5cdd4c0468
In this round, we've added new features such as disk quota and statx, and modified internal bio management flow to merge more IOs depending on block types. We've also made internal threads freezeable for Android battery life. In addition to them, there are some patches to avoid lock contention as well as a couple of deadlock conditions. = Enhancement - support usrquota, grpquota, and statx - manage DATA/NODE typed bios separately to serialize more IOs - modify f2fs_lock_op/wio_mutex to avoid lock contention - prevent lock contention in migratepage = Bug fix - miss to load written inode flag - fix worst case victim selection in GC - freezeable GC and discard threads for Android battery life - sanitize f2fs metadata to deal with security hole - clean up sysfs-related code and docs -----BEGIN PGP SIGNATURE----- iQIzBAABCAAdFiEE00UqedjCtOrGVvQiQBSofoJIUNIFAllj6fMACgkQQBSofoJI UNJ6Ng/+PqdGV/b6KroYIXI/scFx/1t87/0W+rY9tyLr1jX7nIHn9KLPjeDdvdlk 5vEeZ/dGfW8wSI+ESzscvKberG2QlOPwJRyTB4jWR+bLatwzg7YjEblz+RX4/wfJ jKjnR7M//gRdhHdqA0xXrqguAjPbcEDK2RiVbhioMjWbZ/77j0IjcRokjMYdEf0m cJc2oMXFtlo+DJ1h9/8BmwQPTI9FfVdgbkPFTTJzV0ydQnBdxcAigrzwYZhPOVv0 n2M1dKOiQewB4OADMuepZLFqJheItlgG9wlvEjGq7zTd5epHXRIqhM6h9GikQVb9 YKAkajlKfWcwEXaEcVXtsMHC9x69Yf8xxOSQ1VrhypSUNbaynC9LDsErJx6yrF3P XC5baiqXsd/btg7tfrHJjk3gI+ck97d6TrTfUVR91X+1Tpkz7cyB226WxFKbyOG3 EYCFVMbrIN2CaHHt1xWIT2zCfX5w9ycp8kFjY6jPi0OOZrKXpFw+1AwwTu9kn4xJ iuUc8pmc0/FyPqokmLef4Qp/RRM83+f+nzW/y//lkEf3nMn6qlHzNI1RAxXnBvGV DMXzuJDcJcHGcSDr7mWyKkm6gYcak/E4DdQLQqJ6VCt6KCdCEXP/XDlig5ey5ODY uGEr1QhXIpiYAON45HUi3gmytB3J3ZdzzpsG1PEco4+hjSuFhyE= =N4GZ -----END PGP SIGNATURE----- Merge tag 'for-f2fs-4.13' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs Pull f2fs updates from Jaegeuk Kim: "In this round, we've added new features such as disk quota and statx, and modified internal bio management flow to merge more IOs depending on block types. We've also made internal threads freezeable for Android battery life. In addition to them, there are some patches to avoid lock contention as well as a couple of deadlock conditions. Enhancements: - support usrquota, grpquota, and statx - manage DATA/NODE typed bios separately to serialize more IOs - modify f2fs_lock_op/wio_mutex to avoid lock contention - prevent lock contention in migratepage Bug fixes: - fix missing load of written inode flag - fix worst case victim selection in GC - freezeable GC and discard threads for Android battery life - sanitize f2fs metadata to deal with security hole - clean up sysfs-related code and docs" * tag 'for-f2fs-4.13' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs: (59 commits) f2fs: support plain user/group quota f2fs: avoid deadlock caused by lock order of page and lock_op f2fs: use spin_{,un}lock_irq{save,restore} f2fs: relax migratepage for atomic written page f2fs: don't count inode block in in-memory inode.i_blocks Revert "f2fs: fix to clean previous mount option when remount_fs" f2fs: do not set LOST_PINO for renamed dir f2fs: do not set LOST_PINO for newly created dir f2fs: skip ->writepages for {mete,node}_inode during recovery f2fs: introduce __check_sit_bitmap f2fs: stop gc/discard thread in prior during umount f2fs: introduce reserved_blocks in sysfs f2fs: avoid redundant f2fs_flush after remount f2fs: report # of free inodes more precisely f2fs: add ioctl to do gc with target block address f2fs: don't need to check encrypted inode for partial truncation f2fs: measure inode.i_blocks as generic filesystem f2fs: set CP_TRIMMED_FLAG correctly f2fs: require key for truncate(2) of encrypted file f2fs: move sysfs code from super.c to fs/f2fs/sysfs.c ...
2368 lines
59 KiB
C
2368 lines
59 KiB
C
/*
|
|
* fs/f2fs/super.c
|
|
*
|
|
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
|
* http://www.samsung.com/
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/statfs.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/parser.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/random.h>
|
|
#include <linux/exportfs.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/quotaops.h>
|
|
#include <linux/f2fs_fs.h>
|
|
#include <linux/sysfs.h>
|
|
|
|
#include "f2fs.h"
|
|
#include "node.h"
|
|
#include "segment.h"
|
|
#include "xattr.h"
|
|
#include "gc.h"
|
|
#include "trace.h"
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/f2fs.h>
|
|
|
|
static struct kmem_cache *f2fs_inode_cachep;
|
|
|
|
#ifdef CONFIG_F2FS_FAULT_INJECTION
|
|
|
|
char *fault_name[FAULT_MAX] = {
|
|
[FAULT_KMALLOC] = "kmalloc",
|
|
[FAULT_PAGE_ALLOC] = "page alloc",
|
|
[FAULT_ALLOC_NID] = "alloc nid",
|
|
[FAULT_ORPHAN] = "orphan",
|
|
[FAULT_BLOCK] = "no more block",
|
|
[FAULT_DIR_DEPTH] = "too big dir depth",
|
|
[FAULT_EVICT_INODE] = "evict_inode fail",
|
|
[FAULT_TRUNCATE] = "truncate fail",
|
|
[FAULT_IO] = "IO error",
|
|
[FAULT_CHECKPOINT] = "checkpoint error",
|
|
};
|
|
|
|
static void f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
|
|
unsigned int rate)
|
|
{
|
|
struct f2fs_fault_info *ffi = &sbi->fault_info;
|
|
|
|
if (rate) {
|
|
atomic_set(&ffi->inject_ops, 0);
|
|
ffi->inject_rate = rate;
|
|
ffi->inject_type = (1 << FAULT_MAX) - 1;
|
|
} else {
|
|
memset(ffi, 0, sizeof(struct f2fs_fault_info));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* f2fs-wide shrinker description */
|
|
static struct shrinker f2fs_shrinker_info = {
|
|
.scan_objects = f2fs_shrink_scan,
|
|
.count_objects = f2fs_shrink_count,
|
|
.seeks = DEFAULT_SEEKS,
|
|
};
|
|
|
|
enum {
|
|
Opt_gc_background,
|
|
Opt_disable_roll_forward,
|
|
Opt_norecovery,
|
|
Opt_discard,
|
|
Opt_nodiscard,
|
|
Opt_noheap,
|
|
Opt_heap,
|
|
Opt_user_xattr,
|
|
Opt_nouser_xattr,
|
|
Opt_acl,
|
|
Opt_noacl,
|
|
Opt_active_logs,
|
|
Opt_disable_ext_identify,
|
|
Opt_inline_xattr,
|
|
Opt_noinline_xattr,
|
|
Opt_inline_data,
|
|
Opt_inline_dentry,
|
|
Opt_noinline_dentry,
|
|
Opt_flush_merge,
|
|
Opt_noflush_merge,
|
|
Opt_nobarrier,
|
|
Opt_fastboot,
|
|
Opt_extent_cache,
|
|
Opt_noextent_cache,
|
|
Opt_noinline_data,
|
|
Opt_data_flush,
|
|
Opt_mode,
|
|
Opt_io_size_bits,
|
|
Opt_fault_injection,
|
|
Opt_lazytime,
|
|
Opt_nolazytime,
|
|
Opt_usrquota,
|
|
Opt_grpquota,
|
|
Opt_err,
|
|
};
|
|
|
|
static match_table_t f2fs_tokens = {
|
|
{Opt_gc_background, "background_gc=%s"},
|
|
{Opt_disable_roll_forward, "disable_roll_forward"},
|
|
{Opt_norecovery, "norecovery"},
|
|
{Opt_discard, "discard"},
|
|
{Opt_nodiscard, "nodiscard"},
|
|
{Opt_noheap, "no_heap"},
|
|
{Opt_heap, "heap"},
|
|
{Opt_user_xattr, "user_xattr"},
|
|
{Opt_nouser_xattr, "nouser_xattr"},
|
|
{Opt_acl, "acl"},
|
|
{Opt_noacl, "noacl"},
|
|
{Opt_active_logs, "active_logs=%u"},
|
|
{Opt_disable_ext_identify, "disable_ext_identify"},
|
|
{Opt_inline_xattr, "inline_xattr"},
|
|
{Opt_noinline_xattr, "noinline_xattr"},
|
|
{Opt_inline_data, "inline_data"},
|
|
{Opt_inline_dentry, "inline_dentry"},
|
|
{Opt_noinline_dentry, "noinline_dentry"},
|
|
{Opt_flush_merge, "flush_merge"},
|
|
{Opt_noflush_merge, "noflush_merge"},
|
|
{Opt_nobarrier, "nobarrier"},
|
|
{Opt_fastboot, "fastboot"},
|
|
{Opt_extent_cache, "extent_cache"},
|
|
{Opt_noextent_cache, "noextent_cache"},
|
|
{Opt_noinline_data, "noinline_data"},
|
|
{Opt_data_flush, "data_flush"},
|
|
{Opt_mode, "mode=%s"},
|
|
{Opt_io_size_bits, "io_bits=%u"},
|
|
{Opt_fault_injection, "fault_injection=%u"},
|
|
{Opt_lazytime, "lazytime"},
|
|
{Opt_nolazytime, "nolazytime"},
|
|
{Opt_usrquota, "usrquota"},
|
|
{Opt_grpquota, "grpquota"},
|
|
{Opt_err, NULL},
|
|
};
|
|
|
|
void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
|
|
{
|
|
struct va_format vaf;
|
|
va_list args;
|
|
|
|
va_start(args, fmt);
|
|
vaf.fmt = fmt;
|
|
vaf.va = &args;
|
|
printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
|
|
va_end(args);
|
|
}
|
|
|
|
static void init_once(void *foo)
|
|
{
|
|
struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
|
|
|
|
inode_init_once(&fi->vfs_inode);
|
|
}
|
|
|
|
static int parse_options(struct super_block *sb, char *options)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
|
struct request_queue *q;
|
|
substring_t args[MAX_OPT_ARGS];
|
|
char *p, *name;
|
|
int arg = 0;
|
|
|
|
if (!options)
|
|
return 0;
|
|
|
|
while ((p = strsep(&options, ",")) != NULL) {
|
|
int token;
|
|
if (!*p)
|
|
continue;
|
|
/*
|
|
* Initialize args struct so we know whether arg was
|
|
* found; some options take optional arguments.
