linux-hardened/drivers/net/spider_net.c
Jens Osterkamp 8dfc914a3f [PATCH] spidernet : enable tx checksum offloading by default
This enables TX checksum offloading for the spidernet driver by default.

Signed-off-by: Jens Osterkamp <Jens.Osterkamp@de.ibm.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2006-03-29 17:34:02 -05:00

2355 lines
63 KiB
C

/*
* Network device driver for Cell Processor-Based Blade
*
* (C) Copyright IBM Corp. 2005
*
* Authors : Utz Bacher <utz.bacher@de.ibm.com>
* Jens Osterkamp <Jens.Osterkamp@de.ibm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/config.h>
#include <linux/compiler.h>
#include <linux/crc32.h>
#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/firmware.h>
#include <linux/if_vlan.h>
#include <linux/in.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/ip.h>
#include <linux/kernel.h>
#include <linux/mii.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/device.h>
#include <linux/pci.h>
#include <linux/skbuff.h>
#include <linux/slab.h>
#include <linux/tcp.h>
#include <linux/types.h>
#include <linux/vmalloc.h>
#include <linux/wait.h>
#include <linux/workqueue.h>
#include <asm/bitops.h>
#include <asm/pci-bridge.h>
#include <net/checksum.h>
#include "spider_net.h"
MODULE_AUTHOR("Utz Bacher <utz.bacher@de.ibm.com> and Jens Osterkamp " \
"<Jens.Osterkamp@de.ibm.com>");
MODULE_DESCRIPTION("Spider Southbridge Gigabit Ethernet driver");
MODULE_LICENSE("GPL");
static int rx_descriptors = SPIDER_NET_RX_DESCRIPTORS_DEFAULT;
static int tx_descriptors = SPIDER_NET_TX_DESCRIPTORS_DEFAULT;
module_param(rx_descriptors, int, 0644);
module_param(tx_descriptors, int, 0644);
MODULE_PARM_DESC(rx_descriptors, "number of descriptors used " \
"in rx chains");
MODULE_PARM_DESC(tx_descriptors, "number of descriptors used " \
"in tx chain");
char spider_net_driver_name[] = "spidernet";
static struct pci_device_id spider_net_pci_tbl[] = {
{ PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_SPIDER_NET,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, spider_net_pci_tbl);
/**
* spider_net_read_reg - reads an SMMIO register of a card
* @card: device structure
* @reg: register to read from
*
* returns the content of the specified SMMIO register.
*/
static u32
spider_net_read_reg(struct spider_net_card *card, u32 reg)
{
u32 value;
value = readl(card->regs + reg);
value = le32_to_cpu(value);
return value;
}
/**
* spider_net_write_reg - writes to an SMMIO register of a card
* @card: device structure
* @reg: register to write to
* @value: value to write into the specified SMMIO register
*/
static void
spider_net_write_reg(struct spider_net_card *card, u32 reg, u32 value)
{
value = cpu_to_le32(value);
writel(value, card->regs + reg);
}
/** spider_net_write_phy - write to phy register
* @netdev: adapter to be written to
* @mii_id: id of MII
* @reg: PHY register
* @val: value to be written to phy register
*
* spider_net_write_phy_register writes to an arbitrary PHY
* register via the spider GPCWOPCMD register. We assume the queue does
* not run full (not more than 15 commands outstanding).
**/
static void
spider_net_write_phy(struct net_device *netdev, int mii_id,
int reg, int val)
{
struct spider_net_card *card = netdev_priv(netdev);
u32 writevalue;
writevalue = ((u32)mii_id << 21) |
((u32)reg << 16) | ((u32)val);
spider_net_write_reg(card, SPIDER_NET_GPCWOPCMD, writevalue);
}
/** spider_net_read_phy - read from phy register
* @netdev: network device to be read from
* @mii_id: id of MII
* @reg: PHY register
*
* Returns value read from PHY register
*
* spider_net_write_phy reads from an arbitrary PHY
* register via the spider GPCROPCMD register
**/
static int
spider_net_read_phy(struct net_device *netdev, int mii_id, int reg)
{
struct spider_net_card *card = netdev_priv(netdev);
u32 readvalue;
readvalue = ((u32)mii_id << 21) | ((u32)reg << 16);
spider_net_write_reg(card, SPIDER_NET_GPCROPCMD, readvalue);
/* we don't use semaphores to wait for an SPIDER_NET_GPROPCMPINT
* interrupt, as we poll for the completion of the read operation
* in spider_net_read_phy. Should take about 50 us */
do {
readvalue = spider_net_read_reg(card, SPIDER_NET_GPCROPCMD);
} while (readvalue & SPIDER_NET_GPREXEC);
readvalue &= SPIDER_NET_GPRDAT_MASK;
return readvalue;
}
/**
* spider_net_rx_irq_off - switch off rx irq on this spider card
* @card: device structure
*
* switches off rx irq by masking them out in the GHIINTnMSK register
*/
static void
spider_net_rx_irq_off(struct spider_net_card *card)
{
u32 regvalue;
regvalue = SPIDER_NET_INT0_MASK_VALUE & (~SPIDER_NET_RXINT);
spider_net_write_reg(card, SPIDER_NET_GHIINT0MSK, regvalue);
}
/**
* spider_net_rx_irq_on - switch on rx irq on this spider card
* @card: device structure
*
* switches on rx irq by enabling them in the GHIINTnMSK register
*/
static void
spider_net_rx_irq_on(struct spider_net_card *card)
{
u32 regvalue;
regvalue = SPIDER_NET_INT0_MASK_VALUE | SPIDER_NET_RXINT;
spider_net_write_reg(card, SPIDER_NET_GHIINT0MSK, regvalue);
}
/**
* spider_net_set_promisc - sets the unicast address or the promiscuous mode
* @card: card structure
*
* spider_net_set_promisc sets the unicast destination address filter and
* thus either allows for non-promisc mode or promisc mode
*/
static void
spider_net_set_promisc(struct spider_net_card *card)
{
u32 macu, macl;
struct net_device *netdev = card->netdev;
if (netdev->flags & IFF_PROMISC) {
/* clear destination entry 0 */
spider_net_write_reg(card, SPIDER_NET_GMRUAFILnR, 0);
spider_net_write_reg(card, SPIDER_NET_GMRUAFILnR + 0x04, 0);
spider_net_write_reg(card, SPIDER_NET_GMRUA0FIL15R,
SPIDER_NET_PROMISC_VALUE);
} else {
macu = netdev->dev_addr[0];
macu <<= 8;
macu |= netdev->dev_addr[1];
memcpy(&macl, &netdev->dev_addr[2], sizeof(macl));
macu |= SPIDER_NET_UA_DESCR_VALUE;
spider_net_write_reg(card, SPIDER_NET_GMRUAFILnR, macu);
spider_net_write_reg(card, SPIDER_NET_GMRUAFILnR + 0x04, macl);
spider_net_write_reg(card, SPIDER_NET_GMRUA0FIL15R,
SPIDER_NET_NONPROMISC_VALUE);
}
}
/**
* spider_net_get_mac_address - read mac address from spider card
* @card: device structure
*
* reads MAC address from GMACUNIMACU and GMACUNIMACL registers
*/
static int
spider_net_get_mac_address(struct net_device *netdev)
{
struct spider_net_card *card = netdev_priv(netdev);
u32 macl, macu;
macl = spider_net_read_reg(card, SPIDER_NET_GMACUNIMACL);
macu = spider_net_read_reg(card, SPIDER_NET_GMACUNIMACU);
netdev->dev_addr[0] = (macu >> 24) & 0xff;
netdev->dev_addr[1] = (macu >> 16) & 0xff;
netdev->dev_addr[2] = (macu >> 8) & 0xff;
netdev->dev_addr[3] = macu & 0xff;
netdev->dev_addr[4] = (macl >> 8) & 0xff;
netdev->dev_addr[5] = macl & 0xff;
if (!is_valid_ether_addr(&netdev->dev_addr[0]))
return -EINVAL;
return 0;
}
/**
* spider_net_get_descr_status -- returns the status of a descriptor
* @descr: descriptor to look at
*
* returns the status as in the dmac_cmd_status field of the descriptor
*/
static enum spider_net_descr_status
spider_net_get_descr_status(struct spider_net_descr *descr)
{
u32 cmd_status;
cmd_status = descr->dmac_cmd_status;
cmd_status >>= SPIDER_NET_DESCR_IND_PROC_SHIFT;
/* no need to mask out any bits, as cmd_status is 32 bits wide only
* (and unsigned) */
return cmd_status;
}
/**
* spider_net_set_descr_status -- sets the status of a descriptor
* @descr: descriptor to change
* @status: status to set in the descriptor
*
* changes the status to the specified value. Doesn't change other bits
* in the status
*/
static void
spider_net_set_descr_status(struct spider_net_descr *descr,
enum spider_net_descr_status status)
{
u32 cmd_status;
/* read the status */
cmd_status = descr->dmac_cmd_status;
/* clean the upper 4 bits */
cmd_status &= SPIDER_NET_DESCR_IND_PROC_MASKO;
/* add the status to it */
cmd_status |= ((u32)status)<<SPIDER_NET_DESCR_IND_PROC_SHIFT;
/* and write it back */
descr->dmac_cmd_status = cmd_status;
}
/**
* spider_net_free_chain - free descriptor chain
* @card: card structure
* @chain: address of chain
*
*/
static void
spider_net_free_chain(struct spider_net_card *card,
struct spider_net_descr_chain *chain)
{
struct spider_net_descr *descr;
for (descr = chain->tail; !descr->bus_addr; descr = descr->next) {
pci_unmap_single(card->pdev, descr->bus_addr,
SPIDER_NET_DESCR_SIZE, PCI_DMA_BIDIRECTIONAL);
descr->bus_addr = 0;
}
}
/**
* spider_net_init_chain - links descriptor chain
* @card: card structure
* @chain: address of chain
* @start_descr: address of descriptor array
* @no: number of descriptors
*
* we manage a circular list that mirrors the hardware structure,
* except that the hardware uses bus addresses.
