linux-hardened/lib/btree.c
Joern Engel 8df3aaaf9b btree: avoid variable-length allocations
geo->keylen cannot be larger than 4.  So we might as well make
fixed-size allocations.

Given the one remaining user, geo->keylen cannot even be larger than 1.
Logfs used to have 64bit and 128bit keys, tcm_qla2xxx only has 32bit
keys.  But let's not break the code if we don't have to.

Signed-off-by: Joern Engel <joern@purestorage.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-03-14 16:55:29 -07:00

803 lines
19 KiB
C

/*
* lib/btree.c - Simple In-memory B+Tree
*
* As should be obvious for Linux kernel code, license is GPLv2
*
* Copyright (c) 2007-2008 Joern Engel <joern@purestorage.com>
* Bits and pieces stolen from Peter Zijlstra's code, which is
* Copyright 2007, Red Hat Inc. Peter Zijlstra
* GPLv2
*
* see http://programming.kicks-ass.net/kernel-patches/vma_lookup/btree.patch
*
* A relatively simple B+Tree implementation. I have written it as a learning
* exercise to understand how B+Trees work. Turned out to be useful as well.
*
* B+Trees can be used similar to Linux radix trees (which don't have anything
* in common with textbook radix trees, beware). Prerequisite for them working
* well is that access to a random tree node is much faster than a large number
* of operations within each node.
*
* Disks have fulfilled the prerequisite for a long time. More recently DRAM
* has gained similar properties, as memory access times, when measured in cpu
* cycles, have increased. Cacheline sizes have increased as well, which also
* helps B+Trees.
*
* Compared to radix trees, B+Trees are more efficient when dealing with a
* sparsely populated address space. Between 25% and 50% of the memory is
* occupied with valid pointers. When densely populated, radix trees contain
* ~98% pointers - hard to beat. Very sparse radix trees contain only ~2%
* pointers.
*
* This particular implementation stores pointers identified by a long value.
* Storing NULL pointers is illegal, lookup will return NULL when no entry
* was found.
*
* A tricks was used that is not commonly found in textbooks. The lowest
* values are to the right, not to the left. All used slots within a node
* are on the left, all unused slots contain NUL values. Most operations
* simply loop once over all slots and terminate on the first NUL.
*/
#include <linux/btree.h>
#include <linux/cache.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/module.h>
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define NODESIZE MAX(L1_CACHE_BYTES, 128)
struct btree_geo {
int keylen;
int no_pairs;
int no_longs;
};
struct btree_geo btree_geo32 = {
.keylen = 1,
.no_pairs = NODESIZE / sizeof(long) / 2,
.no_longs = NODESIZE / sizeof(long) / 2,
};
EXPORT_SYMBOL_GPL(btree_geo32);
#define LONG_PER_U64 (64 / BITS_PER_LONG)
struct btree_geo btree_geo64 = {
.keylen = LONG_PER_U64,
.no_pairs = NODESIZE / sizeof(long) / (1 + LONG_PER_U64),
.no_longs = LONG_PER_U64 * (NODESIZE / sizeof(long) / (1 + LONG_PER_U64)),
};
EXPORT_SYMBOL_GPL(btree_geo64);
struct btree_geo btree_geo128 = {
.keylen = 2 * LONG_PER_U64,
.no_pairs = NODESIZE / sizeof(long) / (1 + 2 * LONG_PER_U64),
.no_longs = 2 * LONG_PER_U64 * (NODESIZE / sizeof(long) / (1 + 2 * LONG_PER_U64)),
};
EXPORT_SYMBOL_GPL(btree_geo128);
#define MAX_KEYLEN (2 * LONG_PER_U64)
static struct kmem_cache *btree_cachep;
void *btree_alloc(gfp_t gfp_mask, void *pool_data)
{
return kmem_cache_alloc(btree_cachep, gfp_mask);
}
EXPORT_SYMBOL_GPL(btree_alloc);
void btree_free(void *element, void *pool_data)
{
kmem_cache_free(btree_cachep, element);
}
EXPORT_SYMBOL_GPL(btree_free);
static unsigned long *btree_node_alloc(struct btree_head *head, gfp_t gfp)
{
unsigned long *node;
node = mempool_alloc(head->mempool, gfp);
if (likely(node))
memset(node, 0, NODESIZE);
return node;
}