|
|
*/
|
|
args[0].to = args[0].from = NULL;
|
|
token = match_token(p, f2fs_tokens, args);
|
|
|
|
switch (token) {
|
|
case Opt_gc_background:
|
|
name = match_strdup(&args[0]);
|
|
|
|
if (!name)
|
|
return -ENOMEM;
|
|
if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
|
|
set_opt(sbi, BG_GC);
|
|
clear_opt(sbi, FORCE_FG_GC);
|
|
} else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
|
|
clear_opt(sbi, BG_GC);
|
|
clear_opt(sbi, FORCE_FG_GC);
|
|
} else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
|
|
set_opt(sbi, BG_GC);
|
|
set_opt(sbi, FORCE_FG_GC);
|
|
} else {
|
|
kfree(name);
|
|
return -EINVAL;
|
|
}
|
|
kfree(name);
|
|
break;
|
|
case Opt_disable_roll_forward:
|
|
set_opt(sbi, DISABLE_ROLL_FORWARD);
|
|
break;
|
|
case Opt_norecovery:
|
|
/* this option mounts f2fs with ro */
|
|
set_opt(sbi, DISABLE_ROLL_FORWARD);
|
|
if (!f2fs_readonly(sb))
|
|
return -EINVAL;
|
|
break;
|
|
case Opt_discard:
|
|
q = bdev_get_queue(sb->s_bdev);
|
|
if (blk_queue_discard(q)) {
|
|
set_opt(sbi, DISCARD);
|
|
} else if (!f2fs_sb_mounted_blkzoned(sb)) {
|
|
f2fs_msg(sb, KERN_WARNING,
|
|
"mounting with \"discard\" option, but "
|
|
"the device does not support discard");
|
|
}
|
|
break;
|
|
case Opt_nodiscard:
|
|
if (f2fs_sb_mounted_blkzoned(sb)) {
|
|
f2fs_msg(sb, KERN_WARNING,
|
|
"discard is required for zoned block devices");
|
|
return -EINVAL;
|
|
}
|
|
clear_opt(sbi, DISCARD);
|
|
break;
|
|
case Opt_noheap:
|
|
set_opt(sbi, NOHEAP);
|
|
break;
|
|
case Opt_heap:
|
|
clear_opt(sbi, NOHEAP);
|
|
break;
|
|
#ifdef CONFIG_F2FS_FS_XATTR
|
|
case Opt_user_xattr:
|
|
set_opt(sbi, XATTR_USER);
|
|
break;
|
|
case Opt_nouser_xattr:
|
|
clear_opt(sbi, XATTR_USER);
|
|
break;
|
|
case Opt_inline_xattr:
|
|
set_opt(sbi, INLINE_XATTR);
|
|
break;
|
|
case Opt_noinline_xattr:
|
|
clear_opt(sbi, INLINE_XATTR);
|
|
break;
|
|
#else
|
|
case Opt_user_xattr:
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"user_xattr options not supported");
|
|
break;
|
|
case Opt_nouser_xattr:
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"nouser_xattr options not supported");
|
|
break;
|
|
case Opt_inline_xattr:
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"inline_xattr options not supported");
|
|
break;
|
|
case Opt_noinline_xattr:
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"noinline_xattr options not supported");
|
|
break;
|
|
#endif
|
|
#ifdef CONFIG_F2FS_FS_POSIX_ACL
|
|
case Opt_acl:
|
|
set_opt(sbi, POSIX_ACL);
|
|
break;
|
|
case Opt_noacl:
|
|
clear_opt(sbi, POSIX_ACL);
|
|
break;
|
|
#else
|
|
case Opt_acl:
|
|
f2fs_msg(sb, KERN_INFO, "acl options not supported");
|
|
break;
|
|
case Opt_noacl:
|
|
f2fs_msg(sb, KERN_INFO, "noacl options not supported");
|
|
break;
|
|
#endif
|
|
case Opt_active_logs:
|
|
if (args->from && match_int(args, &arg))
|
|
return -EINVAL;
|
|
if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
|
|
return -EINVAL;
|
|
sbi->active_logs = arg;
|
|
break;
|
|
case Opt_disable_ext_identify:
|
|
set_opt(sbi, DISABLE_EXT_IDENTIFY);
|
|
break;
|
|
case Opt_inline_data:
|
|
set_opt(sbi, INLINE_DATA);
|
|
break;
|
|
case Opt_inline_dentry:
|
|
set_opt(sbi, INLINE_DENTRY);
|
|
break;
|
|
case Opt_noinline_dentry:
|
|
clear_opt(sbi, INLINE_DENTRY);
|
|
break;
|
|
case Opt_flush_merge:
|
|
set_opt(sbi, FLUSH_MERGE);
|
|
break;
|
|
case Opt_noflush_merge:
|
|
clear_opt(sbi, FLUSH_MERGE);
|
|
break;
|
|
case Opt_nobarrier:
|
|
set_opt(sbi, NOBARRIER);
|
|
break;
|
|
case Opt_fastboot:
|
|
set_opt(sbi, FASTBOOT);
|
|
break;
|
|
case Opt_extent_cache:
|
|
set_opt(sbi, EXTENT_CACHE);
|
|
break;
|
|
case Opt_noextent_cache:
|
|
clear_opt(sbi, EXTENT_CACHE);
|
|
break;
|
|
case Opt_noinline_data:
|
|
clear_opt(sbi, INLINE_DATA);
|
|
break;
|
|
case Opt_data_flush:
|
|
set_opt(sbi, DATA_FLUSH);
|
|
break;
|
|
case Opt_mode:
|
|
name = match_strdup(&args[0]);
|
|
|
|
if (!name)
|
|
return -ENOMEM;
|
|
if (strlen(name) == 8 &&
|
|
!strncmp(name, "adaptive", 8)) {
|
|
if (f2fs_sb_mounted_blkzoned(sb)) {
|
|
f2fs_msg(sb, KERN_WARNING,
|
|
"adaptive mode is not allowed with "
|
|
"zoned block device feature");
|
|
kfree(name);
|
|
return -EINVAL;
|
|
}
|
|
set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
|
|
} else if (strlen(name) == 3 &&
|
|
!strncmp(name, "lfs", 3)) {
|
|
set_opt_mode(sbi, F2FS_MOUNT_LFS);
|
|
} else {
|
|
kfree(name);
|
|
return -EINVAL;
|
|
}
|
|
kfree(name);
|
|
break;
|
|
case Opt_io_size_bits:
|
|
if (args->from && match_int(args, &arg))
|
|
return -EINVAL;
|
|
if (arg > __ilog2_u32(BIO_MAX_PAGES)) {
|
|
f2fs_msg(sb, KERN_WARNING,
|
|
"Not support %d, larger than %d",
|
|
1 << arg, BIO_MAX_PAGES);
|
|
return -EINVAL;
|
|
}
|
|
sbi->write_io_size_bits = arg;
|
|
break;
|
|
case Opt_fault_injection:
|
|
if (args->from && match_int(args, &arg))
|
|
return -EINVAL;
|
|
#ifdef CONFIG_F2FS_FAULT_INJECTION
|
|
f2fs_build_fault_attr(sbi, arg);
|
|
set_opt(sbi, FAULT_INJECTION);
|
|
#else
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"FAULT_INJECTION was not selected");
|
|
#endif
|
|
break;
|
|
case Opt_lazytime:
|
|
sb->s_flags |= MS_LAZYTIME;
|
|
break;
|
|
case Opt_nolazytime:
|
|
sb->s_flags &= ~MS_LAZYTIME;
|
|
break;
|
|
#ifdef CONFIG_QUOTA
|
|
case Opt_usrquota:
|
|
set_opt(sbi, USRQUOTA);
|
|
break;
|
|
case Opt_grpquota:
|
|
set_opt(sbi, GRPQUOTA);
|
|
break;
|
|
#else
|
|
case Opt_usrquota:
|
|
case Opt_grpquota:
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"quota operations not supported");
|
|
break;
|
|
#endif
|
|
default:
|
|
f2fs_msg(sb, KERN_ERR,
|
|
"Unrecognized mount option \"%s\" or missing value",
|
|
p);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) {
|
|
f2fs_msg(sb, KERN_ERR,
|
|
"Should set mode=lfs with %uKB-sized IO",
|
|
F2FS_IO_SIZE_KB(sbi));
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct inode *f2fs_alloc_inode(struct super_block *sb)
|
|
{
|
|
struct f2fs_inode_info *fi;
|
|
|
|
fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
|
|
if (!fi)
|
|
return NULL;
|
|
|
|
init_once((void *) fi);
|
|
|
|
/* Initialize f2fs-specific inode info */
|
|
fi->vfs_inode.i_version = 1;
|
|
atomic_set(&fi->dirty_pages, 0);
|
|
fi->i_current_depth = 1;
|
|
fi->i_advise = 0;
|
|
init_rwsem(&fi->i_sem);
|
|
INIT_LIST_HEAD(&fi->dirty_list);
|
|
INIT_LIST_HEAD(&fi->gdirty_list);
|
|
INIT_LIST_HEAD(&fi->inmem_pages);
|
|
mutex_init(&fi->inmem_lock);
|
|
init_rwsem(&fi->dio_rwsem[READ]);
|
|
init_rwsem(&fi->dio_rwsem[WRITE]);
|
|
init_rwsem(&fi->i_mmap_sem);
|
|
|
|
#ifdef CONFIG_QUOTA
|
|
memset(&fi->i_dquot, 0, sizeof(fi->i_dquot));
|
|
fi->i_reserved_quota = 0;
|
|
#endif
|
|
/* Will be used by directory only */
|
|
fi->i_dir_level = F2FS_SB(sb)->dir_level;
|
|
return &fi->vfs_inode;
|
|
}
|
|
|
|
static int f2fs_drop_inode(struct inode *inode)
|
|
{
|
|
int ret;
|
|
/*
|
|
* This is to avoid a deadlock condition like below.