*
* returns 0 on success, <0 on failure
*/
static int
spider_net_init_chain(struct spider_net_card *card,
struct spider_net_descr_chain *chain,
struct spider_net_descr *start_descr, int no)
{
int i;
struct spider_net_descr *descr;
dma_addr_t buf;
atomic_set(&card->rx_chain_refill,0);
descr = start_descr;
memset(descr, 0, sizeof(*descr) * no);
/* set up the hardware pointers in each descriptor */
for (i=0; i<no; i++, descr++) {
spider_net_set_descr_status(descr, SPIDER_NET_DESCR_NOT_IN_USE);
buf = pci_map_single(card->pdev, descr,
SPIDER_NET_DESCR_SIZE,
PCI_DMA_BIDIRECTIONAL);
if (buf == DMA_ERROR_CODE)
goto iommu_error;
descr->bus_addr = buf;
descr->next = descr + 1;
descr->prev = descr - 1;
}
/* do actual circular list */
(descr-1)->next = start_descr;
start_descr->prev = descr-1;
descr = start_descr;
for (i=0; i < no; i++, descr++) {
descr->next_descr_addr = descr->next->bus_addr;
}
chain->head = start_descr;
chain->tail = start_descr;
return 0;
iommu_error:
descr = start_descr;
for (i=0; i < no; i++, descr++)
if (descr->bus_addr)
pci_unmap_single(card->pdev, descr->bus_addr,
SPIDER_NET_DESCR_SIZE,
PCI_DMA_BIDIRECTIONAL);
return -ENOMEM;
}
/**
* spider_net_free_rx_chain_contents - frees descr contents in rx chain
* @card: card structure
*
* returns 0 on success, <0 on failure
*/
static void
spider_net_free_rx_chain_contents(struct spider_net_card *card)
{
struct spider_net_descr *descr;
descr = card->rx_chain.head;
while (descr->next != card->rx_chain.head) {
if (descr->skb) {
dev_kfree_skb(descr->skb);
pci_unmap_single(card->pdev, descr->buf_addr,
SPIDER_NET_MAX_FRAME,
PCI_DMA_BIDIRECTIONAL);
}
descr = descr->next;
}
}
/**
* spider_net_prepare_rx_descr - reinitializes a rx descriptor
* @card: card structure
* @descr: descriptor to re-init
*
* return 0 on succes, <0 on failure
*
* allocates a new rx skb, iommu-maps it and attaches it to the descriptor.
* Activate the descriptor state-wise
*/
static int
spider_net_prepare_rx_descr(struct spider_net_card *card,
struct spider_net_descr *descr)
{
dma_addr_t buf;
int error = 0;
int offset;
int bufsize;
/* we need to round up the buffer size to a multiple of 128 */
bufsize = (SPIDER_NET_MAX_FRAME + SPIDER_NET_RXBUF_ALIGN - 1) &
(~(SPIDER_NET_RXBUF_ALIGN - 1));
/* and we need to have it 128 byte aligned, therefore we allocate a
* bit more */
/* allocate an skb */
descr->skb = dev_alloc_skb(bufsize + SPIDER_NET_RXBUF_ALIGN - 1);
if (!descr->skb) {
if (netif_msg_rx_err(card) && net_ratelimit())
pr_err("Not enough memory to allocate rx buffer\n");
return -ENOMEM;
}
descr->buf_size = bufsize;
descr->result_size = 0;
descr->valid_size = 0;
descr->data_status = 0;
descr->data_error = 0;
offset = ((unsigned long)descr->skb->data) &
(SPIDER_NET_RXBUF_ALIGN - 1);
if (offset)
skb_reserve(descr->skb, SPIDER_NET_RXBUF_ALIGN - offset);
/* io-mmu-map the skb */
buf = pci_map_single(card->pdev, descr->skb->data,
SPIDER_NET_MAX_FRAME, PCI_DMA_BIDIRECTIONAL);
descr->buf_addr = buf;
if (buf == DMA_ERROR_CODE) {
dev_kfree_skb_any(descr->skb);
if (netif_msg_rx_err(card) && net_ratelimit())
pr_err("Could not iommu-map rx buffer\n");
spider_net_set_descr_status(descr, SPIDER_NET_DESCR_NOT_IN_USE);
} else {
descr->dmac_cmd_status = SPIDER_NET_DMAC_RX_CARDOWNED;
}
return error;
}
/**
* spider_net_enable_rxchtails - sets RX dmac chain tail addresses
* @card: card structure
*
* spider_net_enable_rxchtails sets the RX DMAC chain tail adresses in the
* chip by writing to the appropriate register. DMA is enabled in
* spider_net_enable_rxdmac.
*/
static void
spider_net_enable_rxchtails(struct spider_net_card *card)
{
/* assume chain is aligned correctly */
spider_net_write_reg(card, SPIDER_NET_GDADCHA ,
card->rx_chain.tail->bus_addr);
}
/**
* spider_net_enable_rxdmac - enables a receive DMA controller
* @card: card structure
*
* spider_net_enable_rxdmac enables the DMA controller by setting RX_DMA_EN
* in the GDADMACCNTR register
*/
static void
spider_net_enable_rxdmac(struct spider_net_card *card)
{
wmb();
spider_net_write_reg(card, SPIDER_NET_GDADMACCNTR,
SPIDER_NET_DMA_RX_VALUE);
}
/**
* spider_net_refill_rx_chain - refills descriptors/skbs in the rx chains
* @card: card structure
*
* refills descriptors in the rx chain: allocates skbs and iommu-maps them.
*/
static void
spider_net_refill_rx_chain(struct spider_net_card *card)
{
struct spider_net_descr_chain *chain;
chain = &card->rx_chain;
/* one context doing the refill (and a second context seeing that
* and omitting it) is ok. If called by NAPI, we'll be called again
* as spider_net_decode_one_descr is called several times. If some
* interrupt calls us, the NAPI is about to clean up anyway. */
if (atomic_inc_return(&card->rx_chain_refill) == 1)
while (spider_net_get_descr_status(chain->head) ==
SPIDER_NET_DESCR_NOT_IN_USE) {
if (spider_net_prepare_rx_descr(card, chain->head))
break;
chain->head = chain->head->next;
}
atomic_dec(&card->rx_chain_refill);
}
/**
* spider_net_alloc_rx_skbs - allocates rx skbs in rx descriptor chains
* @card: card structure
*
* returns 0 on success, <0 on failure
*/
static int
spider_net_alloc_rx_skbs(struct spider_net_card *card)
{
int result;
struct spider_net_descr_chain *chain;
result = -ENOMEM;
chain = &card->rx_chain;
/* put at least one buffer into the chain. if this fails,
* we've got a problem. if not, spider_net_refill_rx_chain
* will do the rest at the end of this function */
if (spider_net_prepare_rx_descr(card, chain->head))
goto error;
else
chain->head = chain->head->next;
/* this will allocate the rest of the rx buffers; if not, it's
* business as usual later on */
spider_net_refill_rx_chain(card);
spider_net_enable_rxdmac(card);
return 0;
error:
spider_net_free_rx_chain_contents(card);
return result;
}
/**
* spider_net_release_tx_descr - processes a used tx descriptor
* @card: card structure
* @descr: descriptor to release
*
* releases a used tx descriptor (unmapping, freeing of skb)
*/
static void
spider_net_release_tx_descr(struct spider_net_card *card,
struct spider_net_descr *descr)
{
struct sk_buff *skb;
/* unmap the skb */
skb = descr->skb;
pci_unmap_single(card->pdev, descr->buf_addr, skb->len,
PCI_DMA_BIDIRECTIONAL);
dev_kfree_skb_any(skb);
/* set status to not used */
spider_net_set_descr_status(descr, SPIDER_NET_DESCR_NOT_IN_USE);
}
/**
* spider_net_release_tx_chain - processes sent tx descriptors
* @card: adapter structure
* @brutal: if set, don't care about whether descriptor seems to be in use
*
* returns 0 if the tx ring is empty, otherwise 1.
*
* spider_net_release_tx_chain releases the tx descriptors that spider has
* finished with (if non-brutal) or simply release tx descriptors (if brutal).
* If some other context is calling this function, we return 1 so that we're
* scheduled again (if we were scheduled) and will not loose initiative.