static int longcmp(const unsigned long *l1, const unsigned long *l2, size_t n)
{
size_t i;
for (i = 0; i < n; i++) {
if (l1[i] < l2[i])
return -1;
if (l1[i] > l2[i])
return 1;
}
return 0;
}
static unsigned long *longcpy(unsigned long *dest, const unsigned long *src,
size_t n)
{
size_t i;
for (i = 0; i < n; i++)
dest[i] = src[i];
return dest;
}
static unsigned long *longset(unsigned long *s, unsigned long c, size_t n)
{
size_t i;
for (i = 0; i < n; i++)
s[i] = c;
return s;
}
static void dec_key(struct btree_geo *geo, unsigned long *key)
{
unsigned long val;
int i;
for (i = geo->keylen - 1; i >= 0; i--) {
val = key[i];
key[i] = val - 1;
if (val)
break;
}
}
static unsigned long *bkey(struct btree_geo *geo, unsigned long *node, int n)
{
return &node[n * geo->keylen];
}
static void *bval(struct btree_geo *geo, unsigned long *node, int n)
{
return (void *)node[geo->no_longs + n];
}
static void setkey(struct btree_geo *geo, unsigned long *node, int n,
unsigned long *key)
{
longcpy(bkey(geo, node, n), key, geo->keylen);
}
static void setval(struct btree_geo *geo, unsigned long *node, int n,
void *val)
{
node[geo->no_longs + n] = (unsigned long) val;
}
static void clearpair(struct btree_geo *geo, unsigned long *node, int n)
{
longset(bkey(geo, node, n), 0, geo->keylen);
node[geo->no_longs + n] = 0;
}
static inline void __btree_init(struct btree_head *head)
{
head->node = NULL;
head->height = 0;
}
void btree_init_mempool(struct btree_head *head, mempool_t *mempool)
{
__btree_init(head);
head->mempool = mempool;
}
EXPORT_SYMBOL_GPL(btree_init_mempool);
int btree_init(struct btree_head *head)
{
__btree_init(head);
head->mempool = mempool_create(0, btree_alloc, btree_free, NULL);
if (!head->mempool)
return -ENOMEM;
return 0;
}
EXPORT_SYMBOL_GPL(btree_init);
void btree_destroy(struct btree_head *head)
{
mempool_free(head->node, head->mempool);
mempool_destroy(head->mempool);
head->mempool = NULL;
}
EXPORT_SYMBOL_GPL(btree_destroy);
void *btree_last(struct btree_head *head, struct btree_geo *geo,
unsigned long *key)
{
int height = head->height;
unsigned long *node = head->node;
if (height == 0)
return NULL;
for ( ; height > 1; height--)
node = bval(geo, node, 0);
longcpy(key, bkey(geo, node, 0), geo->keylen);
return bval(geo, node, 0);
}
EXPORT_SYMBOL_GPL(btree_last);
static int keycmp(struct btree_geo *geo, unsigned long *node, int pos,
unsigned long *key)
{
return longcmp(bkey(geo, node, pos), key, geo->keylen);
}
static int keyzero(struct btree_geo *geo, unsigned long *key)
{
int i;
for (i = 0; i < geo->keylen; i++)
if (key[i])
return 0;
return 1;
}
void *btree_lookup(struct btree_head *head, struct btree_geo *geo,
unsigned long *key)
{
int i, height = head->height;
unsigned long *node = head->node;
if (height == 0)
return NULL;
for ( ; height > 1; height--) {
for (i = 0; i < geo->no_pairs; i++)
if (keycmp(geo, node, i, key) <= 0)
break;
if (i == geo->no_pairs)
return NULL;
node = bval(geo, node, i);
if (!node)
return NULL;
}
if (!node)
return NULL;
for (i = 0; i < geo->no_pairs; i++)
if (keycmp(geo, node, i, key) == 0)
return bval(geo, node, i);
return NULL;
}
EXPORT_SYMBOL_GPL(btree_lookup);
int btree_update(struct btree_head *head, struct btree_geo *geo,
unsigned long *key, void *val)
{
int i, height = head->height;
unsigned long *node = head->node;
if (height == 0)
return -ENOENT;
for ( ; height > 1; height--) {
for (i = 0; i < geo->no_pairs; i++)
if (keycmp(geo, node, i, key) <= 0)
break;
if (i == geo->no_pairs)
return -ENOENT;
node = bval(geo, node, i);
if (!node)
return -ENOENT;
}
if (!node)
return -ENOENT;
for (i = 0; i < geo->no_pairs; i++)
if (keycmp(geo, node, i, key) == 0) {
setval(geo, node, i, val);
return 0;
}
return -ENOENT;
}
EXPORT_SYMBOL_GPL(btree_update);
/*
* Usually this function is quite similar to normal lookup. But the key of
* a parent node may be smaller than the smallest key of all its siblings.