|
|
* writeback_single_inode(inode)
|
|
* - f2fs_write_data_page
|
|
* - f2fs_gc -> iput -> evict
|
|
* - inode_wait_for_writeback(inode)
|
|
*/
|
|
if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
|
|
if (!inode->i_nlink && !is_bad_inode(inode)) {
|
|
/* to avoid evict_inode call simultaneously */
|
|
atomic_inc(&inode->i_count);
|
|
spin_unlock(&inode->i_lock);
|
|
|
|
/* some remained atomic pages should discarded */
|
|
if (f2fs_is_atomic_file(inode))
|
|
drop_inmem_pages(inode);
|
|
|
|
/* should remain fi->extent_tree for writepage */
|
|
f2fs_destroy_extent_node(inode);
|
|
|
|
sb_start_intwrite(inode->i_sb);
|
|
f2fs_i_size_write(inode, 0);
|
|
|
|
if (F2FS_HAS_BLOCKS(inode))
|
|
f2fs_truncate(inode);
|
|
|
|
sb_end_intwrite(inode->i_sb);
|
|
|
|
fscrypt_put_encryption_info(inode, NULL);
|
|
spin_lock(&inode->i_lock);
|
|
atomic_dec(&inode->i_count);
|
|
}
|
|
trace_f2fs_drop_inode(inode, 0);
|
|
return 0;
|
|
}
|
|
ret = generic_drop_inode(inode);
|
|
trace_f2fs_drop_inode(inode, ret);
|
|
return ret;
|
|
}
|
|
|
|
int f2fs_inode_dirtied(struct inode *inode, bool sync)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
int ret = 0;
|
|
|
|
spin_lock(&sbi->inode_lock[DIRTY_META]);
|
|
if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
|
|
ret = 1;
|
|
} else {
|
|
set_inode_flag(inode, FI_DIRTY_INODE);
|
|
stat_inc_dirty_inode(sbi, DIRTY_META);
|
|
}
|
|
if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
|
|
list_add_tail(&F2FS_I(inode)->gdirty_list,
|
|
&sbi->inode_list[DIRTY_META]);
|
|
inc_page_count(sbi, F2FS_DIRTY_IMETA);
|
|
}
|
|
spin_unlock(&sbi->inode_lock[DIRTY_META]);
|
|
return ret;
|
|
}
|
|
|
|
void f2fs_inode_synced(struct inode *inode)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
|
|
spin_lock(&sbi->inode_lock[DIRTY_META]);
|
|
if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
|
|
spin_unlock(&sbi->inode_lock[DIRTY_META]);
|
|
return;
|
|
}
|
|
if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
|
|
list_del_init(&F2FS_I(inode)->gdirty_list);
|
|
dec_page_count(sbi, F2FS_DIRTY_IMETA);
|
|
}
|
|
clear_inode_flag(inode, FI_DIRTY_INODE);
|
|
clear_inode_flag(inode, FI_AUTO_RECOVER);
|
|
stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
|
|
spin_unlock(&sbi->inode_lock[DIRTY_META]);
|
|
}
|
|
|
|
/*
|
|
* f2fs_dirty_inode() is called from __mark_inode_dirty()
|
|
*
|
|
* We should call set_dirty_inode to write the dirty inode through write_inode.
|
|
*/
|
|
static void f2fs_dirty_inode(struct inode *inode, int flags)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
|
|
if (inode->i_ino == F2FS_NODE_INO(sbi) ||
|
|
inode->i_ino == F2FS_META_INO(sbi))
|
|
return;
|
|
|
|
if (flags == I_DIRTY_TIME)
|
|
return;
|
|
|
|
if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
|
|
clear_inode_flag(inode, FI_AUTO_RECOVER);
|
|
|
|
f2fs_inode_dirtied(inode, false);
|
|
}
|
|
|
|
static void f2fs_i_callback(struct rcu_head *head)
|
|
{
|
|
struct inode *inode = container_of(head, struct inode, i_rcu);
|
|
kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
|
|
}
|
|
|
|
static void f2fs_destroy_inode(struct inode *inode)
|
|
{
|
|
call_rcu(&inode->i_rcu, f2fs_i_callback);
|
|
}
|
|
|
|
static void destroy_percpu_info(struct f2fs_sb_info *sbi)
|
|
{
|
|
percpu_counter_destroy(&sbi->alloc_valid_block_count);
|
|
percpu_counter_destroy(&sbi->total_valid_inode_count);
|
|
}
|
|
|
|
static void destroy_device_list(struct f2fs_sb_info *sbi)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < sbi->s_ndevs; i++) {
|
|
blkdev_put(FDEV(i).bdev, FMODE_EXCL);
|
|
#ifdef CONFIG_BLK_DEV_ZONED
|
|
kfree(FDEV(i).blkz_type);
|
|
#endif
|
|
}
|
|
kfree(sbi->devs);
|
|
}
|
|
|
|
static void f2fs_quota_off_umount(struct super_block *sb);
|
|
static void f2fs_put_super(struct super_block *sb)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
|
int i;
|
|
|
|
f2fs_quota_off_umount(sb);
|
|
|
|
/* prevent remaining shrinker jobs */
|
|
mutex_lock(&sbi->umount_mutex);
|
|
|
|
/*
|
|
* We don't need to do checkpoint when superblock is clean.
|
|
* But, the previous checkpoint was not done by umount, it needs to do
|
|
* clean checkpoint again.
|
|
*/
|
|
if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
|
|
!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
|
|
struct cp_control cpc = {
|
|
.reason = CP_UMOUNT,
|
|
};
|
|
write_checkpoint(sbi, &cpc);
|
|
}
|
|
|
|
/* be sure to wait for any on-going discard commands */
|
|
f2fs_wait_discard_bios(sbi);
|
|
|
|
if (f2fs_discard_en(sbi) && !sbi->discard_blks) {
|
|
struct cp_control cpc = {
|
|
.reason = CP_UMOUNT | CP_TRIMMED,
|
|
};
|
|
write_checkpoint(sbi, &cpc);
|
|
}
|
|
|
|
/* write_checkpoint can update stat informaion */
|
|
f2fs_destroy_stats(sbi);
|
|
|
|
/*
|
|
* normally superblock is clean, so we need to release this.
|
|
* In addition, EIO will skip do checkpoint, we need this as well.
|
|
*/
|
|
release_ino_entry(sbi, true);
|
|
|
|
f2fs_leave_shrinker(sbi);
|
|
mutex_unlock(&sbi->umount_mutex);
|
|
|
|
/* our cp_error case, we can wait for any writeback page */
|
|
f2fs_flush_merged_writes(sbi);
|
|
|
|
iput(sbi->node_inode);
|
|
iput(sbi->meta_inode);
|
|
|
|
/* destroy f2fs internal modules */
|
|
destroy_node_manager(sbi);
|
|
destroy_segment_manager(sbi);
|
|
|
|
kfree(sbi->ckpt);
|
|
|
|
f2fs_exit_sysfs(sbi);
|
|
|
|
sb->s_fs_info = NULL;
|
|
if (sbi->s_chksum_driver)
|
|
crypto_free_shash(sbi->s_chksum_driver);
|
|
kfree(sbi->raw_super);
|
|
|
|
destroy_device_list(sbi);
|
|
mempool_destroy(sbi->write_io_dummy);
|
|
destroy_percpu_info(sbi);
|
|
for (i = 0; i < NR_PAGE_TYPE; i++)
|
|
kfree(sbi->write_io[i]);
|
|
kfree(sbi);
|
|
}
|
|
|
|
int f2fs_sync_fs(struct super_block *sb, int sync)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
|
int err = 0;
|
|
|
|
trace_f2fs_sync_fs(sb, sync);
|
|
|
|
if (sync) {
|
|
struct cp_control cpc;
|
|
|
|
cpc.reason = __get_cp_reason(sbi);
|
|
|
|
mutex_lock(&sbi->gc_mutex);
|
|
err = write_checkpoint(sbi, &cpc);
|
|
mutex_unlock(&sbi->gc_mutex);
|
|
}
|
|
f2fs_trace_ios(NULL, 1);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int f2fs_freeze(struct super_block *sb)
|
|
{
|
|
if (f2fs_readonly(sb))
|
|
return 0;
|
|
|
|
/* IO error happened before */
|
|
if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
|
|
return -EIO;
|
|
|
|
/* must be clean, since sync_filesystem() was already called */
|
|
if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
static int f2fs_unfreeze(struct super_block *sb)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
|
|
{
|
|
struct super_block *sb = dentry->d_sb;
|
|
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
|
u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
|
|
block_t total_count, user_block_count, start_count, ovp_count;
|
|
u64 avail_node_count;
|
|
|
|
total_count = le64_to_cpu(sbi->raw_super->block_count);
|
|
user_block_count = sbi->user_block_count;
|
|
start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
|
|
ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
|
|
buf->f_type = F2FS_SUPER_MAGIC;
|
|
buf->f_bsize = sbi->blocksize;
|
|
|
|
buf->f_blocks = total_count - start_count;
|
|
buf->f_bfree = user_block_count - valid_user_blocks(sbi) + ovp_count;
|
|
buf->f_bavail = user_block_count - valid_user_blocks(sbi) -
|
|
sbi->reserved_blocks;
|
|
|
|
avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
|
|
|
|
if (avail_node_count > user_block_count) {
|
|
buf->f_files = user_block_count;
|
|
buf->f_ffree = buf->f_bavail;
|
|
} else {
|
|
buf->f_files = avail_node_count;
|
|
buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
|
|
buf->f_bavail);
|
|
}
|
|
|
|
buf->f_namelen = F2FS_NAME_LEN;
|
|
buf->f_fsid.val[0] = (u32)id;
|
|
buf->f_fsid.val[1] = (u32)(id >> 32);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
|
|
|
|
if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
|
|
if (test_opt(sbi, FORCE_FG_GC))
|
|
seq_printf(seq, ",background_gc=%s", "sync");
|
|
else
|
|
seq_printf(seq, ",background_gc=%s", "on");
|
|
} else {
|
|
seq_printf(seq, ",background_gc=%s", "off");
|
|
}
|
|
if (test_opt(sbi, DISABLE_ROLL_FORWARD))
|
|
seq_puts(seq, ",disable_roll_forward");
|
|
if (test_opt(sbi, DISCARD))
|
|
seq_puts(seq, ",discard");
|
|
if (test_opt(sbi, NOHEAP))
|
|
seq_puts(seq, ",no_heap");
|
|
else
|
|
seq_puts(seq, ",heap");
|
|
#ifdef CONFIG_F2FS_FS_XATTR
|
|
if (test_opt(sbi, XATTR_USER))
|
|
seq_puts(seq, ",user_xattr");
|
|
else
|
|
seq_puts(seq, ",nouser_xattr");
|
|
if (test_opt(sbi, INLINE_XATTR))
|
|
seq_puts(seq, ",inline_xattr");
|
|
else
|
|
seq_puts(seq, ",noinline_xattr");
|
|
#endif
|
|
#ifdef CONFIG_F2FS_FS_POSIX_ACL
|
|
if (test_opt(sbi, POSIX_ACL))
|
|
seq_puts(seq, ",acl");
|
|
else
|
|
seq_puts(seq, ",noacl");
|
|
#endif
|
|
