linux-hardened/arch/alpha/kernel/sys_alcor.c
Thomas Gleixner 44377f622e alpha: remove obsolete hw_interrupt_type
The defines and typedefs (hw_interrupt_type, no_irq_type, irq_desc_t) have
been kept around for migration reasons.  After more than two years it's
time to remove them finally.

This patch cleans up one of the remaining users.  When all such patches
hit mainline we can remove the defines and typedefs finally.

Impact: cleanup

Convert the last remaining users to struct irq_chip and remove the
define.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Richard Henderson <rth@twiddle.net>

Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 19:47:46 -07:00

326 lines
7.8 KiB
C

/*
* linux/arch/alpha/kernel/sys_alcor.c
*
* Copyright (C) 1995 David A Rusling
* Copyright (C) 1996 Jay A Estabrook
* Copyright (C) 1998, 1999 Richard Henderson
*
* Code supporting the ALCOR and XLT (XL-300/366/433).
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/reboot.h>
#include <linux/bitops.h>
#include <asm/ptrace.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/dma.h>
#include <asm/mmu_context.h>
#include <asm/irq.h>
#include <asm/pgtable.h>
#include <asm/core_cia.h>
#include <asm/tlbflush.h>
#include "proto.h"
#include "irq_impl.h"
#include "pci_impl.h"
#include "machvec_impl.h"
/* Note mask bit is true for ENABLED irqs. */
static unsigned long cached_irq_mask;
static inline void
alcor_update_irq_hw(unsigned long mask)
{
*(vuip)GRU_INT_MASK = mask;
mb();
}
static inline void
alcor_enable_irq(unsigned int irq)
{
alcor_update_irq_hw(cached_irq_mask |= 1UL << (irq - 16));
}
static void
alcor_disable_irq(unsigned int irq)
{
alcor_update_irq_hw(cached_irq_mask &= ~(1UL << (irq - 16)));
}
static void
alcor_mask_and_ack_irq(unsigned int irq)
{
alcor_disable_irq(irq);
/* On ALCOR/XLT, need to dismiss interrupt via GRU. */
*(vuip)GRU_INT_CLEAR = 1 << (irq - 16); mb();
*(vuip)GRU_INT_CLEAR = 0; mb();
}
static unsigned int
alcor_startup_irq(unsigned int irq)
{
alcor_enable_irq(irq);
return 0;
}
static void
alcor_isa_mask_and_ack_irq(unsigned int irq)
{
i8259a_mask_and_ack_irq(irq);
/* On ALCOR/XLT, need to dismiss interrupt via GRU. */
*(vuip)GRU_INT_CLEAR = 0x80000000; mb();
*(vuip)GRU_INT_CLEAR = 0; mb();
}
static void
alcor_end_irq(unsigned int irq)
{
if (!(irq_desc[irq].status & (IRQ_DISABLED|IRQ_INPROGRESS)))
alcor_enable_irq(irq);
}
static struct irq_chip alcor_irq_type = {
.typename = "ALCOR",
.startup = alcor_startup_irq,
.shutdown = alcor_disable_irq,
.enable = alcor_enable_irq,
.disable = alcor_disable_irq,
.ack = alcor_mask_and_ack_irq,
.end = alcor_end_irq,
};
static void
alcor_device_interrupt(unsigned long vector)
{
unsigned long pld;
unsigned int i;
/* Read the interrupt summary register of the GRU */
pld = (*(vuip)GRU_INT_REQ) & GRU_INT_REQ_BITS;
/*
* Now for every possible bit set, work through them and call
* the appropriate interrupt handler.
*/
while (pld) {
i = ffz(~pld);
pld &= pld - 1; /* clear least bit set */
if (i == 31) {
isa_device_interrupt(vector);
} else {
handle_irq(16 + i);
}
}
}
static void __init
alcor_init_irq(void)
{
long i;
if (alpha_using_srm)
alpha_mv.device_interrupt = srm_device_interrupt;
*(vuip)GRU_INT_MASK = 0; mb(); /* all disabled */
*(vuip)GRU_INT_EDGE = 0; mb(); /* all are level */
*(vuip)GRU_INT_HILO = 0x80000000U; mb(); /* ISA only HI */
*(vuip)GRU_INT_CLEAR = 0; mb(); /* all clear */
for (i = 16; i < 48; ++i) {
/* On Alcor, at least, lines 20..30 are not connected
and can generate spurious interrupts if we turn them
on while IRQ probing. */
if (i >= 16+20 && i <= 16+30)
continue;
irq_desc[i].status = IRQ_DISABLED | IRQ_LEVEL;
irq_desc[i].chip = &alcor_irq_type;
}
i8259a_irq_type.ack = alcor_isa_mask_and_ack_irq;
init_i8259a_irqs();
common_init_isa_dma();
setup_irq(16+31, &isa_cascade_irqaction);
}
/*
* PCI Fixup configuration.
*
* Summary @ GRU_INT_REQ:
* Bit Meaning
* 0 Interrupt Line A from slot 2
* 1 Interrupt Line B from slot 2
* 2 Interrupt Line C from slot 2