* In such a case we cannot just return NULL, as we have only proven that no
* key smaller than __key, but larger than this parent key exists.
* So we set __key to the parent key and retry. We have to use the smallest
* such parent key, which is the last parent key we encountered.
*/
void *btree_get_prev(struct btree_head *head, struct btree_geo *geo,
unsigned long *__key)
{
int i, height;
unsigned long *node, *oldnode;
unsigned long *retry_key = NULL, key[MAX_KEYLEN];
if (keyzero(geo, __key))
return NULL;
if (head->height == 0)
return NULL;
longcpy(key, __key, geo->keylen);
retry:
dec_key(geo, key);
node = head->node;
for (height = head->height ; height > 1; height--) {
for (i = 0; i < geo->no_pairs; i++)
if (keycmp(geo, node, i, key) <= 0)
break;
if (i == geo->no_pairs)
goto miss;
oldnode = node;
node = bval(geo, node, i);
if (!node)
goto miss;
retry_key = bkey(geo, oldnode, i);
}
if (!node)
goto miss;
for (i = 0; i < geo->no_pairs; i++) {
if (keycmp(geo, node, i, key) <= 0) {
if (bval(geo, node, i)) {
longcpy(__key, bkey(geo, node, i), geo->keylen);
return bval(geo, node, i);
} else
goto miss;
}
}
miss:
if (retry_key) {
longcpy(key, retry_key, geo->keylen);
retry_key = NULL;
goto retry;
}
return NULL;
}
EXPORT_SYMBOL_GPL(btree_get_prev);
static int getpos(struct btree_geo *geo, unsigned long *node,
unsigned long *key)
{
int i;
for (i = 0; i < geo->no_pairs; i++) {
if (keycmp(geo, node, i, key) <= 0)
break;
}
return i;
}
static int getfill(struct btree_geo *geo, unsigned long *node, int start)
{
int i;
for (i = start; i < geo->no_pairs; i++)
if (!bval(geo, node, i))
break;
return i;
}
/*
* locate the correct leaf node in the btree
*/
static unsigned long *find_level(struct btree_head *head, struct btree_geo *geo,
unsigned long *key, int level)
{
unsigned long *node = head->node;
int i, height;
for (height = head->height; height > level; height--) {
for (i = 0; i < geo->no_pairs; i++)
if (keycmp(geo, node, i, key) <= 0)
break;
if ((i == geo->no_pairs) || !bval(geo, node, i)) {
/* right-most key is too large, update it */
/* FIXME: If the right-most key on higher levels is
* always zero, this wouldn't be necessary. */
i--;
setkey(geo, node, i, key);
}
BUG_ON(i < 0);
node = bval(geo, node, i);
}
BUG_ON(!node);
return node;
}
static int btree_grow(struct btree_head *head, struct btree_geo *geo,
gfp_t gfp)
{
unsigned long *node;
int fill;
node = btree_node_alloc(head, gfp);
if (!node)
return -ENOMEM;
if (head->node) {
fill = getfill(geo, head->node, 0);
setkey(geo, node, 0, bkey(geo, head->node, fill - 1));
setval(geo, node, 0, head->node);
}
head->node = node;
head->height++;
return 0;
}
static void btree_shrink(struct btree_head *head, struct btree_geo *geo)
{
unsigned long *node;
int fill;
if (head->height <= 1)
return;
node = head->node;
fill = getfill(geo, node, 0);
BUG_ON(fill > 1);
head->node = bval(geo, node, 0);
head->height--;
mempool_free(node, head->mempool);
}
static int btree_insert_level(struct btree_head *head, struct btree_geo *geo,
unsigned long *key, void *val, int level,
gfp_t gfp)
{
unsigned long *node;
int i, pos, fill, err;
BUG_ON(!val);
if (head->height < level) {
err = btree_grow(head, geo, gfp);
if (err)
return err;
}
retry:
node = find_level(head, geo, key, level);
pos = getpos(geo, node, key);
fill = getfill(geo, node, pos);
/* two identical keys are not allowed */
BUG_ON(pos < fill && keycmp(geo, node, pos, key) == 0);
if (fill == geo->no_pairs) {
/* need to split node */
unsigned long *new;
new = btree_node_alloc(head, gfp);
if (!new)
return -ENOMEM;
err = btree_insert_level(head, geo,
bkey(geo, node, fill / 2 - 1),
new, level + 1, gfp);
if (err) {
mempool_free(new, head->mempool);
return err;
}
for (i = 0; i < fill / 2; i++) {
setkey(geo, new, i, bkey(geo, node, i));
setval(geo, new, i, bval(geo, node, i));
setkey(geo, node, i, bkey(geo, node, i + fill / 2));
setval(geo, node, i, bval(geo, node, i + fill / 2));
clearpair(geo, node, i + fill / 2);
}
if (fill & 1) {
setkey(geo, node, i, bkey(geo, node, fill - 1));
setval(geo, node, i, bval(geo, node, fill - 1));
clearpair(geo, node, fill - 1);
