linux-hardened/drivers/pci/hotplug/cpqphp_pci.c
Yinghai Lu 04de975e78 PCI: cpqhp: use generic pci_hp_add_bridge()
Use the new generic pci_hp_add_bridge() interface.

[bhelgaas: changelog]
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
2012-06-13 15:42:26 -06:00

1559 lines
39 KiB
C

/*
* Compaq Hot Plug Controller Driver
*
* Copyright (C) 1995,2001 Compaq Computer Corporation
* Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
* Copyright (C) 2001 IBM Corp.
*
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Send feedback to <greg@kroah.com>
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/proc_fs.h>
#include <linux/pci.h>
#include <linux/pci_hotplug.h>
#include "../pci.h"
#include "cpqphp.h"
#include "cpqphp_nvram.h"
u8 cpqhp_nic_irq;
u8 cpqhp_disk_irq;
static u16 unused_IRQ;
/*
* detect_HRT_floating_pointer
*
* find the Hot Plug Resource Table in the specified region of memory.
*
*/
static void __iomem *detect_HRT_floating_pointer(void __iomem *begin, void __iomem *end)
{
void __iomem *fp;
void __iomem *endp;
u8 temp1, temp2, temp3, temp4;
int status = 0;
endp = (end - sizeof(struct hrt) + 1);
for (fp = begin; fp <= endp; fp += 16) {
temp1 = readb(fp + SIG0);
temp2 = readb(fp + SIG1);
temp3 = readb(fp + SIG2);
temp4 = readb(fp + SIG3);
if (temp1 == '$' &&
temp2 == 'H' &&
temp3 == 'R' &&
temp4 == 'T') {
status = 1;
break;
}
}
if (!status)
fp = NULL;
dbg("Discovered Hotplug Resource Table at %p\n", fp);
return fp;
}
int cpqhp_configure_device (struct controller* ctrl, struct pci_func* func)
{
struct pci_bus *child;
int num;
if (func->pci_dev == NULL)
func->pci_dev = pci_get_bus_and_slot(func->bus,PCI_DEVFN(func->device, func->function));
/* No pci device, we need to create it then */
if (func->pci_dev == NULL) {
dbg("INFO: pci_dev still null\n");
num = pci_scan_slot(ctrl->pci_dev->bus, PCI_DEVFN(func->device, func->function));
if (num)
pci_bus_add_devices(ctrl->pci_dev->bus);
func->pci_dev = pci_get_bus_and_slot(func->bus, PCI_DEVFN(func->device, func->function));
if (func->pci_dev == NULL) {
dbg("ERROR: pci_dev still null\n");
return 0;
}
}
if (func->pci_dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
pci_hp_add_bridge(func->pci_dev);
child = func->pci_dev->subordinate;
if (child)
pci_bus_add_devices(child);
}
pci_dev_put(func->pci_dev);
return 0;
}
int cpqhp_unconfigure_device(struct pci_func* func)
{
int j;
dbg("%s: bus/dev/func = %x/%x/%x\n", __func__, func->bus, func->device, func->function);
for (j=0; j<8 ; j++) {
struct pci_dev* temp = pci_get_bus_and_slot(func->bus, PCI_DEVFN(func->device, j));
if (temp) {
pci_dev_put(temp);
pci_stop_and_remove_bus_device(temp);
}
}
return 0;
}
static int PCI_RefinedAccessConfig(struct pci_bus *bus, unsigned int devfn, u8 offset, u32 *value)
{
u32 vendID = 0;
if (pci_bus_read_config_dword (bus, devfn, PCI_VENDOR_ID, &vendID) == -1)
return -1;
if (vendID == 0xffffffff)
return -1;
return pci_bus_read_config_dword (bus, devfn, offset, value);
}
/*
* cpqhp_set_irq
*
* @bus_num: bus number of PCI device
* @dev_num: device number of PCI device
* @slot: pointer to u8 where slot number will be returned
*/
int cpqhp_set_irq (u8 bus_num, u8 dev_num, u8 int_pin, u8 irq_num)
{
int rc = 0;
if (cpqhp_legacy_mode) {
struct pci_dev *fakedev;