* 3 Interrupt Line D from slot 2
* 4 Interrupt Line A from slot 1
* 5 Interrupt line B from slot 1
* 6 Interrupt Line C from slot 1
* 7 Interrupt Line D from slot 1
* 8 Interrupt Line A from slot 0
* 9 Interrupt Line B from slot 0
*10 Interrupt Line C from slot 0
*11 Interrupt Line D from slot 0
*12 Interrupt Line A from slot 4
*13 Interrupt Line B from slot 4
*14 Interrupt Line C from slot 4
*15 Interrupt Line D from slot 4
*16 Interrupt Line D from slot 3
*17 Interrupt Line D from slot 3
*18 Interrupt Line D from slot 3
*19 Interrupt Line D from slot 3
*20-30 Reserved
*31 EISA interrupt
*
* The device to slot mapping looks like:
*
* Slot Device
* 6 built-in TULIP (XLT only)
* 7 PCI on board slot 0
* 8 PCI on board slot 3
* 9 PCI on board slot 4
* 10 PCEB (PCI-EISA bridge)
* 11 PCI on board slot 2
* 12 PCI on board slot 1
*
*
* This two layered interrupt approach means that we allocate IRQ 16 and
* above for PCI interrupts. The IRQ relates to which bit the interrupt
* comes in on. This makes interrupt processing much easier.
*/
static int __init
alcor_map_irq(struct pci_dev *dev, u8 slot, u8 pin)
{
static char irq_tab[7][5] __initdata = {
/*INT INTA INTB INTC INTD */
/* note: IDSEL 17 is XLT only */
{16+13, 16+13, 16+13, 16+13, 16+13}, /* IdSel 17, TULIP */
{ 16+8, 16+8, 16+9, 16+10, 16+11}, /* IdSel 18, slot 0 */
{16+16, 16+16, 16+17, 16+18, 16+19}, /* IdSel 19, slot 3 */
{16+12, 16+12, 16+13, 16+14, 16+15}, /* IdSel 20, slot 4 */
{ -1, -1, -1, -1, -1}, /* IdSel 21, PCEB */
{ 16+0, 16+0, 16+1, 16+2, 16+3}, /* IdSel 22, slot 2 */
{ 16+4, 16+4, 16+5, 16+6, 16+7}, /* IdSel 23, slot 1 */
};
const long min_idsel = 6, max_idsel = 12, irqs_per_slot = 5;
return COMMON_TABLE_LOOKUP;
}
static void
alcor_kill_arch(int mode)
{
cia_kill_arch(mode);
#ifndef ALPHA_RESTORE_SRM_SETUP
switch(mode) {
case LINUX_REBOOT_CMD_RESTART:
/* Who said DEC engineer's have no sense of humor? ;-) */
if (alpha_using_srm) {
*(vuip) GRU_RESET = 0x0000dead;
mb();
}
break;
case LINUX_REBOOT_CMD_HALT:
break;
case LINUX_REBOOT_CMD_POWER_OFF:
break;
}
halt();
#endif
}
static void __init
alcor_init_pci(void)
{
struct pci_dev *dev;
cia_init_pci();
/*
* Now we can look to see if we are really running on an XLT-type
* motherboard, by looking for a 21040 TULIP in slot 6, which is
* built into XLT and BRET/MAVERICK, but not available on ALCOR.
*/
dev = pci_get_device(PCI_VENDOR_ID_DEC,
PCI_DEVICE_ID_DEC_TULIP,
NULL);
if (dev && dev->devfn == PCI_DEVFN(6,0)) {
alpha_mv.sys.cia.gru_int_req_bits = XLT_GRU_INT_REQ_BITS;
printk(KERN_INFO "%s: Detected AS500 or XLT motherboard.\n",
__func__);
}
pci_dev_put(dev);
}
/*
* The System Vectors
*/
struct alpha_machine_vector alcor_mv __initmv = {
.vector_name = "Alcor",
DO_EV5_MMU,
DO_DEFAULT_RTC,
DO_CIA_IO,
.machine_check = cia_machine_check,
.max_isa_dma_address = ALPHA_ALCOR_MAX_ISA_DMA_ADDRESS,
.min_io_address = EISA_DEFAULT_IO_BASE,
.min_mem_address = CIA_DEFAULT_MEM_BASE,
.nr_irqs = 48,
.device_interrupt = alcor_device_interrupt,
.init_arch = cia_init_arch,
.init_irq = alcor_init_irq,
.init_rtc = common_init_rtc,
.init_pci = alcor_init_pci,
.kill_arch = alcor_kill_arch,
.pci_map_irq = alcor_map_irq,
.pci_swizzle = common_swizzle,
.sys = { .cia = {
.gru_int_req_bits = ALCOR_GRU_INT_REQ_BITS
}}
};
ALIAS_MV(alcor)
struct alpha_machine_vector xlt_mv __initmv = {
.vector_name = "XLT",
DO_EV5_MMU,
DO_DEFAULT_RTC,
DO_CIA_IO,
.machine_check = cia_machine_check,
.max_isa_dma_address = ALPHA_MAX_ISA_DMA_ADDRESS,
.min_io_address = EISA_DEFAULT_IO_BASE,
.min_mem_address = CIA_DEFAULT_MEM_BASE,
.nr_irqs = 48,
.device_interrupt = alcor_device_interrupt,
.init_arch = cia_init_arch,
.init_irq = alcor_init_irq,
.init_rtc = common_init_rtc,
.init_pci = alcor_init_pci,
.kill_arch = alcor_kill_arch,
.pci_map_irq = alcor_map_irq,
.pci_swizzle = common_swizzle,
.sys = { .cia = {
.gru_int_req_bits = XLT_GRU_INT_REQ_BITS
}}
};
/* No alpha_mv alias for XLT, since we compile it in unconditionally
with ALCOR; setup_arch knows how to cope. */