if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
|
|
seq_puts(seq, ",disable_ext_identify");
|
|
if (test_opt(sbi, INLINE_DATA))
|
|
seq_puts(seq, ",inline_data");
|
|
else
|
|
seq_puts(seq, ",noinline_data");
|
|
if (test_opt(sbi, INLINE_DENTRY))
|
|
seq_puts(seq, ",inline_dentry");
|
|
else
|
|
seq_puts(seq, ",noinline_dentry");
|
|
if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
|
|
seq_puts(seq, ",flush_merge");
|
|
if (test_opt(sbi, NOBARRIER))
|
|
seq_puts(seq, ",nobarrier");
|
|
if (test_opt(sbi, FASTBOOT))
|
|
seq_puts(seq, ",fastboot");
|
|
if (test_opt(sbi, EXTENT_CACHE))
|
|
seq_puts(seq, ",extent_cache");
|
|
else
|
|
seq_puts(seq, ",noextent_cache");
|
|
if (test_opt(sbi, DATA_FLUSH))
|
|
seq_puts(seq, ",data_flush");
|
|
|
|
seq_puts(seq, ",mode=");
|
|
if (test_opt(sbi, ADAPTIVE))
|
|
seq_puts(seq, "adaptive");
|
|
else if (test_opt(sbi, LFS))
|
|
seq_puts(seq, "lfs");
|
|
seq_printf(seq, ",active_logs=%u", sbi->active_logs);
|
|
if (F2FS_IO_SIZE_BITS(sbi))
|
|
seq_printf(seq, ",io_size=%uKB", F2FS_IO_SIZE_KB(sbi));
|
|
#ifdef CONFIG_F2FS_FAULT_INJECTION
|
|
if (test_opt(sbi, FAULT_INJECTION))
|
|
seq_printf(seq, ",fault_injection=%u",
|
|
sbi->fault_info.inject_rate);
|
|
#endif
|
|
#ifdef CONFIG_QUOTA
|
|
if (test_opt(sbi, USRQUOTA))
|
|
seq_puts(seq, ",usrquota");
|
|
if (test_opt(sbi, GRPQUOTA))
|
|
seq_puts(seq, ",grpquota");
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void default_options(struct f2fs_sb_info *sbi)
|
|
{
|
|
/* init some FS parameters */
|
|
sbi->active_logs = NR_CURSEG_TYPE;
|
|
|
|
set_opt(sbi, BG_GC);
|
|
set_opt(sbi, INLINE_XATTR);
|
|
set_opt(sbi, INLINE_DATA);
|
|
set_opt(sbi, INLINE_DENTRY);
|
|
set_opt(sbi, EXTENT_CACHE);
|
|
set_opt(sbi, NOHEAP);
|
|
sbi->sb->s_flags |= MS_LAZYTIME;
|
|
set_opt(sbi, FLUSH_MERGE);
|
|
if (f2fs_sb_mounted_blkzoned(sbi->sb)) {
|
|
set_opt_mode(sbi, F2FS_MOUNT_LFS);
|
|
set_opt(sbi, DISCARD);
|
|
} else {
|
|
set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
|
|
}
|
|
|
|
#ifdef CONFIG_F2FS_FS_XATTR
|
|
set_opt(sbi, XATTR_USER);
|
|
#endif
|
|
#ifdef CONFIG_F2FS_FS_POSIX_ACL
|
|
set_opt(sbi, POSIX_ACL);
|
|
#endif
|
|
|
|
#ifdef CONFIG_F2FS_FAULT_INJECTION
|
|
f2fs_build_fault_attr(sbi, 0);
|
|
#endif
|
|
}
|
|
|
|
static int f2fs_remount(struct super_block *sb, int *flags, char *data)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
|
struct f2fs_mount_info org_mount_opt;
|
|
unsigned long old_sb_flags;
|
|
int err, active_logs;
|
|
bool need_restart_gc = false;
|
|
bool need_stop_gc = false;
|
|
bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
|
|
#ifdef CONFIG_F2FS_FAULT_INJECTION
|
|
struct f2fs_fault_info ffi = sbi->fault_info;
|
|
#endif
|
|
|
|
/*
|
|
* Save the old mount options in case we
|
|
* need to restore them.
|
|
*/
|
|
org_mount_opt = sbi->mount_opt;
|
|
old_sb_flags = sb->s_flags;
|
|
active_logs = sbi->active_logs;
|
|
|
|
/* recover superblocks we couldn't write due to previous RO mount */
|
|
if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
|
|
err = f2fs_commit_super(sbi, false);
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Try to recover all the superblocks, ret: %d", err);
|
|
if (!err)
|
|
clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
|
|
}
|
|
|
|
default_options(sbi);
|
|
|
|
/* parse mount options */
|
|
err = parse_options(sb, data);
|
|
if (err)
|
|
goto restore_opts;
|
|
|
|
/*
|
|
* Previous and new state of filesystem is RO,
|
|
* so skip checking GC and FLUSH_MERGE conditions.
|
|
*/
|
|
if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
|
|
goto skip;
|
|
|
|
if (!f2fs_readonly(sb) && (*flags & MS_RDONLY)) {
|
|
err = dquot_suspend(sb, -1);
|
|
if (err < 0)
|
|
goto restore_opts;
|
|
} else {
|
|
/* dquot_resume needs RW */
|
|
sb->s_flags &= ~MS_RDONLY;
|
|
dquot_resume(sb, -1);
|
|
}
|
|
|
|
/* disallow enable/disable extent_cache dynamically */
|
|
if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
|
|
err = -EINVAL;
|
|
f2fs_msg(sbi->sb, KERN_WARNING,
|
|
"switch extent_cache option is not allowed");
|
|
goto restore_opts;
|
|
}
|
|
|
|
/*
|
|
* We stop the GC thread if FS is mounted as RO
|
|
* or if background_gc = off is passed in mount
|
|
* option. Also sync the filesystem.
|
|
*/
|
|
if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
|
|
if (sbi->gc_thread) {
|
|
stop_gc_thread(sbi);
|
|
need_restart_gc = true;
|
|
}
|
|
} else if (!sbi->gc_thread) {
|
|
err = start_gc_thread(sbi);
|
|
if (err)
|
|
goto restore_opts;
|
|
need_stop_gc = true;
|
|
}
|
|
|
|
if (*flags & MS_RDONLY) {
|
|
writeback_inodes_sb(sb, WB_REASON_SYNC);
|
|
sync_inodes_sb(sb);
|
|
|
|
set_sbi_flag(sbi, SBI_IS_DIRTY);
|
|
set_sbi_flag(sbi, SBI_IS_CLOSE);
|
|
f2fs_sync_fs(sb, 1);
|
|
clear_sbi_flag(sbi, SBI_IS_CLOSE);
|
|
}
|
|
|
|
/*
|
|
* We stop issue flush thread if FS is mounted as RO
|
|
* or if flush_merge is not passed in mount option.
|
|
*/
|
|
if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
|
|
clear_opt(sbi, FLUSH_MERGE);
|
|
destroy_flush_cmd_control(sbi, false);
|
|
} else {
|
|
err = create_flush_cmd_control(sbi);
|
|
if (err)
|
|
goto restore_gc;
|
|
}
|
|
skip:
|
|
/* Update the POSIXACL Flag */
|
|
sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
|
|
(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
|
|
|
|
return 0;
|
|
restore_gc:
|
|
if (need_restart_gc) {
|
|
if (start_gc_thread(sbi))
|
|
f2fs_msg(sbi->sb, KERN_WARNING,
|
|
"background gc thread has stopped");
|
|
} else if (need_stop_gc) {
|
|
stop_gc_thread(sbi);
|
|
}
|
|
restore_opts:
|
|
sbi->mount_opt = org_mount_opt;
|
|
sbi->active_logs = active_logs;
|
|
sb->s_flags = old_sb_flags;
|
|
#ifdef CONFIG_F2FS_FAULT_INJECTION
|
|
sbi->fault_info = ffi;
|
|
#endif
|
|
return err;
|
|
}
|
|
|
|
#ifdef CONFIG_QUOTA
|
|
/* Read data from quotafile */
|
|
static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
|
|
size_t len, loff_t off)
|
|
{
|
|
struct inode *inode = sb_dqopt(sb)->files[type];
|
|
struct address_space *mapping = inode->i_mapping;
|
|
block_t blkidx = F2FS_BYTES_TO_BLK(off);
|
|
int offset = off & (sb->s_blocksize - 1);
|
|
int tocopy;
|
|
size_t toread;
|
|
loff_t i_size = i_size_read(inode);
|
|
struct page *page;
|
|
char *kaddr;
|
|
|
|
if (off > i_size)
|
|
return 0;
|
|
|
|
if (off + len > i_size)
|
|
len = i_size - off;
|
|
toread = len;
|
|
while (toread > 0) {
|
|
tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
|
|
repeat:
|
|
page = read_mapping_page(mapping, blkidx, NULL);
|
|
if (IS_ERR(page))
|
|
return PTR_ERR(page);
|
|
|
|
lock_page(page);
|
|
|
|
if (unlikely(page->mapping != mapping)) {
|
|
f2fs_put_page(page, 1);
|
|
goto repeat;
|
|
}
|
|
if (unlikely(!PageUptodate(page))) {
|
|
f2fs_put_page(page, 1);
|
|
return -EIO;
|
|
}
|
|
|
|
kaddr = kmap_atomic(page);
|
|
memcpy(data, kaddr + offset, tocopy);
|
|
kunmap_atomic(kaddr);
|
|
f2fs_put_page(page, 1);
|
|
|
|
offset = 0;
|
|
toread -= tocopy;
|
|
data += tocopy;
|
|
blkidx++;
|
|
}
|
|
return len;
|
|
}
|
|
|
|
/* Write to quotafile */
|
|
static ssize_t f2fs_quota_write(struct super_block *sb, int type,
|
|
const char *data, size_t len, loff_t off)
|
|
{
|
|
struct inode *inode = sb_dqopt(sb)->files[type];
|
|
struct address_space *mapping = inode->i_mapping;
|
|
const struct address_space_operations *a_ops = mapping->a_ops;
|
|
int offset = off & (sb->s_blocksize - 1);
|
|
size_t towrite = len;
|
|
struct page *page;
|
|
char *kaddr;
|
|
int err = 0;
|
|
int tocopy;
|
|
|
|
while (towrite > 0) {
|
|
tocopy = min_t(unsigned long, sb->s_blocksize - offset,
|
|
towrite);
|
|
|
|
err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
|
|
&page, NULL);
|
|
if (unlikely(err))
|
|
break;
|
|
|
|
kaddr = kmap_atomic(page);
|
|
memcpy(kaddr + offset, data, tocopy);
|
|
kunmap_atomic(kaddr);
|
|
flush_dcache_page(page);
|
|
|
|
a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
|
|
page, NULL);
|
|
offset = 0;
|
|
towrite -= tocopy;
|
|
off += tocopy;
|
|
data += tocopy;
|
|
cond_resched();
|
|
}
|
|
|
|
if (len == towrite)
|
|
return err;
|
|
inode->i_version++;
|
|
inode->i_mtime = inode->i_ctime = current_time(inode);
|
|
f2fs_mark_inode_dirty_sync(inode, false);
|
|
return len - towrite;
|
|
}
|
|
|
|
static struct dquot **f2fs_get_dquots(struct inode *inode)
|
|
{
|
|
return F2FS_I(inode)->i_dquot;
|
|
}
|
|
|
|
static qsize_t *f2fs_get_reserved_space(struct inode *inode)
|
|
{
|
|
return &F2FS_I(inode)->i_reserved_quota;
|
|
}
|
|
|
|
static int f2fs_quota_sync(struct super_block *sb, int type)
|
|
{
|
|
struct quota_info *dqopt = sb_dqopt(sb);
|
|
int cnt;
|
|
int ret;
|
|
|
|
ret = dquot_writeback_dquots(sb, type);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Now when everything is written we can discard the pagecache so
|
|
* that userspace sees the changes.