struct pci_bus *fakebus;
u16 temp_word;
fakedev = kmalloc(sizeof(*fakedev), GFP_KERNEL);
fakebus = kmalloc(sizeof(*fakebus), GFP_KERNEL);
if (!fakedev || !fakebus) {
kfree(fakedev);
kfree(fakebus);
return -ENOMEM;
}
fakedev->devfn = dev_num << 3;
fakedev->bus = fakebus;
fakebus->number = bus_num;
dbg("%s: dev %d, bus %d, pin %d, num %d\n",
__func__, dev_num, bus_num, int_pin, irq_num);
rc = pcibios_set_irq_routing(fakedev, int_pin - 1, irq_num);
kfree(fakedev);
kfree(fakebus);
dbg("%s: rc %d\n", __func__, rc);
if (!rc)
return !rc;
/* set the Edge Level Control Register (ELCR) */
temp_word = inb(0x4d0);
temp_word |= inb(0x4d1) << 8;
temp_word |= 0x01 << irq_num;
/* This should only be for x86 as it sets the Edge Level
* Control Register
*/
outb((u8) (temp_word & 0xFF), 0x4d0); outb((u8) ((temp_word &
0xFF00) >> 8), 0x4d1); rc = 0; }
return rc;
}
static int PCI_ScanBusForNonBridge(struct controller *ctrl, u8 bus_num, u8 * dev_num)
{
u16 tdevice;
u32 work;
u8 tbus;
ctrl->pci_bus->number = bus_num;
for (tdevice = 0; tdevice < 0xFF; tdevice++) {
/* Scan for access first */
if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1)
continue;
dbg("Looking for nonbridge bus_num %d dev_num %d\n", bus_num, tdevice);
/* Yep we got one. Not a bridge ? */
if ((work >> 8) != PCI_TO_PCI_BRIDGE_CLASS) {
*dev_num = tdevice;
dbg("found it !\n");
return 0;
}
}
for (tdevice = 0; tdevice < 0xFF; tdevice++) {
/* Scan for access first */
if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1)
continue;
dbg("Looking for bridge bus_num %d dev_num %d\n", bus_num, tdevice);
/* Yep we got one. bridge ? */
if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(tdevice, 0), PCI_SECONDARY_BUS, &tbus);
/* XXX: no recursion, wtf? */
dbg("Recurse on bus_num %d tdevice %d\n", tbus, tdevice);
return 0;
}
}
return -1;
}
static int PCI_GetBusDevHelper(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot, u8 nobridge)
{
int loop, len;
u32 work;
u8 tbus, tdevice, tslot;
len = cpqhp_routing_table_length();
for (loop = 0; loop < len; ++loop) {
tbus = cpqhp_routing_table->slots[loop].bus;
tdevice = cpqhp_routing_table->slots[loop].devfn;
tslot = cpqhp_routing_table->slots[loop].slot;
if (tslot == slot) {
*bus_num = tbus;
*dev_num = tdevice;
ctrl->pci_bus->number = tbus;
pci_bus_read_config_dword (ctrl->pci_bus, *dev_num, PCI_VENDOR_ID, &work);
if (!nobridge || (work == 0xffffffff))
return 0;
dbg("bus_num %d devfn %d\n", *bus_num, *dev_num);
pci_bus_read_config_dword (ctrl->pci_bus, *dev_num, PCI_CLASS_REVISION, &work);
dbg("work >> 8 (%x) = BRIDGE (%x)\n", work >> 8, PCI_TO_PCI_BRIDGE_CLASS);
if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
pci_bus_read_config_byte (ctrl->pci_bus, *dev_num, PCI_SECONDARY_BUS, &tbus);
dbg("Scan bus for Non Bridge: bus %d\n", tbus);
if (PCI_ScanBusForNonBridge(ctrl, tbus, dev_num) == 0) {
*bus_num = tbus;
return 0;
}
} else
return 0;
}
}
return -1;
}
int cpqhp_get_bus_dev (struct controller *ctrl, u8 * bus_num, u8 * dev_num, u8 slot)
{
/* plain (bridges allowed) */
return PCI_GetBusDevHelper(ctrl, bus_num, dev_num, slot, 0);
}
/* More PCI configuration routines; this time centered around hotplug
* controller
*/
/*
* cpqhp_save_config
*
* Reads configuration for all slots in a PCI bus and saves info.