*/
static int
spider_net_release_tx_chain(struct spider_net_card *card, int brutal)
{
struct spider_net_descr_chain *tx_chain = &card->tx_chain;
enum spider_net_descr_status status;
if (atomic_inc_return(&card->tx_chain_release) != 1) {
atomic_dec(&card->tx_chain_release);
return 1;
}
for (;;) {
status = spider_net_get_descr_status(tx_chain->tail);
switch (status) {
case SPIDER_NET_DESCR_CARDOWNED:
if (!brutal)
goto out;
/* fallthrough, if we release the descriptors
* brutally (then we don't care about
* SPIDER_NET_DESCR_CARDOWNED) */
case SPIDER_NET_DESCR_RESPONSE_ERROR:
case SPIDER_NET_DESCR_PROTECTION_ERROR:
case SPIDER_NET_DESCR_FORCE_END:
if (netif_msg_tx_err(card))
pr_err("%s: forcing end of tx descriptor "
"with status x%02x\n",
card->netdev->name, status);
card->netdev_stats.tx_dropped++;
break;
case SPIDER_NET_DESCR_COMPLETE:
card->netdev_stats.tx_packets++;
card->netdev_stats.tx_bytes +=
tx_chain->tail->skb->len;
break;
default: /* any other value (== SPIDER_NET_DESCR_NOT_IN_USE) */
goto out;
}
spider_net_release_tx_descr(card, tx_chain->tail);
tx_chain->tail = tx_chain->tail->next;
}
out:
atomic_dec(&card->tx_chain_release);
netif_wake_queue(card->netdev);
if (status == SPIDER_NET_DESCR_CARDOWNED)
return 1;
return 0;
}
/**
* spider_net_cleanup_tx_ring - cleans up the TX ring
* @card: card structure
*
* spider_net_cleanup_tx_ring is called by the tx_timer (as we don't use
* interrupts to cleanup our TX ring) and returns sent packets to the stack
* by freeing them
*/
static void
spider_net_cleanup_tx_ring(struct spider_net_card *card)
{
if ( (spider_net_release_tx_chain(card, 0)) &&
(card->netdev->flags & IFF_UP) ) {
mod_timer(&card->tx_timer, jiffies + SPIDER_NET_TX_TIMER);
}
}
/**
* spider_net_get_multicast_hash - generates hash for multicast filter table
* @addr: multicast address
*
* returns the hash value.
*
* spider_net_get_multicast_hash calculates a hash value for a given multicast
* address, that is used to set the multicast filter tables
*/
static u8
spider_net_get_multicast_hash(struct net_device *netdev, __u8 *addr)
{
u32 crc;
u8 hash;
char addr_for_crc[ETH_ALEN] = { 0, };
int i, bit;
for (i = 0; i < ETH_ALEN * 8; i++) {
bit = (addr[i / 8] >> (i % 8)) & 1;
addr_for_crc[ETH_ALEN - 1 - i / 8] += bit << (7 - (i % 8));
}
crc = crc32_be(~0, addr_for_crc, netdev->addr_len);
hash = (crc >> 27);
hash <<= 3;
hash |= crc & 7;
hash &= 0xff;
return hash;
}
/**
* spider_net_set_multi - sets multicast addresses and promisc flags
* @netdev: interface device structure
*
* spider_net_set_multi configures multicast addresses as needed for the
* netdev interface. It also sets up multicast, allmulti and promisc
* flags appropriately
*/
static void
spider_net_set_multi(struct net_device *netdev)
{
struct dev_mc_list *mc;
u8 hash;
int i;
u32 reg;
struct spider_net_card *card = netdev_priv(netdev);
unsigned long bitmask[SPIDER_NET_MULTICAST_HASHES / BITS_PER_LONG] =
{0, };
spider_net_set_promisc(card);
if (netdev->flags & IFF_ALLMULTI) {
for (i = 0; i < SPIDER_NET_MULTICAST_HASHES; i++) {
set_bit(i, bitmask);
}
goto write_hash;
}
/* well, we know, what the broadcast hash value is: it's xfd
hash = spider_net_get_multicast_hash(netdev, netdev->broadcast); */
set_bit(0xfd, bitmask);
for (mc = netdev->mc_list; mc; mc = mc->next) {
hash = spider_net_get_multicast_hash(netdev, mc->dmi_addr);
set_bit(hash, bitmask);
}
write_hash:
for (i = 0; i < SPIDER_NET_MULTICAST_HASHES / 4; i++) {
reg = 0;
if (test_bit(i * 4, bitmask))
reg += 0x08;
reg <<= 8;
if (test_bit(i * 4 + 1, bitmask))
reg += 0x08;
reg <<= 8;
if (test_bit(i * 4 + 2, bitmask))
reg += 0x08;
reg <<= 8;
if (test_bit(i * 4 + 3, bitmask))
reg += 0x08;
spider_net_write_reg(card, SPIDER_NET_GMRMHFILnR + i * 4, reg);
}
}
/**
* spider_net_disable_rxdmac - disables the receive DMA controller
* @card: card structure
*
* spider_net_disable_rxdmac terminates processing on the DMA controller by
* turing off DMA and issueing a force end
*/
static void
spider_net_disable_rxdmac(struct spider_net_card *card)
{
spider_net_write_reg(card, SPIDER_NET_GDADMACCNTR,
SPIDER_NET_DMA_RX_FEND_VALUE);
}
/**
* spider_net_stop - called upon ifconfig down
* @netdev: interface device structure
*
* always returns 0
*/
int
spider_net_stop(struct net_device *netdev)
{
struct spider_net_card *card = netdev_priv(netdev);
tasklet_kill(&card->rxram_full_tl);
netif_poll_disable(netdev);
netif_carrier_off(netdev);
netif_stop_queue(netdev);
del_timer_sync(&card->tx_timer);
/* disable/mask all interrupts */
spider_net_write_reg(card, SPIDER_NET_GHIINT0MSK, 0);
spider_net_write_reg(card, SPIDER_NET_GHIINT1MSK, 0);
spider_net_write_reg(card, SPIDER_NET_GHIINT2MSK, 0);
/* free_irq(netdev->irq, netdev);*/
free_irq(to_pci_dev(netdev->class_dev.dev)->irq, netdev);
spider_net_write_reg(card, SPIDER_NET_GDTDMACCNTR,
SPIDER_NET_DMA_TX_FEND_VALUE);
/* turn off DMA, force end */
spider_net_disable_rxdmac(card);
/* release chains */
spider_net_release_tx_chain(card, 1);
spider_net_free_chain(card, &card->tx_chain);
spider_net_free_chain(card, &card->rx_chain);
return 0;
}
/**
* spider_net_get_next_tx_descr - returns the next available tx descriptor
* @card: device structure to get descriptor from
*
* returns the address of the next descriptor, or NULL if not available.
*/
static struct spider_net_descr *
spider_net_get_next_tx_descr(struct spider_net_card *card)
{
/* check, if head points to not-in-use descr */
if ( spider_net_get_descr_status(card->tx_chain.head) ==
SPIDER_NET_DESCR_NOT_IN_USE ) {
return card->tx_chain.head;
} else {
return NULL;
}
}
/**
* spider_net_set_txdescr_cmdstat - sets the tx descriptor command field
* @descr: descriptor structure to fill out
* @skb: packet to consider
*
* fills out the command and status field of the descriptor structure,
* depending on hardware checksum settings.
*/
static void
spider_net_set_txdescr_cmdstat(struct spider_net_descr *descr,
struct sk_buff *skb)
{
/* make sure the other fields in the descriptor are written */
wmb();
if (skb->ip_summed != CHECKSUM_HW) {
descr->dmac_cmd_status = SPIDER_NET_DMAC_CMDSTAT_NOCS;
return;
}
/* is packet ip?
* if yes: tcp? udp? */
if (skb->protocol == htons(ETH_P_IP)) {
if (skb->nh.iph->protocol == IPPROTO_TCP)
descr->dmac_cmd_status = SPIDER_NET_DMAC_CMDSTAT_TCPCS;
else if (skb->nh.iph->protocol == IPPROTO_UDP)
descr->dmac_cmd_status = SPIDER_NET_DMAC_CMDSTAT_UDPCS;
else /* the stack should checksum non-tcp and non-udp
packets on his own: NETIF_F_IP_CSUM */
descr->dmac_cmd_status = SPIDER_NET_DMAC_CMDSTAT_NOCS;
}
}
/**
* spider_net_prepare_tx_descr - fill tx descriptor with skb data
* @card: card structure
* @descr: descriptor structure to fill out
* @skb: packet to use
*
* returns 0 on success, <0 on failure.
*
* fills out the descriptor structure with skb data and len. Copies data,
* if needed (32bit DMA!)
*/
static int
spider_net_prepare_tx_descr(struct spider_net_card *card,
struct spider_net_descr *descr,
struct sk_buff *skb)
{
dma_addr_t buf;
buf = pci_map_single(card->pdev, skb->data,
skb->len, PCI_DMA_BIDIRECTIONAL);
if (buf == DMA_ERROR_CODE) {
if (netif_msg_tx_err(card) && net_ratelimit())
pr_err("could not iommu-map packet (%p, %i). "
"Dropping packet\n", skb->data, skb->len);
return -ENOMEM;
}
descr->buf_addr = buf;
descr->buf_size = skb->len;
descr->skb = skb;
descr->data_status = 0;
spider_net_set_txdescr_cmdstat(descr,skb);
return 0;
}
/**
* spider_net_kick_tx_dma - enables TX DMA processing
* @card: card structure
* @descr: descriptor address to enable TX processing at
*
* spider_net_kick_tx_dma writes the current tx chain head as start address
* of the tx descriptor chain and enables the transmission DMA engine
*/
static void
spider_net_kick_tx_dma(struct spider_net_card *card,
struct spider_net_descr *descr)
{
/* this is the only descriptor in the output chain.