|
|
*/
|
|
for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
|
|
if (type != -1 && cnt != type)
|
|
continue;
|
|
if (!sb_has_quota_active(sb, cnt))
|
|
continue;
|
|
|
|
ret = filemap_write_and_wait(dqopt->files[cnt]->i_mapping);
|
|
if (ret)
|
|
return ret;
|
|
|
|
inode_lock(dqopt->files[cnt]);
|
|
truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
|
|
inode_unlock(dqopt->files[cnt]);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
|
|
const struct path *path)
|
|
{
|
|
struct inode *inode;
|
|
int err;
|
|
|
|
err = f2fs_quota_sync(sb, -1);
|
|
if (err)
|
|
return err;
|
|
|
|
err = dquot_quota_on(sb, type, format_id, path);
|
|
if (err)
|
|
return err;
|
|
|
|
inode = d_inode(path->dentry);
|
|
|
|
inode_lock(inode);
|
|
F2FS_I(inode)->i_flags |= FS_NOATIME_FL | FS_IMMUTABLE_FL;
|
|
inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
|
|
S_NOATIME | S_IMMUTABLE);
|
|
inode_unlock(inode);
|
|
f2fs_mark_inode_dirty_sync(inode, false);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int f2fs_quota_off(struct super_block *sb, int type)
|
|
{
|
|
struct inode *inode = sb_dqopt(sb)->files[type];
|
|
int err;
|
|
|
|
if (!inode || !igrab(inode))
|
|
return dquot_quota_off(sb, type);
|
|
|
|
f2fs_quota_sync(sb, -1);
|
|
|
|
err = dquot_quota_off(sb, type);
|
|
if (err)
|
|
goto out_put;
|
|
|
|
inode_lock(inode);
|
|
F2FS_I(inode)->i_flags &= ~(FS_NOATIME_FL | FS_IMMUTABLE_FL);
|
|
inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
|
|
inode_unlock(inode);
|
|
f2fs_mark_inode_dirty_sync(inode, false);
|
|
out_put:
|
|
iput(inode);
|
|
return err;
|
|
}
|
|
|
|
static void f2fs_quota_off_umount(struct super_block *sb)
|
|
{
|
|
int type;
|
|
|
|
for (type = 0; type < MAXQUOTAS; type++)
|
|
f2fs_quota_off(sb, type);
|
|
}
|
|
|
|
static const struct dquot_operations f2fs_quota_operations = {
|
|
.get_reserved_space = f2fs_get_reserved_space,
|
|
.write_dquot = dquot_commit,
|
|
.acquire_dquot = dquot_acquire,
|
|
.release_dquot = dquot_release,
|
|
.mark_dirty = dquot_mark_dquot_dirty,
|
|
.write_info = dquot_commit_info,
|
|
.alloc_dquot = dquot_alloc,
|
|
.destroy_dquot = dquot_destroy,
|
|
.get_next_id = dquot_get_next_id,
|
|
};
|
|
|
|
static const struct quotactl_ops f2fs_quotactl_ops = {
|
|
.quota_on = f2fs_quota_on,
|
|
.quota_off = f2fs_quota_off,
|
|
.quota_sync = f2fs_quota_sync,
|
|
.get_state = dquot_get_state,
|
|
.set_info = dquot_set_dqinfo,
|
|
.get_dqblk = dquot_get_dqblk,
|
|
.set_dqblk = dquot_set_dqblk,
|
|
.get_nextdqblk = dquot_get_next_dqblk,
|
|
};
|
|
#else
|
|
static inline void f2fs_quota_off_umount(struct super_block *sb)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static struct super_operations f2fs_sops = {
|
|
.alloc_inode = f2fs_alloc_inode,
|
|
.drop_inode = f2fs_drop_inode,
|
|
.destroy_inode = f2fs_destroy_inode,
|
|
.write_inode = f2fs_write_inode,
|
|
.dirty_inode = f2fs_dirty_inode,
|
|
.show_options = f2fs_show_options,
|
|
#ifdef CONFIG_QUOTA
|
|
.quota_read = f2fs_quota_read,
|
|
.quota_write = f2fs_quota_write,
|
|
.get_dquots = f2fs_get_dquots,
|
|
#endif
|
|
.evict_inode = f2fs_evict_inode,
|
|
.put_super = f2fs_put_super,
|
|
.sync_fs = f2fs_sync_fs,
|
|
.freeze_fs = f2fs_freeze,
|
|
.unfreeze_fs = f2fs_unfreeze,
|
|
.statfs = f2fs_statfs,
|
|
.remount_fs = f2fs_remount,
|
|
};
|
|
|
|
#ifdef CONFIG_F2FS_FS_ENCRYPTION
|
|
static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
|
|
{
|
|
return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
|
|
F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
|
|
ctx, len, NULL);
|
|
}
|
|
|
|
static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
|
|
void *fs_data)
|
|
{
|
|
return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
|
|
F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
|
|
ctx, len, fs_data, XATTR_CREATE);
|
|
}
|
|
|
|
static unsigned f2fs_max_namelen(struct inode *inode)
|
|
{
|
|
return S_ISLNK(inode->i_mode) ?
|
|
inode->i_sb->s_blocksize : F2FS_NAME_LEN;
|
|
}
|
|
|
|
static const struct fscrypt_operations f2fs_cryptops = {
|
|
.key_prefix = "f2fs:",
|
|
.get_context = f2fs_get_context,
|
|
.set_context = f2fs_set_context,
|
|
.is_encrypted = f2fs_encrypted_inode,
|
|
.empty_dir = f2fs_empty_dir,
|
|
.max_namelen = f2fs_max_namelen,
|
|
};
|
|
#else
|
|
static const struct fscrypt_operations f2fs_cryptops = {
|
|
.is_encrypted = f2fs_encrypted_inode,
|
|
};
|
|
#endif
|
|
|
|
static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
|
|
u64 ino, u32 generation)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
|
struct inode *inode;
|
|
|
|
if (check_nid_range(sbi, ino))
|
|
return ERR_PTR(-ESTALE);
|
|
|
|
/*
|
|
* f2fs_iget isn't quite right if the inode is currently unallocated!
|
|
* However f2fs_iget currently does appropriate checks to handle stale
|
|
* inodes so everything is OK.
|
|
*/
|
|
inode = f2fs_iget(sb, ino);
|
|
if (IS_ERR(inode))
|
|
return ERR_CAST(inode);
|
|
if (unlikely(generation && inode->i_generation != generation)) {
|
|
/* we didn't find the right inode.. */
|
|
iput(inode);
|
|
return ERR_PTR(-ESTALE);
|
|
}
|
|
return inode;
|
|
}
|
|
|
|
static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
|
|
int fh_len, int fh_type)
|
|
{
|
|
return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
|
|
f2fs_nfs_get_inode);
|
|
}
|
|
|
|
static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
|
|
int fh_len, int fh_type)
|
|
{
|
|
return generic_fh_to_parent(sb, fid, fh_len, fh_type,
|
|
f2fs_nfs_get_inode);
|
|
}
|
|
|
|
static const struct export_operations f2fs_export_ops = {
|
|
.fh_to_dentry = f2fs_fh_to_dentry,
|
|
.fh_to_parent = f2fs_fh_to_parent,
|
|
.get_parent = f2fs_get_parent,
|
|
};
|
|
|
|
static loff_t max_file_blocks(void)
|
|
{
|
|
loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
|
|
loff_t leaf_count = ADDRS_PER_BLOCK;
|
|
|
|
/* two direct node blocks */
|
|
result += (leaf_count * 2);
|
|
|
|
/* two indirect node blocks */
|
|
leaf_count *= NIDS_PER_BLOCK;
|
|
result += (leaf_count * 2);
|
|
|
|
/* one double indirect node block */
|
|
leaf_count *= NIDS_PER_BLOCK;
|
|
result += leaf_count;
|
|
|
|
return result;
|
|
}
|
|
|
|
static int __f2fs_commit_super(struct buffer_head *bh,
|
|
struct f2fs_super_block *super)
|
|
{
|
|
lock_buffer(bh);
|
|
if (super)
|
|
memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
|
|
set_buffer_uptodate(bh);
|
|
set_buffer_dirty(bh);
|
|
unlock_buffer(bh);
|
|
|
|
/* it's rare case, we can do fua all the time */
|
|
return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
|
|
}
|
|
|
|
static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
|
|
struct buffer_head *bh)
|
|
{
|
|
struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
|
|
(bh->b_data + F2FS_SUPER_OFFSET);
|
|
struct super_block *sb = sbi->sb;
|
|
u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
|
|
u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
|
|
u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
|
|
u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
|
|
u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
|
|
u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
|
|
u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
|
|
u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
|
|
u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
|
|
u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
|
|
u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
|
|
u32 segment_count = le32_to_cpu(raw_super->segment_count);
|
|
u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
|
|
u64 main_end_blkaddr = main_blkaddr +
|
|
(segment_count_main << log_blocks_per_seg);
|
|
u64 seg_end_blkaddr = segment0_blkaddr +
|
|
(segment_count << log_blocks_per_seg);
|
|
|
|
if (segment0_blkaddr != cp_blkaddr) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Mismatch start address, segment0(%u) cp_blkaddr(%u)",
|
|
segment0_blkaddr, cp_blkaddr);
|
|
return true;
|
|
}
|
|
|
|
if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
|
|
sit_blkaddr) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Wrong CP boundary, start(%u) end(%u) blocks(%u)",
|
|
cp_blkaddr, sit_blkaddr,
|
|
segment_count_ckpt << log_blocks_per_seg);
|
|
return true;
|
|
}
|
|
|
|
if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
|
|
nat_blkaddr) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
|
|
sit_blkaddr, nat_blkaddr,
|
|
segment_count_sit << log_blocks_per_seg);
|
|
return true;
|
|
}
|
|
|
|
if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
|
|
ssa_blkaddr) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
|
|
nat_blkaddr, ssa_blkaddr,
|
|
segment_count_nat << log_blocks_per_seg);
|
|
return true;
|
|
}
|
|
|
|
if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
|
|
main_blkaddr) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
|
|
ssa_blkaddr, main_blkaddr,
|
|
segment_count_ssa << log_blocks_per_seg);
|
|
return true;
|
|
}
|
|
|
|
if (main_end_blkaddr > seg_end_blkaddr) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
|
|
main_blkaddr,
|
|
segment0_blkaddr +
|
|
(segment_count << log_blocks_per_seg),
|
|
segment_count_main << log_blocks_per_seg);
|
|
return true;
|
|
} else if (main_end_blkaddr < seg_end_blkaddr) {
|
|
int err = 0;
|
|
char *res;
|
|
|
|
/* fix in-memory information all the time */
|
|
raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
|
|
segment0_blkaddr) >> log_blocks_per_seg);
|
|
|
|
if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
|
|
set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
|
|
res = "internally";
|
|
} else {
|
|
err = __f2fs_commit_super(bh, NULL);
|
|
res = err ? "failed" : "done";
|
|
}
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Fix alignment : %s, start(%u) end(%u) block(%u)",
|
|
res, main_blkaddr,
|
|
segment0_blkaddr +
|
|
(segment_count << log_blocks_per_seg),
|
|
segment_count_main << log_blocks_per_seg);
|
|
if (err)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
|
|
struct buffer_head *bh)
|
|
{
|
|
struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
|
|
(bh->b_data + F2FS_SUPER_OFFSET);
|
|
struct super_block *sb = sbi->sb;
|
|
unsigned int blocksize;
|
|
|
|
if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Magic Mismatch, valid(0x%x) - read(0x%x)",