*
* Note: For non-hot plug busses, the slot # saved is the device #
*
* returns 0 if success
*/
int cpqhp_save_config(struct controller *ctrl, int busnumber, int is_hot_plug)
{
long rc;
u8 class_code;
u8 header_type;
u32 ID;
u8 secondary_bus;
struct pci_func *new_slot;
int sub_bus;
int FirstSupported;
int LastSupported;
int max_functions;
int function;
u8 DevError;
int device = 0;
int cloop = 0;
int stop_it;
int index;
/* Decide which slots are supported */
if (is_hot_plug) {
/*
* is_hot_plug is the slot mask
*/
FirstSupported = is_hot_plug >> 4;
LastSupported = FirstSupported + (is_hot_plug & 0x0F) - 1;
} else {
FirstSupported = 0;
LastSupported = 0x1F;
}
/* Save PCI configuration space for all devices in supported slots */
ctrl->pci_bus->number = busnumber;
for (device = FirstSupported; device <= LastSupported; device++) {
ID = 0xFFFFFFFF;
rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_VENDOR_ID, &ID);
if (ID == 0xFFFFFFFF) {
if (is_hot_plug) {
/* Setup slot structure with entry for empty
* slot
*/
new_slot = cpqhp_slot_create(busnumber);
if (new_slot == NULL)
return 1;
new_slot->bus = (u8) busnumber;
new_slot->device = (u8) device;
new_slot->function = 0;
new_slot->is_a_board = 0;
new_slot->presence_save = 0;
new_slot->switch_save = 0;
}
continue;
}
rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), 0x0B, &class_code);
if (rc)
return rc;
rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_HEADER_TYPE, &header_type);
if (rc)
return rc;
/* If multi-function device, set max_functions to 8 */
if (header_type & 0x80)
max_functions = 8;
else
max_functions = 1;
function = 0;
do {
DevError = 0;
if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
/* Recurse the subordinate bus
* get the subordinate bus number
*/
rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_SECONDARY_BUS, &secondary_bus);
if (rc) {
return rc;
} else {
sub_bus = (int) secondary_bus;
/* Save secondary bus cfg spc
* with this recursive call.
*/
rc = cpqhp_save_config(ctrl, sub_bus, 0);
if (rc)
return rc;
ctrl->pci_bus->number = busnumber;
}
}
index = 0;
new_slot = cpqhp_slot_find(busnumber, device, index++);
while (new_slot &&
(new_slot->function != (u8) function))
new_slot = cpqhp_slot_find(busnumber, device, index++);
if (!new_slot) {
/* Setup slot structure. */
new_slot = cpqhp_slot_create(busnumber);
if (new_slot == NULL)
return 1;
}
new_slot->bus = (u8) busnumber;
new_slot->device = (u8) device;
new_slot->function = (u8) function;
new_slot->is_a_board = 1;
new_slot->switch_save = 0x10;
/* In case of unsupported board */
new_slot->status = DevError;
new_slot->pci_dev = pci_get_bus_and_slot(new_slot->bus, (new_slot->device << 3) | new_slot->function);
for (cloop = 0; cloop < 0x20; cloop++) {
rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), cloop << 2, (u32 *) & (new_slot-> config_space [cloop]));
if (rc)
return rc;
}
pci_dev_put(new_slot->pci_dev);
function++;
stop_it = 0;
/* this loop skips to the next present function
* reading in Class Code and Header type.
*/
while ((function < max_functions) && (!stop_it)) {
rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_VENDOR_ID, &ID);
if (ID == 0xFFFFFFFF) {
function++;
continue;
}
rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), 0x0B, &class_code);
if (rc)
return rc;
rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_HEADER_TYPE, &header_type);
if (rc)
return rc;
stop_it++;
}
} while (function < max_functions);
} /* End of FOR loop */
return 0;
}
/*
* cpqhp_save_slot_config
*
* Saves configuration info for all PCI devices in a given slot
* including subordinate busses.
*
* returns 0 if success
*/
int cpqhp_save_slot_config (struct controller *ctrl, struct pci_func * new_slot)
{
long rc;
u8 class_code;
u8 header_type;
u32 ID;
u8 secondary_bus;
int sub_bus;
int max_functions;
int function = 0;
int cloop = 0;
int stop_it;
ID = 0xFFFFFFFF;
ctrl->pci_bus->number = new_slot->bus;
pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_VENDOR_ID, &ID);
if (ID == 0xFFFFFFFF)
return 2;
pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), 0x0B, &class_code);
pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_HEADER_TYPE, &header_type);
if (header_type & 0x80) /* Multi-function device */
max_functions = 8;
else
max_functions = 1;
while (function < max_functions) {
if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
/* Recurse the subordinate bus */
pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_SECONDARY_BUS, &secondary_bus);
sub_bus = (int) secondary_bus;
/* Save the config headers for the secondary
* bus.