* Enable TX DMA */
spider_net_write_reg(card, SPIDER_NET_GDTDCHA,
descr->bus_addr);
spider_net_write_reg(card, SPIDER_NET_GDTDMACCNTR,
SPIDER_NET_DMA_TX_VALUE);
}
/**
* spider_net_xmit - transmits a frame over the device
* @skb: packet to send out
* @netdev: interface device structure
*
* returns 0 on success, <0 on failure
*/
static int
spider_net_xmit(struct sk_buff *skb, struct net_device *netdev)
{
struct spider_net_card *card = netdev_priv(netdev);
struct spider_net_descr *descr;
int result;
spider_net_release_tx_chain(card, 0);
descr = spider_net_get_next_tx_descr(card);
if (!descr)
goto error;
result = spider_net_prepare_tx_descr(card, descr, skb);
if (result)
goto error;
card->tx_chain.head = card->tx_chain.head->next;
if (spider_net_get_descr_status(descr->prev) !=
SPIDER_NET_DESCR_CARDOWNED) {
/* make sure the current descriptor is in memory. Then
* kicking it on again makes sense, if the previous is not
* card-owned anymore. Check the previous descriptor twice
* to omit an mb() in heavy traffic cases */
mb();
if (spider_net_get_descr_status(descr->prev) !=
SPIDER_NET_DESCR_CARDOWNED)
spider_net_kick_tx_dma(card, descr);
}
mod_timer(&card->tx_timer, jiffies + SPIDER_NET_TX_TIMER);
return NETDEV_TX_OK;
error:
card->netdev_stats.tx_dropped++;
return NETDEV_TX_BUSY;
}
/**
* spider_net_do_ioctl - called for device ioctls
* @netdev: interface device structure
* @ifr: request parameter structure for ioctl
* @cmd: command code for ioctl
*
* returns 0 on success, <0 on failure. Currently, we have no special ioctls.
* -EOPNOTSUPP is returned, if an unknown ioctl was requested
*/
static int
spider_net_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
switch (cmd) {
default:
return -EOPNOTSUPP;
}
}
/**
* spider_net_pass_skb_up - takes an skb from a descriptor and passes it on
* @descr: descriptor to process
* @card: card structure
* @napi: whether caller is in NAPI context
*
* returns 1 on success, 0 if no packet was passed to the stack
*
* iommu-unmaps the skb, fills out skb structure and passes the data to the
* stack. The descriptor state is not changed.
*/
static int
spider_net_pass_skb_up(struct spider_net_descr *descr,
struct spider_net_card *card, int napi)
{
struct sk_buff *skb;
struct net_device *netdev;
u32 data_status, data_error;
data_status = descr->data_status;
data_error = descr->data_error;
netdev = card->netdev;
/* unmap descriptor */
pci_unmap_single(card->pdev, descr->buf_addr, SPIDER_NET_MAX_FRAME,
PCI_DMA_BIDIRECTIONAL);
/* the cases we'll throw away the packet immediately */
if (data_error & SPIDER_NET_DESTROY_RX_FLAGS) {
if (netif_msg_rx_err(card))
pr_err("error in received descriptor found, "
"data_status=x%08x, data_error=x%08x\n",
data_status, data_error);
return 0;
}
skb = descr->skb;
skb->dev = netdev;
skb_put(skb, descr->valid_size);
/* the card seems to add 2 bytes of junk in front
* of the ethernet frame */
#define SPIDER_MISALIGN 2
skb_pull(skb, SPIDER_MISALIGN);
skb->protocol = eth_type_trans(skb, netdev);
/* checksum offload */
if (card->options.rx_csum) {
if ( ( (data_status & SPIDER_NET_DATA_STATUS_CKSUM_MASK) ==
SPIDER_NET_DATA_STATUS_CKSUM_MASK) &&
!(data_error & SPIDER_NET_DATA_ERR_CKSUM_MASK))
skb->ip_summed = CHECKSUM_UNNECESSARY;
else
skb->ip_summed = CHECKSUM_NONE;
} else
skb->ip_summed = CHECKSUM_NONE;
if (data_status & SPIDER_NET_VLAN_PACKET) {
/* further enhancements: HW-accel VLAN
* vlan_hwaccel_receive_skb
*/
}
/* pass skb up to stack */
if (napi)
netif_receive_skb(skb);
else
netif_rx_ni(skb);
/* update netdevice statistics */
card->netdev_stats.rx_packets++;
card->netdev_stats.rx_bytes += skb->len;
return 1;
}
/**
* spider_net_decode_one_descr - processes an rx descriptor
* @card: card structure
* @napi: whether caller is in NAPI context
*
* returns 1 if a packet has been sent to the stack, otherwise 0
*
* processes an rx descriptor by iommu-unmapping the data buffer and passing
* the packet up to the stack. This function is called in softirq
* context, e.g. either bottom half from interrupt or NAPI polling context
*/
static int
spider_net_decode_one_descr(struct spider_net_card *card, int napi)
{
enum spider_net_descr_status status;
struct spider_net_descr *descr;
struct spider_net_descr_chain *chain;
int result;
chain = &card->rx_chain;
descr = chain->tail;
status = spider_net_get_descr_status(descr);
if (status == SPIDER_NET_DESCR_CARDOWNED) {
/* nothing in the descriptor yet */
result=0;
goto out;
}
if (status == SPIDER_NET_DESCR_NOT_IN_USE) {
/* not initialized yet, the ring must be empty */
spider_net_refill_rx_chain(card);
spider_net_enable_rxdmac(card);
result=0;
goto out;
}
/* descriptor definitively used -- move on tail */
chain->tail = descr->next;
result = 0;
if ( (status == SPIDER_NET_DESCR_RESPONSE_ERROR) ||
(status == SPIDER_NET_DESCR_PROTECTION_ERROR) ||
(status == SPIDER_NET_DESCR_FORCE_END) ) {
if (netif_msg_rx_err(card))
pr_err("%s: dropping RX descriptor with state %d\n",
card->netdev->name, status);
card->netdev_stats.rx_dropped++;
pci_unmap_single(card->pdev, descr->buf_addr,
SPIDER_NET_MAX_FRAME, PCI_DMA_BIDIRECTIONAL);
dev_kfree_skb_irq(descr->skb);
goto refill;
}
if ( (status != SPIDER_NET_DESCR_COMPLETE) &&
(status != SPIDER_NET_DESCR_FRAME_END) ) {
if (netif_msg_rx_err(card))
pr_err("%s: RX descriptor with state %d\n",
card->netdev->name, status);
goto refill;
}
/* ok, we've got a packet in descr */
result = spider_net_pass_skb_up(descr, card, napi);
refill:
spider_net_set_descr_status(descr, SPIDER_NET_DESCR_NOT_IN_USE);
/* change the descriptor state: */
if (!napi)
spider_net_refill_rx_chain(card);
out:
return result;
}
/**
* spider_net_poll - NAPI poll function called by the stack to return packets
* @netdev: interface device structure
* @budget: number of packets we can pass to the stack at most
*
* returns 0 if no more packets available to the driver/stack. Returns 1,
* if the quota is exceeded, but the driver has still packets.
*
* spider_net_poll returns all packets from the rx descriptors to the stack
* (using netif_receive_skb). If all/enough packets are up, the driver
* reenables interrupts and returns 0. If not, 1 is returned.
*/
static int
spider_net_poll(struct net_device *netdev, int *budget)
{
struct spider_net_card *card = netdev_priv(netdev);
int packets_to_do, packets_done = 0;
int no_more_packets = 0;
packets_to_do = min(*budget, netdev->quota);
while (packets_to_do) {
if (spider_net_decode_one_descr(card, 1)) {
packets_done++;
packets_to_do--;
} else {
/* no more packets for the stack */
no_more_packets = 1;
break;
}
}
netdev->quota -= packets_done;
*budget -= packets_done;
spider_net_refill_rx_chain(card);
/* if all packets are in the stack, enable interrupts and return 0 */
/* if not, return 1 */
if (no_more_packets) {
netif_rx_complete(netdev);
spider_net_rx_irq_on(card);
return 0;
}
return 1;
}
/**
* spider_net_vlan_rx_reg - initializes VLAN structures in the driver and card
* @netdev: interface device structure
* @grp: vlan_group structure that is registered (NULL on destroying interface)
*/
static void
spider_net_vlan_rx_reg(struct net_device *netdev, struct vlan_group *grp)
{
/* further enhancement... yet to do */
return;
}
/**
* spider_net_vlan_rx_add - adds VLAN id to the card filter
* @netdev: interface device structure
* @vid: VLAN id to add
*/
static void
spider_net_vlan_rx_add(struct net_device *netdev, uint16_t vid)
{
/* further enhancement... yet to do */
/* add vid to card's VLAN filter table */
return;
}
/**
* spider_net_vlan_rx_kill - removes VLAN id to the card filter
* @netdev: interface device structure
* @vid: VLAN id to remove
*/
static void
spider_net_vlan_rx_kill(struct net_device *netdev, uint16_t vid)
{
/* further enhancement... yet to do */
/* remove vid from card's VLAN filter table */
}
/**
* spider_net_get_stats - get interface statistics
* @netdev: interface device structure
*
* returns the interface statistics residing in the spider_net_card struct
*/
static struct net_device_stats *
spider_net_get_stats(struct net_device *netdev)
{
struct spider_net_card *card = netdev_priv(netdev);
struct net_device_stats *stats = &card->netdev_stats;
return stats;
}
/**
* spider_net_change_mtu - changes the MTU of an interface
* @netdev: interface device structure
* @new_mtu: new MTU value
*
* returns 0 on success, <0 on failure
*/
static int
spider_net_change_mtu(struct net_device *netdev, int new_mtu)
{
/* no need to re-alloc skbs or so -- the max mtu is about 2.3k
* and mtu is outbound only anyway */
if ( (new_mtu < SPIDER_NET_MIN_MTU ) ||
(new_mtu > SPIDER_NET_MAX_MTU) )
return -EINVAL;
netdev->mtu = new_mtu;
return 0;
}
/**
* spider_net_set_mac - sets the MAC of an interface
* @netdev: interface device structure
* @ptr: pointer to new MAC address
*
* Returns 0 on success, <0 on failure. Currently, we don't support this
* and will always return EOPNOTSUPP.
