free_vm_area(area);
return NULL;
}
/* Make sure the pagetables are constructed in process kernel
mappings */
vmalloc_sync_all();
return area;
}
EXPORT_SYMBOL_GPL(alloc_vm_area);
void free_vm_area(struct vm_struct *area)
{
struct vm_struct *ret;
ret = remove_vm_area(area->addr);
BUG_ON(ret != area);
kfree(area);
}
EXPORT_SYMBOL_GPL(free_vm_area);
#ifdef CONFIG_PROC_FS
static void *s_start(struct seq_file *m, loff_t *pos)
{
loff_t n = *pos;
struct vm_struct *v;
read_lock(&vmlist_lock);
v = vmlist;
while (n > 0 && v) {
n--;
v = v->next;
}
if (!n)
return v;
return NULL;
}
static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
struct vm_struct *v = p;
++*pos;
return v->next;
}
static void s_stop(struct seq_file *m, void *p)
{
read_unlock(&vmlist_lock);
}
static void show_numa_info(struct seq_file *m, struct vm_struct *v)
{
if (NUMA_BUILD) {
unsigned int nr, *counters = m->private;
if (!counters)
return;
memset(counters, 0, nr_node_ids * sizeof(unsigned int));
for (nr = 0; nr < v->nr_pages; nr++)
counters[page_to_nid(v->pages[nr])]++;
for_each_node_state(nr, N_HIGH_MEMORY)
if (counters[nr])
seq_printf(m, " N%u=%u", nr, counters[nr]);
}
}
static int s_show(struct seq_file *m, void *p)
{
struct vm_struct *v = p;
seq_printf(m, "0x%p-0x%p %7ld",
v->addr, v->addr + v->size, v->size);
if (v->caller) {
char buff[2 * KSYM_NAME_LEN];
seq_putc(m, ' ');
sprint_symbol(buff, (unsigned long)v->caller);
seq_puts(m, buff);
}
if (v->nr_pages)
seq_printf(m, " pages=%d", v->nr_pages);
if (v->phys_addr)
seq_printf(m, " phys=%lx", v->phys_addr);
if (v->flags & VM_IOREMAP)
seq_printf(m, " ioremap");
if (v->flags & VM_ALLOC)
seq_printf(m, " vmalloc");
if (v->flags & VM_MAP)
seq_printf(m, " vmap");
if (v->flags & VM_USERMAP)
seq_printf(m, " user");
if (v->flags & VM_VPAGES)
seq_printf(m, " vpages");
show_numa_info(m, v);
seq_putc(m, '\n');
return 0;
}
const struct seq_operations vmalloc_op = {
.start = s_start,
.next = s_next,
.stop = s_stop,
.show = s_show,
};
#endif