|
|
F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
|
|
return 1;
|
|
}
|
|
|
|
/* Currently, support only 4KB page cache size */
|
|
if (F2FS_BLKSIZE != PAGE_SIZE) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Invalid page_cache_size (%lu), supports only 4KB\n",
|
|
PAGE_SIZE);
|
|
return 1;
|
|
}
|
|
|
|
/* Currently, support only 4KB block size */
|
|
blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
|
|
if (blocksize != F2FS_BLKSIZE) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Invalid blocksize (%u), supports only 4KB\n",
|
|
blocksize);
|
|
return 1;
|
|
}
|
|
|
|
/* check log blocks per segment */
|
|
if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Invalid log blocks per segment (%u)\n",
|
|
le32_to_cpu(raw_super->log_blocks_per_seg));
|
|
return 1;
|
|
}
|
|
|
|
/* Currently, support 512/1024/2048/4096 bytes sector size */
|
|
if (le32_to_cpu(raw_super->log_sectorsize) >
|
|
F2FS_MAX_LOG_SECTOR_SIZE ||
|
|
le32_to_cpu(raw_super->log_sectorsize) <
|
|
F2FS_MIN_LOG_SECTOR_SIZE) {
|
|
f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
|
|
le32_to_cpu(raw_super->log_sectorsize));
|
|
return 1;
|
|
}
|
|
if (le32_to_cpu(raw_super->log_sectors_per_block) +
|
|
le32_to_cpu(raw_super->log_sectorsize) !=
|
|
F2FS_MAX_LOG_SECTOR_SIZE) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Invalid log sectors per block(%u) log sectorsize(%u)",
|
|
le32_to_cpu(raw_super->log_sectors_per_block),
|
|
le32_to_cpu(raw_super->log_sectorsize));
|
|
return 1;
|
|
}
|
|
|
|
/* check reserved ino info */
|
|
if (le32_to_cpu(raw_super->node_ino) != 1 ||
|
|
le32_to_cpu(raw_super->meta_ino) != 2 ||
|
|
le32_to_cpu(raw_super->root_ino) != 3) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
|
|
le32_to_cpu(raw_super->node_ino),
|
|
le32_to_cpu(raw_super->meta_ino),
|
|
le32_to_cpu(raw_super->root_ino));
|
|
return 1;
|
|
}
|
|
|
|
if (le32_to_cpu(raw_super->segment_count) > F2FS_MAX_SEGMENT) {
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Invalid segment count (%u)",
|
|
le32_to_cpu(raw_super->segment_count));
|
|
return 1;
|
|
}
|
|
|
|
/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
|
|
if (sanity_check_area_boundary(sbi, bh))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int sanity_check_ckpt(struct f2fs_sb_info *sbi)
|
|
{
|
|
unsigned int total, fsmeta;
|
|
struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
|
|
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
|
|
unsigned int ovp_segments, reserved_segments;
|
|
unsigned int main_segs, blocks_per_seg;
|
|
int i;
|
|
|
|
total = le32_to_cpu(raw_super->segment_count);
|
|
fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
|
|
fsmeta += le32_to_cpu(raw_super->segment_count_sit);
|
|
fsmeta += le32_to_cpu(raw_super->segment_count_nat);
|
|
fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
|
|
fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
|
|
|
|
if (unlikely(fsmeta >= total))
|
|
return 1;
|
|
|
|
ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
|
|
reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
|
|
|
|
if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
|
|
ovp_segments == 0 || reserved_segments == 0)) {
|
|
f2fs_msg(sbi->sb, KERN_ERR,
|
|
"Wrong layout: check mkfs.f2fs version");
|
|
return 1;
|
|
}
|
|
|
|
main_segs = le32_to_cpu(raw_super->segment_count_main);
|
|
blocks_per_seg = sbi->blocks_per_seg;
|
|
|
|
for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
|
|
if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
|
|
le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
|
|
return 1;
|
|
}
|
|
for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
|
|
if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
|
|
le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
|
|
return 1;
|
|
}
|
|
|
|
if (unlikely(f2fs_cp_error(sbi))) {
|
|
f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void init_sb_info(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_super_block *raw_super = sbi->raw_super;
|
|
int i, j;
|
|
|
|
sbi->log_sectors_per_block =
|
|
le32_to_cpu(raw_super->log_sectors_per_block);
|
|
sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
|
|
sbi->blocksize = 1 << sbi->log_blocksize;
|
|
sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
|
|
sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
|
|
sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
|
|
sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
|
|
sbi->total_sections = le32_to_cpu(raw_super->section_count);
|
|
sbi->total_node_count =
|
|
(le32_to_cpu(raw_super->segment_count_nat) / 2)
|
|
* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
|
|
sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
|
|
sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
|
|
sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
|
|
sbi->cur_victim_sec = NULL_SECNO;
|
|
sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
|
|
|
|
sbi->dir_level = DEF_DIR_LEVEL;
|
|
sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
|
|
sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
|
|
clear_sbi_flag(sbi, SBI_NEED_FSCK);
|
|
|
|
for (i = 0; i < NR_COUNT_TYPE; i++)
|
|
atomic_set(&sbi->nr_pages[i], 0);
|
|
|
|
atomic_set(&sbi->wb_sync_req, 0);
|
|
|
|
INIT_LIST_HEAD(&sbi->s_list);
|
|
mutex_init(&sbi->umount_mutex);
|
|
for (i = 0; i < NR_PAGE_TYPE - 1; i++)
|
|
for (j = HOT; j < NR_TEMP_TYPE; j++)
|
|
mutex_init(&sbi->wio_mutex[i][j]);
|
|
spin_lock_init(&sbi->cp_lock);
|
|
}
|
|
|
|
static int init_percpu_info(struct f2fs_sb_info *sbi)
|
|
{
|
|
int err;
|
|
|
|
err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
|
|
if (err)
|
|
return err;
|
|
|
|
return percpu_counter_init(&sbi->total_valid_inode_count, 0,
|
|
GFP_KERNEL);
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_DEV_ZONED
|
|
static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
|
|
{
|
|
struct block_device *bdev = FDEV(devi).bdev;
|
|
sector_t nr_sectors = bdev->bd_part->nr_sects;
|
|
sector_t sector = 0;
|
|
struct blk_zone *zones;
|
|
unsigned int i, nr_zones;
|
|
unsigned int n = 0;
|
|
int err = -EIO;
|
|
|
|
if (!f2fs_sb_mounted_blkzoned(sbi->sb))
|
|
return 0;
|
|
|
|
if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
|
|
SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
|
|
return -EINVAL;
|
|
sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
|
|
if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
|
|
__ilog2_u32(sbi->blocks_per_blkz))
|
|
return -EINVAL;
|
|
sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
|
|
FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
|
|
sbi->log_blocks_per_blkz;
|
|
if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
|
|
FDEV(devi).nr_blkz++;
|
|
|
|
FDEV(devi).blkz_type = kmalloc(FDEV(devi).nr_blkz, GFP_KERNEL);
|
|
if (!FDEV(devi).blkz_type)
|
|
return -ENOMEM;
|
|
|
|
#define F2FS_REPORT_NR_ZONES 4096
|
|
|
|
zones = kcalloc(F2FS_REPORT_NR_ZONES, sizeof(struct blk_zone),
|
|
GFP_KERNEL);
|
|
if (!zones)
|
|
return -ENOMEM;
|
|
|
|
/* Get block zones type */
|
|
while (zones && sector < nr_sectors) {
|
|
|
|
nr_zones = F2FS_REPORT_NR_ZONES;
|
|
err = blkdev_report_zones(bdev, sector,
|
|
zones, &nr_zones,
|
|
GFP_KERNEL);
|
|
if (err)
|
|
break;
|
|
if (!nr_zones) {
|
|
err = -EIO;
|
|
break;
|
|
}
|
|
|
|
for (i = 0; i < nr_zones; i++) {
|
|
FDEV(devi).blkz_type[n] = zones[i].type;
|
|
sector += zones[i].len;
|
|
n++;
|
|
}
|
|
}
|
|
|
|
kfree(zones);
|
|
|
|
return err;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Read f2fs raw super block.
|
|
* Because we have two copies of super block, so read both of them
|
|
* to get the first valid one. If any one of them is broken, we pass
|
|
* them recovery flag back to the caller.
|
|
*/
|
|
static int read_raw_super_block(struct f2fs_sb_info *sbi,
|
|
struct f2fs_super_block **raw_super,
|
|
int *valid_super_block, int *recovery)
|
|
{
|
|
struct super_block *sb = sbi->sb;
|
|
int block;
|
|
struct buffer_head *bh;
|
|
struct f2fs_super_block *super;
|
|
int err = 0;
|
|
|
|
super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
|
|
if (!super)
|
|
return -ENOMEM;
|
|
|
|
for (block = 0; block < 2; block++) {
|
|
bh = sb_bread(sb, block);
|
|
if (!bh) {
|
|
f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
|
|
block + 1);
|
|
err = -EIO;
|
|
continue;
|
|
}
|
|
|
|
/* sanity checking of raw super */
|
|
if (sanity_check_raw_super(sbi, bh)) {
|
|
f2fs_msg(sb, KERN_ERR,
|
|
"Can't find valid F2FS filesystem in %dth superblock",
|
|
block + 1);
|
|
err = -EINVAL;
|
|
brelse(bh);
|
|
continue;
|
|
}
|
|
|
|
if (!*raw_super) {
|
|
memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
|
|
sizeof(*super));
|
|
*valid_super_block = block;
|
|
*raw_super = super;
|
|
}
|
|
brelse(bh);
|
|
}
|
|
|
|
/* Fail to read any one of the superblocks*/
|
|
if (err < 0)
|
|
*recovery = 1;
|
|
|
|
/* No valid superblock */
|
|
if (!*raw_super)
|
|
kfree(super);
|
|
else
|
|
err = 0;
|
|
|
|
return err;
|
|
}
|
|
|
|
int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
|
|
{
|
|
struct buffer_head *bh;
|
|
int err;
|
|
|
|
if ((recover && f2fs_readonly(sbi->sb)) ||
|
|
bdev_read_only(sbi->sb->s_bdev)) {
|
|
set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
|
|
return -EROFS;
|
|
}
|
|
|
|
/* write back-up superblock first */
|
|
bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1);
|
|
if (!bh)
|
|
return -EIO;
|
|
err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
|
|
brelse(bh);
|
|
|
|
/* if we are in recovery path, skip writing valid superblock */
|
|
if (recover || err)
|
|
return err;
|
|
|
|
/* write current valid superblock */
|
|
bh = sb_getblk(sbi->sb, sbi->valid_super_block);
|
|
if (!bh)
|
|
return -EIO;
|
|
err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
|
|
brelse(bh);
|
|
return err;
|
|
}
|
|
|
|
static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
|
|
unsigned int max_devices = MAX_DEVICES;
|
|
int i;
|
|
|
|
/* Initialize single device information */
|
|
if (!RDEV(0).path[0]) {
|
|
if (!bdev_is_zoned(sbi->sb->s_bdev))
|
|
return 0;
|
|
max_devices = 1;
|
|
}
|
|
|
|
/*
|
|
* Initialize multiple devices information, or single
|
|
* zoned block device information.