*/
static int
spider_net_set_mac(struct net_device *netdev, void *p)
{
struct spider_net_card *card = netdev_priv(netdev);
u32 macl, macu, regvalue;
struct sockaddr *addr = p;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
/* switch off GMACTPE and GMACRPE */
regvalue = spider_net_read_reg(card, SPIDER_NET_GMACOPEMD);
regvalue &= ~((1 << 5) | (1 << 6));
spider_net_write_reg(card, SPIDER_NET_GMACOPEMD, regvalue);
/* write mac */
macu = (addr->sa_data[0]<<24) + (addr->sa_data[1]<<16) +
(addr->sa_data[2]<<8) + (addr->sa_data[3]);
macl = (addr->sa_data[4]<<8) + (addr->sa_data[5]);
spider_net_write_reg(card, SPIDER_NET_GMACUNIMACU, macu);
spider_net_write_reg(card, SPIDER_NET_GMACUNIMACL, macl);
/* switch GMACTPE and GMACRPE back on */
regvalue = spider_net_read_reg(card, SPIDER_NET_GMACOPEMD);
regvalue |= ((1 << 5) | (1 << 6));
spider_net_write_reg(card, SPIDER_NET_GMACOPEMD, regvalue);
spider_net_set_promisc(card);
/* look up, whether we have been successful */
if (spider_net_get_mac_address(netdev))
return -EADDRNOTAVAIL;
if (memcmp(netdev->dev_addr,addr->sa_data,netdev->addr_len))
return -EADDRNOTAVAIL;
return 0;
}
/**
* spider_net_enable_txdmac - enables a TX DMA controller
* @card: card structure
*
* spider_net_enable_txdmac enables the TX DMA controller by setting the
* descriptor chain tail address
*/
static void
spider_net_enable_txdmac(struct spider_net_card *card)
{
/* assume chain is aligned correctly */
spider_net_write_reg(card, SPIDER_NET_GDTDCHA,
card->tx_chain.tail->bus_addr);
}
/**
* spider_net_handle_rxram_full - cleans up RX ring upon RX RAM full interrupt
* @card: card structure
*
* spider_net_handle_rxram_full empties the RX ring so that spider can put
* more packets in it and empty its RX RAM. This is called in bottom half
* context
*/
static void
spider_net_handle_rxram_full(struct spider_net_card *card)
{
while (spider_net_decode_one_descr(card, 0))
;
spider_net_enable_rxchtails(card);
spider_net_enable_rxdmac(card);
netif_rx_schedule(card->netdev);
}
/**
* spider_net_handle_error_irq - handles errors raised by an interrupt
* @card: card structure
* @status_reg: interrupt status register 0 (GHIINT0STS)
*
* spider_net_handle_error_irq treats or ignores all error conditions
* found when an interrupt is presented
*/
static void
spider_net_handle_error_irq(struct spider_net_card *card, u32 status_reg)
{
u32 error_reg1, error_reg2;
u32 i;
int show_error = 1;
error_reg1 = spider_net_read_reg(card, SPIDER_NET_GHIINT1STS);
error_reg2 = spider_net_read_reg(card, SPIDER_NET_GHIINT2STS);
/* check GHIINT0STS ************************************/
if (status_reg)
for (i = 0; i < 32; i++)
if (status_reg & (1<<i))
switch (i)
{
/* let error_reg1 and error_reg2 evaluation decide, what to do
case SPIDER_NET_PHYINT:
case SPIDER_NET_GMAC2INT:
case SPIDER_NET_GMAC1INT:
case SPIDER_NET_GIPSINT:
case SPIDER_NET_GFIFOINT:
case SPIDER_NET_DMACINT:
case SPIDER_NET_GSYSINT:
break; */
case SPIDER_NET_GPWOPCMPINT:
/* PHY write operation completed */
show_error = 0;
break;
case SPIDER_NET_GPROPCMPINT:
/* PHY read operation completed */
/* we don't use semaphores, as we poll for the completion
* of the read operation in spider_net_read_phy. Should take
* about 50 us */
show_error = 0;
break;
case SPIDER_NET_GPWFFINT:
/* PHY command queue full */
if (netif_msg_intr(card))
pr_err("PHY write queue full\n");
show_error = 0;
break;
/* case SPIDER_NET_GRMDADRINT: not used. print a message */
/* case SPIDER_NET_GRMARPINT: not used. print a message */
/* case SPIDER_NET_GRMMPINT: not used. print a message */
case SPIDER_NET_GDTDEN0INT:
/* someone has set TX_DMA_EN to 0 */
show_error = 0;
break;
case SPIDER_NET_GDDDEN0INT: /* fallthrough */
case SPIDER_NET_GDCDEN0INT: /* fallthrough */
case SPIDER_NET_GDBDEN0INT: /* fallthrough */
case SPIDER_NET_GDADEN0INT:
/* someone has set RX_DMA_EN to 0 */
show_error = 0;
break;
/* RX interrupts */
case SPIDER_NET_GDDFDCINT:
case SPIDER_NET_GDCFDCINT:
case SPIDER_NET_GDBFDCINT:
case SPIDER_NET_GDAFDCINT:
/* case SPIDER_NET_GDNMINT: not used. print a message */
/* case SPIDER_NET_GCNMINT: not used. print a message */
/* case SPIDER_NET_GBNMINT: not used. print a message */
/* case SPIDER_NET_GANMINT: not used. print a message */
/* case SPIDER_NET_GRFNMINT: not used. print a message */
show_error = 0;
break;
/* TX interrupts */
case SPIDER_NET_GDTFDCINT:
show_error = 0;
break;
case SPIDER_NET_GTTEDINT:
show_error = 0;
break;
case SPIDER_NET_GDTDCEINT:
/* chain end. If a descriptor should be sent, kick off
* tx dma
if (card->tx_chain.tail == card->tx_chain.head)
spider_net_kick_tx_dma(card);
show_error = 0; */
break;
/* case SPIDER_NET_G1TMCNTINT: not used. print a message */
/* case SPIDER_NET_GFREECNTINT: not used. print a message */
}
/* check GHIINT1STS ************************************/
if (error_reg1)
for (i = 0; i < 32; i++)
if (error_reg1 & (1<<i))
switch (i)
{
case SPIDER_NET_GTMFLLINT:
if (netif_msg_intr(card) && net_ratelimit())
pr_err("Spider TX RAM full\n");
show_error = 0;
break;
case SPIDER_NET_GRFDFLLINT: /* fallthrough */
case SPIDER_NET_GRFCFLLINT: /* fallthrough */
case SPIDER_NET_GRFBFLLINT: /* fallthrough */
case SPIDER_NET_GRFAFLLINT: /* fallthrough */
case SPIDER_NET_GRMFLLINT:
if (netif_msg_intr(card) && net_ratelimit())
pr_debug("Spider RX RAM full, incoming packets "
"might be discarded!\n");
spider_net_rx_irq_off(card);
tasklet_schedule(&card->rxram_full_tl);
show_error = 0;
break;
/* case SPIDER_NET_GTMSHTINT: problem, print a message */
case SPIDER_NET_GDTINVDINT:
/* allrighty. tx from previous descr ok */
show_error = 0;
break;
/* chain end */
case SPIDER_NET_GDDDCEINT: /* fallthrough */
case SPIDER_NET_GDCDCEINT: /* fallthrough */
case SPIDER_NET_GDBDCEINT: /* fallthrough */
case SPIDER_NET_GDADCEINT:
if (netif_msg_intr(card))
pr_err("got descriptor chain end interrupt, "
"restarting DMAC %c.\n",
'D'+i-SPIDER_NET_GDDDCEINT);
spider_net_refill_rx_chain(card);
spider_net_enable_rxdmac(card);
show_error = 0;
break;
/* invalid descriptor */
case SPIDER_NET_GDDINVDINT: /* fallthrough */
case SPIDER_NET_GDCINVDINT: /* fallthrough */
case SPIDER_NET_GDBINVDINT: /* fallthrough */
case SPIDER_NET_GDAINVDINT:
/* could happen when rx chain is full */
spider_net_refill_rx_chain(card);
spider_net_enable_rxdmac(card);
show_error = 0;
break;
/* case SPIDER_NET_GDTRSERINT: problem, print a message */
/* case SPIDER_NET_GDDRSERINT: problem, print a message */
/* case SPIDER_NET_GDCRSERINT: problem, print a message */
/* case SPIDER_NET_GDBRSERINT: problem, print a message */
/* case SPIDER_NET_GDARSERINT: problem, print a message */
/* case SPIDER_NET_GDSERINT: problem, print a message */
/* case SPIDER_NET_GDTPTERINT: problem, print a message */
/* case SPIDER_NET_GDDPTERINT: problem, print a message */
/* case SPIDER_NET_GDCPTERINT: problem, print a message */
/* case SPIDER_NET_GDBPTERINT: problem, print a message */
/* case SPIDER_NET_GDAPTERINT: problem, print a message */
default:
show_error = 1;
break;
}
/* check GHIINT2STS ************************************/
if (error_reg2)
for (i = 0; i < 32; i++)
if (error_reg2 & (1<<i))
switch (i)
{
/* there is nothing we can (want to) do at this time. Log a
* message, we can switch on and off the specific values later on
case SPIDER_NET_GPROPERINT:
case SPIDER_NET_GMCTCRSNGINT:
case SPIDER_NET_GMCTLCOLINT:
case SPIDER_NET_GMCTTMOTINT:
case SPIDER_NET_GMCRCAERINT:
case SPIDER_NET_GMCRCALERINT:
case SPIDER_NET_GMCRALNERINT:
case SPIDER_NET_GMCROVRINT:
case SPIDER_NET_GMCRRNTINT:
case SPIDER_NET_GMCRRXERINT:
case SPIDER_NET_GTITCSERINT:
case SPIDER_NET_GTIFMTERINT:
case SPIDER_NET_GTIPKTRVKINT:
case SPIDER_NET_GTISPINGINT:
case SPIDER_NET_GTISADNGINT:
case SPIDER_NET_GTISPDNGINT:
case SPIDER_NET_GRIFMTERINT:
case SPIDER_NET_GRIPKTRVKINT:
case SPIDER_NET_GRISPINGINT:
case SPIDER_NET_GRISADNGINT:
case SPIDER_NET_GRISPDNGINT:
break;
*/
default:
break;
}
if ((show_error) && (netif_msg_intr(card)))
pr_err("Got error interrupt, GHIINT0STS = 0x%08x, "
"GHIINT1STS = 0x%08x, GHIINT2STS = 0x%08x\n",
status_reg, error_reg1, error_reg2);
/* clear interrupt sources */
spider_net_write_reg(card, SPIDER_NET_GHIINT1STS, error_reg1);
spider_net_write_reg(card, SPIDER_NET_GHIINT2STS, error_reg2);
}
/**
* spider_net_interrupt - interrupt handler for spider_net
* @irq: interupt number
* @ptr: pointer to net_device
* @regs: PU registers
*
* returns IRQ_HANDLED, if interrupt was for driver, or IRQ_NONE, if no
* interrupt found raised by card.