}
goto retry;
}
BUG_ON(fill >= geo->no_pairs);
/* shift and insert */
for (i = fill; i > pos; i--) {
setkey(geo, node, i, bkey(geo, node, i - 1));
setval(geo, node, i, bval(geo, node, i - 1));
}
setkey(geo, node, pos, key);
setval(geo, node, pos, val);
return 0;
}
int btree_insert(struct btree_head *head, struct btree_geo *geo,
unsigned long *key, void *val, gfp_t gfp)
{
BUG_ON(!val);
return btree_insert_level(head, geo, key, val, 1, gfp);
}
EXPORT_SYMBOL_GPL(btree_insert);
static void *btree_remove_level(struct btree_head *head, struct btree_geo *geo,
unsigned long *key, int level);
static void merge(struct btree_head *head, struct btree_geo *geo, int level,
unsigned long *left, int lfill,
unsigned long *right, int rfill,
unsigned long *parent, int lpos)
{
int i;
for (i = 0; i < rfill; i++) {
/* Move all keys to the left */
setkey(geo, left, lfill + i, bkey(geo, right, i));
setval(geo, left, lfill + i, bval(geo, right, i));
}
/* Exchange left and right child in parent */
setval(geo, parent, lpos, right);
setval(geo, parent, lpos + 1, left);
/* Remove left (formerly right) child from parent */
btree_remove_level(head, geo, bkey(geo, parent, lpos), level + 1);
mempool_free(right, head->mempool);
}
static void rebalance(struct btree_head *head, struct btree_geo *geo,
unsigned long *key, int level, unsigned long *child, int fill)
{
unsigned long *parent, *left = NULL, *right = NULL;
int i, no_left, no_right;
if (fill == 0) {
/* Because we don't steal entries from a neighbour, this case
* can happen. Parent node contains a single child, this
* node, so merging with a sibling never happens.
*/
btree_remove_level(head, geo, key, level + 1);
mempool_free(child, head->mempool);
return;
}
parent = find_level(head, geo, key, level + 1);
i = getpos(geo, parent, key);
BUG_ON(bval(geo, parent, i) != child);
if (i > 0) {
left = bval(geo, parent, i - 1);
no_left = getfill(geo, left, 0);
if (fill + no_left <= geo->no_pairs) {
merge(head, geo, level,
left, no_left,
child, fill,
parent, i - 1);
return;
}
}
if (i + 1 < getfill(geo, parent, i)) {
right = bval(geo, parent, i + 1);
no_right = getfill(geo, right, 0);
if (fill + no_right <= geo->no_pairs) {
merge(head, geo, level,
child, fill,
right, no_right,
parent, i);
return;
}
}
/*
* We could also try to steal one entry from the left or right
* neighbor. By not doing so we changed the invariant from
* "all nodes are at least half full" to "no two neighboring
* nodes can be merged". Which means that the average fill of
* all nodes is still half or better.
*/
}
static void *btree_remove_level(struct btree_head *head, struct btree_geo *geo,
unsigned long *key, int level)
{
unsigned long *node;
int i, pos, fill;
void *ret;
if (level > head->height) {
/* we recursed all the way up */
head->height = 0;
head->node = NULL;
return NULL;
}
node = find_level(head, geo, key, level);
pos = getpos(geo, node, key);
fill = getfill(geo, node, pos);
if ((level == 1) && (keycmp(geo, node, pos, key) != 0))
return NULL;
ret = bval(geo, node, pos);
/* remove and shift */
for (i = pos; i < fill - 1; i++) {
setkey(geo, node, i, bkey(geo, node, i + 1));
setval(geo, node, i, bval(geo, node, i + 1));
}
clearpair(geo, node, fill - 1);
if (fill - 1 < geo->no_pairs / 2) {
if (level < head->height)
rebalance(head, geo, key, level, node, fill - 1);
else if (fill - 1 == 1)
btree_shrink(head, geo);
}
return ret;
}
void *btree_remove(struct btree_head *head, struct btree_geo *geo,
unsigned long *key)
{
if (head->height == 0)
return NULL;
return btree_remove_level(head, geo, key, 1);
}
EXPORT_SYMBOL_GPL(btree_remove);
int btree_merge(struct btree_head *target, struct btree_head *victim,
struct btree_geo *geo, gfp_t gfp)
{
unsigned long key[MAX_KEYLEN];
unsigned long dup[MAX_KEYLEN];
void *val;
int err;
BUG_ON(target == victim);
if (!(target->node)) {
/* target is empty, just copy fields over */
target->node = victim->node;
target->height = victim->height;
__btree_init(victim);
return 0;
}
/* TODO: This needs some optimizations. Currently we do three tree
* walks to remove a single object from the victim.