|
|
*/
|
|
sbi->devs = kcalloc(max_devices, sizeof(struct f2fs_dev_info),
|
|
GFP_KERNEL);
|
|
if (!sbi->devs)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < max_devices; i++) {
|
|
|
|
if (i > 0 && !RDEV(i).path[0])
|
|
break;
|
|
|
|
if (max_devices == 1) {
|
|
/* Single zoned block device mount */
|
|
FDEV(0).bdev =
|
|
blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
|
|
sbi->sb->s_mode, sbi->sb->s_type);
|
|
} else {
|
|
/* Multi-device mount */
|
|
memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
|
|
FDEV(i).total_segments =
|
|
le32_to_cpu(RDEV(i).total_segments);
|
|
if (i == 0) {
|
|
FDEV(i).start_blk = 0;
|
|
FDEV(i).end_blk = FDEV(i).start_blk +
|
|
(FDEV(i).total_segments <<
|
|
sbi->log_blocks_per_seg) - 1 +
|
|
le32_to_cpu(raw_super->segment0_blkaddr);
|
|
} else {
|
|
FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
|
|
FDEV(i).end_blk = FDEV(i).start_blk +
|
|
(FDEV(i).total_segments <<
|
|
sbi->log_blocks_per_seg) - 1;
|
|
}
|
|
FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
|
|
sbi->sb->s_mode, sbi->sb->s_type);
|
|
}
|
|
if (IS_ERR(FDEV(i).bdev))
|
|
return PTR_ERR(FDEV(i).bdev);
|
|
|
|
/* to release errored devices */
|
|
sbi->s_ndevs = i + 1;
|
|
|
|
#ifdef CONFIG_BLK_DEV_ZONED
|
|
if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
|
|
!f2fs_sb_mounted_blkzoned(sbi->sb)) {
|
|
f2fs_msg(sbi->sb, KERN_ERR,
|
|
"Zoned block device feature not enabled\n");
|
|
return -EINVAL;
|
|
}
|
|
if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
|
|
if (init_blkz_info(sbi, i)) {
|
|
f2fs_msg(sbi->sb, KERN_ERR,
|
|
"Failed to initialize F2FS blkzone information");
|
|
return -EINVAL;
|
|
}
|
|
if (max_devices == 1)
|
|
break;
|
|
f2fs_msg(sbi->sb, KERN_INFO,
|
|
"Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
|
|
i, FDEV(i).path,
|
|
FDEV(i).total_segments,
|
|
FDEV(i).start_blk, FDEV(i).end_blk,
|
|
bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
|
|
"Host-aware" : "Host-managed");
|
|
continue;
|
|
}
|
|
#endif
|
|
f2fs_msg(sbi->sb, KERN_INFO,
|
|
"Mount Device [%2d]: %20s, %8u, %8x - %8x",
|
|
i, FDEV(i).path,
|
|
FDEV(i).total_segments,
|
|
FDEV(i).start_blk, FDEV(i).end_blk);
|
|
}
|
|
f2fs_msg(sbi->sb, KERN_INFO,
|
|
"IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
|
|
return 0;
|
|
}
|
|
|
|
static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
|
|
{
|
|
struct f2fs_sb_info *sbi;
|
|
struct f2fs_super_block *raw_super;
|
|
struct inode *root;
|
|
int err;
|
|
bool retry = true, need_fsck = false;
|
|
char *options = NULL;
|
|
int recovery, i, valid_super_block;
|
|
struct curseg_info *seg_i;
|
|
|
|
try_onemore:
|
|
err = -EINVAL;
|
|
raw_super = NULL;
|
|
valid_super_block = -1;
|
|
recovery = 0;
|
|
|
|
/* allocate memory for f2fs-specific super block info */
|
|
sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
|
|
if (!sbi)
|
|
return -ENOMEM;
|
|
|
|
sbi->sb = sb;
|
|
|
|
/* Load the checksum driver */
|
|
sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
|
|
if (IS_ERR(sbi->s_chksum_driver)) {
|
|
f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
|
|
err = PTR_ERR(sbi->s_chksum_driver);
|
|
sbi->s_chksum_driver = NULL;
|
|
goto free_sbi;
|
|
}
|
|
|
|
/* set a block size */
|
|
if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
|
|
f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
|
|
goto free_sbi;
|
|
}
|
|
|
|
err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
|
|
&recovery);
|
|
if (err)
|
|
goto free_sbi;
|
|
|
|
sb->s_fs_info = sbi;
|
|
sbi->raw_super = raw_super;
|
|
|
|
/*
|
|
* The BLKZONED feature indicates that the drive was formatted with
|
|
* zone alignment optimization. This is optional for host-aware
|
|
* devices, but mandatory for host-managed zoned block devices.
|
|
*/
|
|
#ifndef CONFIG_BLK_DEV_ZONED
|
|
if (f2fs_sb_mounted_blkzoned(sb)) {
|
|
f2fs_msg(sb, KERN_ERR,
|
|
"Zoned block device support is not enabled\n");
|
|
err = -EOPNOTSUPP;
|
|
goto free_sb_buf;
|
|
}
|
|
#endif
|
|
default_options(sbi);
|
|
/* parse mount options */
|
|
options = kstrdup((const char *)data, GFP_KERNEL);
|
|
if (data && !options) {
|
|
err = -ENOMEM;
|
|
goto free_sb_buf;
|
|
}
|
|
|
|
err = parse_options(sb, options);
|
|
if (err)
|
|
goto free_options;
|
|
|
|
sbi->max_file_blocks = max_file_blocks();
|
|
sb->s_maxbytes = sbi->max_file_blocks <<
|
|
le32_to_cpu(raw_super->log_blocksize);
|
|
sb->s_max_links = F2FS_LINK_MAX;
|
|
get_random_bytes(&sbi->s_next_generation, sizeof(u32));
|
|
|
|
#ifdef CONFIG_QUOTA
|
|
sb->dq_op = &f2fs_quota_operations;
|
|
sb->s_qcop = &f2fs_quotactl_ops;
|
|
sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
|
|
#endif
|
|
|
|
sb->s_op = &f2fs_sops;
|
|
sb->s_cop = &f2fs_cryptops;
|
|
sb->s_xattr = f2fs_xattr_handlers;
|
|
sb->s_export_op = &f2fs_export_ops;
|
|
sb->s_magic = F2FS_SUPER_MAGIC;
|
|
sb->s_time_gran = 1;
|
|
sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
|
|
(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
|
|
memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
|
|
|
|
/* init f2fs-specific super block info */
|
|
sbi->valid_super_block = valid_super_block;
|
|
mutex_init(&sbi->gc_mutex);
|
|
mutex_init(&sbi->cp_mutex);
|
|
init_rwsem(&sbi->node_write);
|
|
init_rwsem(&sbi->node_change);
|
|
|
|
/* disallow all the data/node/meta page writes */
|
|
set_sbi_flag(sbi, SBI_POR_DOING);
|
|
spin_lock_init(&sbi->stat_lock);
|
|
|
|
for (i = 0; i < NR_PAGE_TYPE; i++) {
|
|
int n = (i == META) ? 1: NR_TEMP_TYPE;
|
|
int j;
|
|
|
|
sbi->write_io[i] = kmalloc(n * sizeof(struct f2fs_bio_info),
|
|
GFP_KERNEL);
|
|
if (!sbi->write_io[i]) {
|
|
err = -ENOMEM;
|
|
goto free_options;
|
|
}
|
|
|
|
for (j = HOT; j < n; j++) {
|
|
init_rwsem(&sbi->write_io[i][j].io_rwsem);
|
|
sbi->write_io[i][j].sbi = sbi;
|
|
sbi->write_io[i][j].bio = NULL;
|
|
spin_lock_init(&sbi->write_io[i][j].io_lock);
|
|
INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
|
|
}
|
|
}
|
|
|
|
init_rwsem(&sbi->cp_rwsem);
|
|
init_waitqueue_head(&sbi->cp_wait);
|
|
init_sb_info(sbi);
|
|
|
|
err = init_percpu_info(sbi);
|
|
if (err)
|
|
goto free_options;
|
|
|
|
if (F2FS_IO_SIZE(sbi) > 1) {
|
|
sbi->write_io_dummy =
|
|
mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
|
|
if (!sbi->write_io_dummy) {
|
|
err = -ENOMEM;
|
|
goto free_options;
|
|
}
|
|
}
|
|
|
|
/* get an inode for meta space */
|
|
sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
|
|
if (IS_ERR(sbi->meta_inode)) {
|
|
f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
|
|
err = PTR_ERR(sbi->meta_inode);
|
|
goto free_io_dummy;
|
|
}
|
|
|
|
err = get_valid_checkpoint(sbi);
|
|
if (err) {
|
|
f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
|
|
goto free_meta_inode;
|
|
}
|
|
|
|
/* Initialize device list */
|
|
err = f2fs_scan_devices(sbi);
|
|
if (err) {
|
|
f2fs_msg(sb, KERN_ERR, "Failed to find devices");
|
|
goto free_devices;
|
|
}
|
|
|
|
sbi->total_valid_node_count =
|
|
le32_to_cpu(sbi->ckpt->valid_node_count);
|
|
percpu_counter_set(&sbi->total_valid_inode_count,
|
|
le32_to_cpu(sbi->ckpt->valid_inode_count));
|
|
sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
|
|
sbi->total_valid_block_count =
|
|
le64_to_cpu(sbi->ckpt->valid_block_count);
|
|
sbi->last_valid_block_count = sbi->total_valid_block_count;
|
|
sbi->reserved_blocks = 0;
|
|
|
|
for (i = 0; i < NR_INODE_TYPE; i++) {
|
|
INIT_LIST_HEAD(&sbi->inode_list[i]);
|
|
spin_lock_init(&sbi->inode_lock[i]);
|
|
}
|
|
|
|
init_extent_cache_info(sbi);
|
|
|
|
init_ino_entry_info(sbi);
|
|
|
|
/* setup f2fs internal modules */
|
|
err = build_segment_manager(sbi);
|
|
if (err) {
|
|
f2fs_msg(sb, KERN_ERR,
|
|
"Failed to initialize F2FS segment manager");
|
|
goto free_sm;
|
|
}
|
|
err = build_node_manager(sbi);
|
|
if (err) {
|
|
f2fs_msg(sb, KERN_ERR,
|
|
"Failed to initialize F2FS node manager");
|
|
goto free_nm;
|
|
}
|
|
|
|
/* For write statistics */
|
|
if (sb->s_bdev->bd_part)
|
|
sbi->sectors_written_start =
|
|
(u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
|
|
|
|
/* Read accumulated write IO statistics if exists */
|
|
seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
|
|
if (__exist_node_summaries(sbi))
|
|
sbi->kbytes_written =
|
|
le64_to_cpu(seg_i->journal->info.kbytes_written);
|
|
|
|
build_gc_manager(sbi);
|
|
|
|
/* get an inode for node space */
|
|
sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
|
|
if (IS_ERR(sbi->node_inode)) {
|
|
f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
|
|
err = PTR_ERR(sbi->node_inode);
|
|
goto free_nm;
|
|
}
|
|
|
|
f2fs_join_shrinker(sbi);
|
|
|
|
err = f2fs_build_stats(sbi);
|
|
if (err)
|
|
goto free_nm;
|
|
|
|
/* if there are nt orphan nodes free them */
|
|
err = recover_orphan_inodes(sbi);
|
|
if (err)
|
|
goto free_node_inode;
|
|
|
|
/* read root inode and dentry */
|
|
root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
|
|
if (IS_ERR(root)) {
|
|
f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
|
|
err = PTR_ERR(root);
|
|
goto free_node_inode;
|
|
}
|
|
if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
|
|
iput(root);
|
|
err = -EINVAL;
|
|
goto free_node_inode;
|
|
}
|
|
|
|
sb->s_root = d_make_root(root); /* allocate root dentry */
|
|
if (!sb->s_root) {
|
|
err = -ENOMEM;
|
|
goto free_root_inode;
|
|
}
|
|
|
|
err = f2fs_init_sysfs(sbi);
|
|
if (err)
|
|
goto free_root_inode;
|
|
|
|
/* recover fsynced data */
|
|
if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
|
|
/*
|
|
* mount should be failed, when device has readonly mode, and
|
|
* previous checkpoint was not done by clean system shutdown.