*
* This is the interrupt handler, that turns off
* interrupts for this device and makes the stack poll the driver
*/
static irqreturn_t
spider_net_interrupt(int irq, void *ptr, struct pt_regs *regs)
{
struct net_device *netdev = ptr;
struct spider_net_card *card = netdev_priv(netdev);
u32 status_reg;
status_reg = spider_net_read_reg(card, SPIDER_NET_GHIINT0STS);
if (!status_reg)
return IRQ_NONE;
if (status_reg & SPIDER_NET_RXINT ) {
spider_net_rx_irq_off(card);
netif_rx_schedule(netdev);
}
if (status_reg & SPIDER_NET_ERRINT )
spider_net_handle_error_irq(card, status_reg);
/* clear interrupt sources */
spider_net_write_reg(card, SPIDER_NET_GHIINT0STS, status_reg);
return IRQ_HANDLED;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
/**
* spider_net_poll_controller - artificial interrupt for netconsole etc.
* @netdev: interface device structure
*
* see Documentation/networking/netconsole.txt
*/
static void
spider_net_poll_controller(struct net_device *netdev)
{
disable_irq(netdev->irq);
spider_net_interrupt(netdev->irq, netdev, NULL);
enable_irq(netdev->irq);
}
#endif /* CONFIG_NET_POLL_CONTROLLER */
/**
* spider_net_init_card - initializes the card
* @card: card structure
*
* spider_net_init_card initializes the card so that other registers can
* be used
*/
static void
spider_net_init_card(struct spider_net_card *card)
{
spider_net_write_reg(card, SPIDER_NET_CKRCTRL,
SPIDER_NET_CKRCTRL_STOP_VALUE);
spider_net_write_reg(card, SPIDER_NET_CKRCTRL,
SPIDER_NET_CKRCTRL_RUN_VALUE);
}
/**
* spider_net_enable_card - enables the card by setting all kinds of regs
* @card: card structure
*
* spider_net_enable_card sets a lot of SMMIO registers to enable the device
*/
static void
spider_net_enable_card(struct spider_net_card *card)
{
int i;
/* the following array consists of (register),(value) pairs
* that are set in this function. A register of 0 ends the list */
u32 regs[][2] = {
{ SPIDER_NET_GRESUMINTNUM, 0 },
{ SPIDER_NET_GREINTNUM, 0 },
/* set interrupt frame number registers */
/* clear the single DMA engine registers first */
{ SPIDER_NET_GFAFRMNUM, SPIDER_NET_GFXFRAMES_VALUE },
{ SPIDER_NET_GFBFRMNUM, SPIDER_NET_GFXFRAMES_VALUE },
{ SPIDER_NET_GFCFRMNUM, SPIDER_NET_GFXFRAMES_VALUE },
{ SPIDER_NET_GFDFRMNUM, SPIDER_NET_GFXFRAMES_VALUE },
/* then set, what we really need */
{ SPIDER_NET_GFFRMNUM, SPIDER_NET_FRAMENUM_VALUE },
/* timer counter registers and stuff */
{ SPIDER_NET_GFREECNNUM, 0 },
{ SPIDER_NET_GONETIMENUM, 0 },
{ SPIDER_NET_GTOUTFRMNUM, 0 },
/* RX mode setting */
{ SPIDER_NET_GRXMDSET, SPIDER_NET_RXMODE_VALUE },
/* TX mode setting */
{ SPIDER_NET_GTXMDSET, SPIDER_NET_TXMODE_VALUE },
/* IPSEC mode setting */
{ SPIDER_NET_GIPSECINIT, SPIDER_NET_IPSECINIT_VALUE },
{ SPIDER_NET_GFTRESTRT, SPIDER_NET_RESTART_VALUE },
{ SPIDER_NET_GMRWOLCTRL, 0 },
{ SPIDER_NET_GTESTMD, 0 },
{ SPIDER_NET_GMACINTEN, 0 },
/* flow control stuff */
{ SPIDER_NET_GMACAPAUSE, SPIDER_NET_MACAPAUSE_VALUE },
{ SPIDER_NET_GMACTXPAUSE, SPIDER_NET_TXPAUSE_VALUE },
{ SPIDER_NET_GMACBSTLMT, SPIDER_NET_BURSTLMT_VALUE },
{ 0, 0}
};
i = 0;
while (regs[i][0]) {
spider_net_write_reg(card, regs[i][0], regs[i][1]);
i++;
}
/* clear unicast filter table entries 1 to 14 */
for (i = 1; i <= 14; i++) {
spider_net_write_reg(card,
SPIDER_NET_GMRUAFILnR + i * 8,
0x00080000);
spider_net_write_reg(card,
SPIDER_NET_GMRUAFILnR + i * 8 + 4,
0x00000000);
}
spider_net_write_reg(card, SPIDER_NET_GMRUA0FIL15R, 0x08080000);
spider_net_write_reg(card, SPIDER_NET_ECMODE, SPIDER_NET_ECMODE_VALUE);
/* set chain tail adress for RX chains and
* enable DMA */
spider_net_enable_rxchtails(card);
spider_net_enable_rxdmac(card);
spider_net_write_reg(card, SPIDER_NET_GRXDMAEN, SPIDER_NET_WOL_VALUE);
/* set chain tail adress for TX chain */
spider_net_enable_txdmac(card);
spider_net_write_reg(card, SPIDER_NET_GMACLENLMT,
SPIDER_NET_LENLMT_VALUE);
spider_net_write_reg(card, SPIDER_NET_GMACMODE,
SPIDER_NET_MACMODE_VALUE);
spider_net_write_reg(card, SPIDER_NET_GMACOPEMD,
SPIDER_NET_OPMODE_VALUE);
/* set interrupt mask registers */
spider_net_write_reg(card, SPIDER_NET_GHIINT0MSK,
SPIDER_NET_INT0_MASK_VALUE);
spider_net_write_reg(card, SPIDER_NET_GHIINT1MSK,
SPIDER_NET_INT1_MASK_VALUE);
spider_net_write_reg(card, SPIDER_NET_GHIINT2MSK,
SPIDER_NET_INT2_MASK_VALUE);
}
/**
* spider_net_open - called upon ifonfig up
* @netdev: interface device structure
*
* returns 0 on success, <0 on failure
*
* spider_net_open allocates all the descriptors and memory needed for
* operation, sets up multicast list and enables interrupts
*/
int
spider_net_open(struct net_device *netdev)
{
struct spider_net_card *card = netdev_priv(netdev);
int result;
result = -ENOMEM;
if (spider_net_init_chain(card, &card->tx_chain,
card->descr, tx_descriptors))
goto alloc_tx_failed;
if (spider_net_init_chain(card, &card->rx_chain,
card->descr + tx_descriptors, rx_descriptors))
goto alloc_rx_failed;
/* allocate rx skbs */
if (spider_net_alloc_rx_skbs(card))
goto alloc_skbs_failed;
spider_net_set_multi(netdev);
/* further enhancement: setup hw vlan, if needed */
result = -EBUSY;
if (request_irq(netdev->irq, spider_net_interrupt,
SA_SHIRQ, netdev->name, netdev))
goto register_int_failed;
spider_net_enable_card(card);
netif_start_queue(netdev);
netif_carrier_on(netdev);
netif_poll_enable(netdev);
return 0;
register_int_failed:
spider_net_free_rx_chain_contents(card);
alloc_skbs_failed:
spider_net_free_chain(card, &card->rx_chain);
alloc_rx_failed:
spider_net_free_chain(card, &card->tx_chain);
alloc_tx_failed:
return result;
}
/**
* spider_net_setup_phy - setup PHY
* @card: card structure
*
* returns 0 on success, <0 on failure
*
* spider_net_setup_phy is used as part of spider_net_probe. Sets
* the PHY to 1000 Mbps
**/
static int
spider_net_setup_phy(struct spider_net_card *card)
{
struct mii_phy *phy = &card->phy;
spider_net_write_reg(card, SPIDER_NET_GDTDMASEL,
SPIDER_NET_DMASEL_VALUE);
spider_net_write_reg(card, SPIDER_NET_GPCCTRL,
SPIDER_NET_PHY_CTRL_VALUE);
phy->mii_id = 1;
phy->dev = card->netdev;
phy->mdio_read = spider_net_read_phy;
phy->mdio_write = spider_net_write_phy;
mii_phy_probe(phy, phy->mii_id);
if (phy->def->ops->setup_forced)
phy->def->ops->setup_forced(phy, SPEED_1000, DUPLEX_FULL);
/* the following two writes could be moved to sungem_phy.c */
/* enable fiber mode */
spider_net_write_phy(card->netdev, 1, MII_NCONFIG, 0x9020);
/* LEDs active in both modes, autosense prio = fiber */
spider_net_write_phy(card->netdev, 1, MII_NCONFIG, 0x945f);
/* switch off fibre autoneg */
spider_net_write_phy(card->netdev, 1, MII_NCONFIG, 0xfc01);
spider_net_write_phy(card->netdev, 1, 0x0b, 0x0004);
phy->def->ops->read_link(phy);
pr_info("Found %s with %i Mbps, %s-duplex.\n", phy->def->name,
phy->speed, phy->duplex==1 ? "Full" : "Half");
return 0;
}
/**
* spider_net_download_firmware - loads firmware into the adapter
* @card: card structure
* @firmware_ptr: pointer to firmware data
*
* spider_net_download_firmware loads the firmware data into the
* adapter. It assumes the length etc. to be allright.