*/
for (;;) {
if (!btree_last(victim, geo, key))
break;
val = btree_lookup(victim, geo, key);
err = btree_insert(target, geo, key, val, gfp);
if (err)
return err;
/* We must make a copy of the key, as the original will get
* mangled inside btree_remove. */
longcpy(dup, key, geo->keylen);
btree_remove(victim, geo, dup);
}
return 0;
}
EXPORT_SYMBOL_GPL(btree_merge);
static size_t __btree_for_each(struct btree_head *head, struct btree_geo *geo,
unsigned long *node, unsigned long opaque,
void (*func)(void *elem, unsigned long opaque,
unsigned long *key, size_t index,
void *func2),
void *func2, int reap, int height, size_t count)
{
int i;
unsigned long *child;
for (i = 0; i < geo->no_pairs; i++) {
child = bval(geo, node, i);
if (!child)
break;
if (height > 1)
count = __btree_for_each(head, geo, child, opaque,
func, func2, reap, height - 1, count);
else
func(child, opaque, bkey(geo, node, i), count++,
func2);
}
if (reap)
mempool_free(node, head->mempool);
return count;
}
static void empty(void *elem, unsigned long opaque, unsigned long *key,
size_t index, void *func2)
{
}
void visitorl(void *elem, unsigned long opaque, unsigned long *key,
size_t index, void *__func)
{
visitorl_t func = __func;
func(elem, opaque, *key, index);
}
EXPORT_SYMBOL_GPL(visitorl);
void visitor32(void *elem, unsigned long opaque, unsigned long *__key,
size_t index, void *__func)
{
visitor32_t func = __func;
u32 *key = (void *)__key;
func(elem, opaque, *key, index);
}
EXPORT_SYMBOL_GPL(visitor32);
void visitor64(void *elem, unsigned long opaque, unsigned long *__key,
size_t index, void *__func)
{
visitor64_t func = __func;
u64 *key = (void *)__key;
func(elem, opaque, *key, index);
}
EXPORT_SYMBOL_GPL(visitor64);
void visitor128(void *elem, unsigned long opaque, unsigned long *__key,
size_t index, void *__func)
{
visitor128_t func = __func;
u64 *key = (void *)__key;
func(elem, opaque, key[0], key[1], index);
}
EXPORT_SYMBOL_GPL(visitor128);
size_t btree_visitor(struct btree_head *head, struct btree_geo *geo,
unsigned long opaque,
void (*func)(void *elem, unsigned long opaque,
unsigned long *key,
size_t index, void *func2),
void *func2)
{
size_t count = 0;
if (!func2)
func = empty;
if (head->node)
count = __btree_for_each(head, geo, head->node, opaque, func,
func2, 0, head->height, 0);
return count;
}
EXPORT_SYMBOL_GPL(btree_visitor);
size_t btree_grim_visitor(struct btree_head *head, struct btree_geo *geo,
unsigned long opaque,
void (*func)(void *elem, unsigned long opaque,
unsigned long *key,
size_t index, void *func2),
void *func2)
{
size_t count = 0;
if (!func2)
func = empty;
if (head->node)
count = __btree_for_each(head, geo, head->node, opaque, func,
func2, 1, head->height, 0);
__btree_init(head);
return count;
}
EXPORT_SYMBOL_GPL(btree_grim_visitor);
static int __init btree_module_init(void)
{
btree_cachep = kmem_cache_create("btree_node", NODESIZE, 0,
SLAB_HWCACHE_ALIGN, NULL);
return 0;
}
static void __exit btree_module_exit(void)
{
kmem_cache_destroy(btree_cachep);
}
/* If core code starts using btree, initialization should happen even earlier */
module_init(btree_module_init);
module_exit(btree_module_exit);
MODULE_AUTHOR("Joern Engel <joern@logfs.org>");
MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
MODULE_LICENSE("GPL");