|
|
*/
|
|
if (bdev_read_only(sb->s_bdev) &&
|
|
!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
|
|
err = -EROFS;
|
|
goto free_sysfs;
|
|
}
|
|
|
|
if (need_fsck)
|
|
set_sbi_flag(sbi, SBI_NEED_FSCK);
|
|
|
|
if (!retry)
|
|
goto skip_recovery;
|
|
|
|
err = recover_fsync_data(sbi, false);
|
|
if (err < 0) {
|
|
need_fsck = true;
|
|
f2fs_msg(sb, KERN_ERR,
|
|
"Cannot recover all fsync data errno=%d", err);
|
|
goto free_sysfs;
|
|
}
|
|
} else {
|
|
err = recover_fsync_data(sbi, true);
|
|
|
|
if (!f2fs_readonly(sb) && err > 0) {
|
|
err = -EINVAL;
|
|
f2fs_msg(sb, KERN_ERR,
|
|
"Need to recover fsync data");
|
|
goto free_sysfs;
|
|
}
|
|
}
|
|
skip_recovery:
|
|
/* recover_fsync_data() cleared this already */
|
|
clear_sbi_flag(sbi, SBI_POR_DOING);
|
|
|
|
/*
|
|
* If filesystem is not mounted as read-only then
|
|
* do start the gc_thread.
|
|
*/
|
|
if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
|
|
/* After POR, we can run background GC thread.*/
|
|
err = start_gc_thread(sbi);
|
|
if (err)
|
|
goto free_sysfs;
|
|
}
|
|
kfree(options);
|
|
|
|
/* recover broken superblock */
|
|
if (recovery) {
|
|
err = f2fs_commit_super(sbi, true);
|
|
f2fs_msg(sb, KERN_INFO,
|
|
"Try to recover %dth superblock, ret: %d",
|
|
sbi->valid_super_block ? 1 : 2, err);
|
|
}
|
|
|
|
f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx",
|
|
cur_cp_version(F2FS_CKPT(sbi)));
|
|
f2fs_update_time(sbi, CP_TIME);
|
|
f2fs_update_time(sbi, REQ_TIME);
|
|
return 0;
|
|
|
|
free_sysfs:
|
|
f2fs_sync_inode_meta(sbi);
|
|
f2fs_exit_sysfs(sbi);
|
|
free_root_inode:
|
|
dput(sb->s_root);
|
|
sb->s_root = NULL;
|
|
free_node_inode:
|
|
truncate_inode_pages_final(NODE_MAPPING(sbi));
|
|
mutex_lock(&sbi->umount_mutex);
|
|
release_ino_entry(sbi, true);
|
|
f2fs_leave_shrinker(sbi);
|
|
/*
|
|
* Some dirty meta pages can be produced by recover_orphan_inodes()
|
|
* failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
|
|
* followed by write_checkpoint() through f2fs_write_node_pages(), which
|
|
* falls into an infinite loop in sync_meta_pages().
|
|
*/
|
|
truncate_inode_pages_final(META_MAPPING(sbi));
|
|
iput(sbi->node_inode);
|
|
mutex_unlock(&sbi->umount_mutex);
|
|
f2fs_destroy_stats(sbi);
|
|
free_nm:
|
|
destroy_node_manager(sbi);
|
|
free_sm:
|
|
destroy_segment_manager(sbi);
|
|
free_devices:
|
|
destroy_device_list(sbi);
|
|
kfree(sbi->ckpt);
|
|
free_meta_inode:
|
|
make_bad_inode(sbi->meta_inode);
|
|
iput(sbi->meta_inode);
|
|
free_io_dummy:
|
|
mempool_destroy(sbi->write_io_dummy);
|
|
free_options:
|
|
for (i = 0; i < NR_PAGE_TYPE; i++)
|
|
kfree(sbi->write_io[i]);
|
|
destroy_percpu_info(sbi);
|
|
kfree(options);
|
|
free_sb_buf:
|
|
kfree(raw_super);
|
|
free_sbi:
|
|
if (sbi->s_chksum_driver)
|
|
crypto_free_shash(sbi->s_chksum_driver);
|
|
kfree(sbi);
|
|
|
|
/* give only one another chance */
|
|
if (retry) {
|
|
retry = false;
|
|
shrink_dcache_sb(sb);
|
|
goto try_onemore;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
|
|
const char *dev_name, void *data)
|
|
{
|
|
return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
|
|
}
|
|
|
|
static void kill_f2fs_super(struct super_block *sb)
|
|
{
|
|
if (sb->s_root) {
|
|
set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
|
|
stop_gc_thread(F2FS_SB(sb));
|
|
stop_discard_thread(F2FS_SB(sb));
|
|
}
|
|
kill_block_super(sb);
|
|
}
|
|
|
|
static struct file_system_type f2fs_fs_type = {
|
|
.owner = THIS_MODULE,
|
|
.name = "f2fs",
|
|
.mount = f2fs_mount,
|
|
.kill_sb = kill_f2fs_super,
|
|
.fs_flags = FS_REQUIRES_DEV,
|
|
};
|
|
MODULE_ALIAS_FS("f2fs");
|
|
|
|
static int __init init_inodecache(void)
|
|
{
|
|
f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
|
|
sizeof(struct f2fs_inode_info), 0,
|
|
SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
|
|
if (!f2fs_inode_cachep)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
static void destroy_inodecache(void)
|
|
{
|
|
/*
|
|
* Make sure all delayed rcu free inodes are flushed before we
|
|
* destroy cache.
|
|
*/
|
|
rcu_barrier();
|
|
kmem_cache_destroy(f2fs_inode_cachep);
|
|
}
|
|
|
|
static int __init init_f2fs_fs(void)
|
|
{
|
|
int err;
|
|
|
|
f2fs_build_trace_ios();
|
|
|
|
err = init_inodecache();
|
|
if (err)
|
|
goto fail;
|
|
err = create_node_manager_caches();
|
|
if (err)
|
|
goto free_inodecache;
|
|
err = create_segment_manager_caches();
|
|
if (err)
|
|
goto free_node_manager_caches;
|
|
err = create_checkpoint_caches();
|
|
if (err)
|
|
goto free_segment_manager_caches;
|
|
err = create_extent_cache();
|
|
if (err)
|
|
goto free_checkpoint_caches;
|
|
err = f2fs_register_sysfs();
|
|
if (err)
|
|
goto free_extent_cache;
|
|
err = register_shrinker(&f2fs_shrinker_info);
|
|
if (err)
|
|
goto free_sysfs;
|
|
err = register_filesystem(&f2fs_fs_type);
|
|
if (err)
|
|
goto free_shrinker;
|
|
err = f2fs_create_root_stats();
|
|
if (err)
|
|
goto free_filesystem;
|
|
return 0;
|
|
|
|
free_filesystem:
|
|
unregister_filesystem(&f2fs_fs_type);
|
|
free_shrinker:
|
|
unregister_shrinker(&f2fs_shrinker_info);
|
|
free_sysfs:
|
|
f2fs_unregister_sysfs();
|
|
free_extent_cache:
|
|
destroy_extent_cache();
|
|
free_checkpoint_caches:
|
|
destroy_checkpoint_caches();
|
|
free_segment_manager_caches:
|
|
destroy_segment_manager_caches();
|
|
free_node_manager_caches:
|
|
destroy_node_manager_caches();
|
|
free_inodecache:
|
|
destroy_inodecache();
|
|
fail:
|
|
return err;
|
|
}
|
|
|
|
static void __exit exit_f2fs_fs(void)
|
|
{
|
|
f2fs_destroy_root_stats();
|
|
unregister_filesystem(&f2fs_fs_type);
|
|
unregister_shrinker(&f2fs_shrinker_info);
|
|
f2fs_unregister_sysfs();
|
|
destroy_extent_cache();
|
|
destroy_checkpoint_caches();
|
|
destroy_segment_manager_caches();
|
|
destroy_node_manager_caches();
|
|
destroy_inodecache();
|
|
f2fs_destroy_trace_ios();
|
|
}
|
|
|
|
module_init(init_f2fs_fs)
|
|
module_exit(exit_f2fs_fs)
|
|
|
|
MODULE_AUTHOR("Samsung Electronics's Praesto Team");
|
|
MODULE_DESCRIPTION("Flash Friendly File System");
|
|
MODULE_LICENSE("GPL");
|
|
|