*/
static int
spider_net_download_firmware(struct spider_net_card *card,
u8 *firmware_ptr)
{
int sequencer, i;
u32 *fw_ptr = (u32 *)firmware_ptr;
/* stop sequencers */
spider_net_write_reg(card, SPIDER_NET_GSINIT,
SPIDER_NET_STOP_SEQ_VALUE);
for (sequencer = 0; sequencer < SPIDER_NET_FIRMWARE_SEQS;
sequencer++) {
spider_net_write_reg(card,
SPIDER_NET_GSnPRGADR + sequencer * 8, 0);
for (i = 0; i < SPIDER_NET_FIRMWARE_SEQWORDS; i++) {
spider_net_write_reg(card, SPIDER_NET_GSnPRGDAT +
sequencer * 8, *fw_ptr);
fw_ptr++;
}
}
if (spider_net_read_reg(card, SPIDER_NET_GSINIT))
return -EIO;
spider_net_write_reg(card, SPIDER_NET_GSINIT,
SPIDER_NET_RUN_SEQ_VALUE);
return 0;
}
/**
* spider_net_init_firmware - reads in firmware parts
* @card: card structure
*
* Returns 0 on success, <0 on failure
*
* spider_net_init_firmware opens the sequencer firmware and does some basic
* checks. This function opens and releases the firmware structure. A call
* to download the firmware is performed before the release.
*
* Firmware format
* ===============
* spider_fw.bin is expected to be a file containing 6*1024*4 bytes, 4k being
* the program for each sequencer. Use the command
* tail -q -n +2 Seq_code1_0x088.txt Seq_code2_0x090.txt \
* Seq_code3_0x098.txt Seq_code4_0x0A0.txt Seq_code5_0x0A8.txt \
* Seq_code6_0x0B0.txt | xxd -r -p -c4 > spider_fw.bin
*
* to generate spider_fw.bin, if you have sequencer programs with something
* like the following contents for each sequencer:
* <ONE LINE COMMENT>
* <FIRST 4-BYTES-WORD FOR SEQUENCER>
* <SECOND 4-BYTES-WORD FOR SEQUENCER>
* ...
* <1024th 4-BYTES-WORD FOR SEQUENCER>
*/
static int
spider_net_init_firmware(struct spider_net_card *card)
{
struct firmware *firmware = NULL;
struct device_node *dn;
u8 *fw_prop = NULL;
int err = -ENOENT;
int fw_size;
if (request_firmware((const struct firmware **)&firmware,
SPIDER_NET_FIRMWARE_NAME, &card->pdev->dev) == 0) {
if ( (firmware->size != SPIDER_NET_FIRMWARE_LEN) &&
netif_msg_probe(card) ) {
pr_err("Incorrect size of spidernet firmware in " \
"filesystem. Looking in host firmware...\n");
goto try_host_fw;
}
err = spider_net_download_firmware(card, firmware->data);
release_firmware(firmware);
if (err)
goto try_host_fw;
goto done;
}
try_host_fw:
dn = pci_device_to_OF_node(card->pdev);
if (!dn)
goto out_err;
fw_prop = (u8 *)get_property(dn, "firmware", &fw_size);
if (!fw_prop)
goto out_err;
if ( (fw_size != SPIDER_NET_FIRMWARE_LEN) &&
netif_msg_probe(card) ) {
pr_err("Incorrect size of spidernet firmware in " \
"host firmware\n");
goto done;
}
err = spider_net_download_firmware(card, fw_prop);
done:
return err;
out_err:
if (netif_msg_probe(card))
pr_err("Couldn't find spidernet firmware in filesystem " \
"or host firmware\n");
return err;
}
/**
* spider_net_workaround_rxramfull - work around firmware bug
* @card: card structure
*
* no return value
**/
static void
spider_net_workaround_rxramfull(struct spider_net_card *card)
{
int i, sequencer = 0;
/* cancel reset */
spider_net_write_reg(card, SPIDER_NET_CKRCTRL,
SPIDER_NET_CKRCTRL_RUN_VALUE);
/* empty sequencer data */
for (sequencer = 0; sequencer < SPIDER_NET_FIRMWARE_SEQS;
sequencer++) {
spider_net_write_reg(card, SPIDER_NET_GSnPRGDAT +
sequencer * 8, 0x0);
for (i = 0; i < SPIDER_NET_FIRMWARE_SEQWORDS; i++) {
spider_net_write_reg(card, SPIDER_NET_GSnPRGDAT +
sequencer * 8, 0x0);
}
}
/* set sequencer operation */
spider_net_write_reg(card, SPIDER_NET_GSINIT, 0x000000fe);
/* reset */
spider_net_write_reg(card, SPIDER_NET_CKRCTRL,
SPIDER_NET_CKRCTRL_STOP_VALUE);
}
/**
* spider_net_tx_timeout_task - task scheduled by the watchdog timeout
* function (to be called not under interrupt status)
* @data: data, is interface device structure
*
* called as task when tx hangs, resets interface (if interface is up)
*/
static void
spider_net_tx_timeout_task(void *data)
{
struct net_device *netdev = data;
struct spider_net_card *card = netdev_priv(netdev);
if (!(netdev->flags & IFF_UP))
goto out;
netif_device_detach(netdev);
spider_net_stop(netdev);
spider_net_workaround_rxramfull(card);
spider_net_init_card(card);
if (spider_net_setup_phy(card))
goto out;
if (spider_net_init_firmware(card))
goto out;
spider_net_open(netdev);
spider_net_kick_tx_dma(card, card->tx_chain.head);
netif_device_attach(netdev);
out:
atomic_dec(&card->tx_timeout_task_counter);
}
/**
* spider_net_tx_timeout - called when the tx timeout watchdog kicks in.
* @netdev: interface device structure
*
* called, if tx hangs. Schedules a task that resets the interface
*/
static void
spider_net_tx_timeout(struct net_device *netdev)
{
struct spider_net_card *card;
card = netdev_priv(netdev);
atomic_inc(&card->tx_timeout_task_counter);
if (netdev->flags & IFF_UP)
schedule_work(&card->tx_timeout_task);
else
atomic_dec(&card->tx_timeout_task_counter);
}
/**
* spider_net_setup_netdev_ops - initialization of net_device operations
* @netdev: net_device structure
*
* fills out function pointers in the net_device structure
*/
static void
spider_net_setup_netdev_ops(struct net_device *netdev)
{
netdev->open = &spider_net_open;
netdev->stop = &spider_net_stop;
netdev->hard_start_xmit = &spider_net_xmit;
netdev->get_stats = &spider_net_get_stats;
netdev->set_multicast_list = &spider_net_set_multi;
netdev->set_mac_address = &spider_net_set_mac;
netdev->change_mtu = &spider_net_change_mtu;
netdev->do_ioctl = &spider_net_do_ioctl;
/* tx watchdog */
netdev->tx_timeout = &spider_net_tx_timeout;
netdev->watchdog_timeo = SPIDER_NET_WATCHDOG_TIMEOUT;
/* NAPI */
netdev->poll = &spider_net_poll;
netdev->weight = SPIDER_NET_NAPI_WEIGHT;
/* HW VLAN */
netdev->vlan_rx_register = &spider_net_vlan_rx_reg;
netdev->vlan_rx_add_vid = &spider_net_vlan_rx_add;
netdev->vlan_rx_kill_vid = &spider_net_vlan_rx_kill;
#ifdef CONFIG_NET_POLL_CONTROLLER
/* poll controller */
netdev->poll_controller = &spider_net_poll_controller;
#endif /* CONFIG_NET_POLL_CONTROLLER */
/* ethtool ops */
netdev->ethtool_ops = &spider_net_ethtool_ops;
}
/**
* spider_net_setup_netdev - initialization of net_device
* @card: card structure
*
* Returns 0 on success or <0 on failure
*
* spider_net_setup_netdev initializes the net_device structure
**/
static int
spider_net_setup_netdev(struct spider_net_card *card)
{
int result;
struct net_device *netdev = card->netdev;
struct device_node *dn;
struct sockaddr addr;
u8 *mac;
SET_MODULE_OWNER(netdev);
SET_NETDEV_DEV(netdev, &card->pdev->dev);
pci_set_drvdata(card->pdev, netdev);
atomic_set(&card->tx_chain_release,0);
card->rxram_full_tl.data = (unsigned long) card;
card->rxram_full_tl.func =
(void (*)(unsigned long)) spider_net_handle_rxram_full;
init_timer(&card->tx_timer);
card->tx_timer.function =
(void (*)(unsigned long)) spider_net_cleanup_tx_ring;
card->tx_timer.data = (unsigned long) card;
netdev->irq = card->pdev->irq;
card->options.rx_csum = SPIDER_NET_RX_CSUM_DEFAULT;
spider_net_setup_netdev_ops(netdev);
netdev->features = NETIF_F_HW_CSUM;
/* some time: NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX |
* NETIF_F_HW_VLAN_FILTER */
netdev->irq = card->pdev->irq;
dn = pci_device_to_OF_node(card->pdev);
if (!dn)
return -EIO;
mac = (u8 *)get_property(dn, "local-mac-address", NULL);
if (!mac)
return -EIO;
memcpy(addr.sa_data, mac, ETH_ALEN);
result = spider_net_set_mac(netdev, &addr);
if ((result) && (netif_msg_probe(card)))
pr_err("Failed to set MAC address: %i\n", result);
result = register_netdev(netdev);
if (result) {
if (netif_msg_probe(card))
pr_err("Couldn't register net_device: %i\n",
result);
return result;
}
if (netif_msg_probe(card))
pr_info("Initialized device %s.\n", netdev->name);
return 0;
}
/**
* spider_net_alloc_card - allocates net_device and card structure
*
* returns the card structure or NULL in case of errors
*
* the card and net_device structures are linked to each other
*/
static struct spider_net_card *
spider_net_alloc_card(void)
{
struct net_device *netdev;
struct spider_net_card *card;
size_t alloc_size;
alloc_size = sizeof (*card) +
sizeof (struct spider_net_descr) * rx_descriptors +
sizeof (struct spider_net_descr) * tx_descriptors;
netdev = alloc_etherdev(alloc_size);
if (!netdev)
return NULL;
card = netdev_priv(netdev);
card->netdev = netdev;
card->msg_enable = SPIDER_NET_DEFAULT_MSG;
INIT_WORK(&card->tx_timeout_task, spider_net_tx_timeout_task, netdev);
init_waitqueue_head(&card->waitq);
atomic_set(&card->tx_timeout_task_counter, 0);
return card;
}
/**
* spider_net_undo_pci_setup - releases PCI ressources
* @card: card structure
*
* spider_net_undo_pci_setup releases the mapped regions
*/
static void
spider_net_undo_pci_setup(struct spider_net_card *card)
{
iounmap(card->regs);
pci_release_regions(card->pdev);
}
/**
* spider_net_setup_pci_dev - sets up the device in terms of PCI operations
* @card: card structure
* @pdev: PCI device
*
* Returns the card structure or NULL if any errors occur
*
* spider_net_setup_pci_dev initializes pdev and together with the
* functions called in spider_net_open configures the device so that
* data can be transferred over it
* The net_device structure is attached to the card structure, if the
* function returns without error.
**/
static struct spider_net_card *
spider_net_setup_pci_dev(struct pci_dev *pdev)
{
struct spider_net_card *card;
unsigned long mmio_start, mmio_len;
if (pci_enable_device(pdev)) {
pr_err("Couldn't enable PCI device\n");
return NULL;
}
if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
pr_err("Couldn't find proper PCI device base address.\n");
goto out_disable_dev;
}
if (pci_request_regions(pdev, spider_net_driver_name)) {
pr_err("Couldn't obtain PCI resources, aborting.\n");
goto out_disable_dev;
}
pci_set_master(pdev);
card = spider_net_alloc_card();
if (!card) {
pr_err("Couldn't allocate net_device structure, "
"aborting.\n");
goto out_release_regions;
}
card->pdev = pdev;
/* fetch base address and length of first resource */
mmio_start = pci_resource_start(pdev, 0);
mmio_len = pci_resource_len(pdev, 0);
card->netdev->mem_start = mmio_start;
card->netdev->mem_end = mmio_start + mmio_len;
card->regs = ioremap(mmio_start, mmio_len);
if (!card->regs) {
pr_err("Couldn't obtain PCI resources, aborting.\n");
goto out_release_regions;
}
return card;
out_release_regions:
pci_release_regions(pdev);
out_disable_dev:
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
return NULL;
}
/**
* spider_net_probe - initialization of a device
* @pdev: PCI device
* @ent: entry in the device id list
*
* Returns 0 on success, <0 on failure
*
* spider_net_probe initializes pdev and registers a net_device
* structure for it. After that, the device can be ifconfig'ed up
**/
static int __devinit
spider_net_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
int err = -EIO;
struct spider_net_card *card;
card = spider_net_setup_pci_dev(pdev);
if (!card)
goto out;
spider_net_workaround_rxramfull(card);
spider_net_init_card(card);
err = spider_net_setup_phy(card);
if (err)
goto out_undo_pci;
err = spider_net_init_firmware(card);
if (err)
goto out_undo_pci;
err = spider_net_setup_netdev(card);
if (err)
goto out_undo_pci;
return 0;
out_undo_pci:
spider_net_undo_pci_setup(card);
free_netdev(card->netdev);
out:
return err;
}
/**
* spider_net_remove - removal of a device
* @pdev: PCI device
*
* Returns 0 on success, <0 on failure
*
* spider_net_remove is called to remove the device and unregisters the
* net_device
**/
static void __devexit
spider_net_remove(struct pci_dev *pdev)
{
struct net_device *netdev;
struct spider_net_card *card;
netdev = pci_get_drvdata(pdev);
card = netdev_priv(netdev);
wait_event(card->waitq,
atomic_read(&card->tx_timeout_task_counter) == 0);
unregister_netdev(netdev);
/* switch off card */
spider_net_write_reg(card, SPIDER_NET_CKRCTRL,
SPIDER_NET_CKRCTRL_STOP_VALUE);
spider_net_write_reg(card, SPIDER_NET_CKRCTRL,
SPIDER_NET_CKRCTRL_RUN_VALUE);
spider_net_undo_pci_setup(card);
free_netdev(netdev);
}
static struct pci_driver spider_net_driver = {
.name = spider_net_driver_name,
.id_table = spider_net_pci_tbl,
.probe = spider_net_probe,
.remove = __devexit_p(spider_net_remove)
};
/**
* spider_net_init - init function when the driver is loaded
*
* spider_net_init registers the device driver
*/
static int __init spider_net_init(void)
{
if (rx_descriptors < SPIDER_NET_RX_DESCRIPTORS_MIN) {
rx_descriptors = SPIDER_NET_RX_DESCRIPTORS_MIN;
pr_info("adjusting rx descriptors to %i.\n", rx_descriptors);
}
if (rx_descriptors > SPIDER_NET_RX_DESCRIPTORS_MAX) {
rx_descriptors = SPIDER_NET_RX_DESCRIPTORS_MAX;
pr_info("adjusting rx descriptors to %i.\n", rx_descriptors);
}
if (tx_descriptors < SPIDER_NET_TX_DESCRIPTORS_MIN) {
tx_descriptors = SPIDER_NET_TX_DESCRIPTORS_MIN;
pr_info("adjusting tx descriptors to %i.\n", tx_descriptors);
}
if (tx_descriptors > SPIDER_NET_TX_DESCRIPTORS_MAX) {
tx_descriptors = SPIDER_NET_TX_DESCRIPTORS_MAX;
pr_info("adjusting tx descriptors to %i.\n", tx_descriptors);
}
return pci_register_driver(&spider_net_driver);
}
/**
* spider_net_cleanup - exit function when driver is unloaded
*
* spider_net_cleanup unregisters the device driver
*/
static void __exit spider_net_cleanup(void)
{
pci_unregister_driver(&spider_net_driver);
}
module_init(spider_net_init);
module_exit(spider_net_cleanup);