*/
rc = cpqhp_save_config(ctrl, sub_bus, 0);
if (rc)
return(rc);
ctrl->pci_bus->number = new_slot->bus;
}
new_slot->status = 0;
for (cloop = 0; cloop < 0x20; cloop++)
pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), cloop << 2, (u32 *) & (new_slot-> config_space [cloop]));
function++;
stop_it = 0;
/* this loop skips to the next present function
* reading in the Class Code and the Header type.
*/
while ((function < max_functions) && (!stop_it)) {
pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_VENDOR_ID, &ID);
if (ID == 0xFFFFFFFF)
function++;
else {
pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), 0x0B, &class_code);
pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_HEADER_TYPE, &header_type);
stop_it++;
}
}
}
return 0;
}
/*
* cpqhp_save_base_addr_length
*
* Saves the length of all base address registers for the
* specified slot. this is for hot plug REPLACE
*
* returns 0 if success
*/
int cpqhp_save_base_addr_length(struct controller *ctrl, struct pci_func * func)
{
u8 cloop;
u8 header_type;
u8 secondary_bus;
u8 type;
int sub_bus;
u32 temp_register;
u32 base;
u32 rc;
struct pci_func *next;
int index = 0;
struct pci_bus *pci_bus = ctrl->pci_bus;
unsigned int devfn;
func = cpqhp_slot_find(func->bus, func->device, index++);
while (func != NULL) {
pci_bus->number = func->bus;
devfn = PCI_DEVFN(func->device, func->function);
/* Check for Bridge */
pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
pci_bus_read_config_byte (pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
sub_bus = (int) secondary_bus;
next = cpqhp_slot_list[sub_bus];
while (next != NULL) {
rc = cpqhp_save_base_addr_length(ctrl, next);
if (rc)
return rc;
next = next->next;
}
pci_bus->number = func->bus;
/* FIXME: this loop is duplicated in the non-bridge
* case. The two could be rolled together Figure out
* IO and memory base lengths
*/
for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
temp_register = 0xFFFFFFFF;
pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
pci_bus_read_config_dword (pci_bus, devfn, cloop, &base);
/* If this register is implemented */
if (base) {
if (base & 0x01L) {
/* IO base
* set base = amount of IO space
* requested
*/
base = base & 0xFFFFFFFE;
base = (~base) + 1;
type = 1;
} else {
/* memory base */
base = base & 0xFFFFFFF0;
base = (~base) + 1;
type = 0;
}
} else {
base = 0x0L;
type = 0;
}
/* Save information in slot structure */
func->base_length[(cloop - 0x10) >> 2] =
base;
func->base_type[(cloop - 0x10) >> 2] = type;
} /* End of base register loop */
} else if ((header_type & 0x7F) == 0x00) {
/* Figure out IO and memory base lengths */
for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
temp_register = 0xFFFFFFFF;
pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
pci_bus_read_config_dword (pci_bus, devfn, cloop, &base);
/* If this register is implemented */
if (base) {
if (base & 0x01L) {
/* IO base
* base = amount of IO space
* requested
*/
base = base & 0xFFFFFFFE;
base = (~base) + 1;
type = 1;
} else {
/* memory base
* base = amount of memory
* space requested
*/
base = base & 0xFFFFFFF0;
base = (~base) + 1;
type = 0;
}
} else {
base = 0x0L;
type = 0;
}
/* Save information in slot structure */
func->base_length[(cloop - 0x10) >> 2] = base;
func->base_type[(cloop - 0x10) >> 2] = type;
} /* End of base register loop */
} else { /* Some other unknown header type */
}
/* find the next device in this slot */
func = cpqhp_slot_find(func->bus, func->device, index++);
}
return(0);
}
/*
* cpqhp_save_used_resources
*
* Stores used resource information for existing boards. this is
* for boards that were in the system when this driver was loaded.
* this function is for hot plug ADD
*
* returns 0 if success
*/
int cpqhp_save_used_resources (struct controller *ctrl, struct pci_func * func)
{
u8 cloop;
u8 header_type;
u8 secondary_bus;
u8 temp_byte;
u8 b_base;
u8 b_length;
u16 command;
u16 save_command;
u16 w_base;
u16 w_length;
u32 temp_register;
u32 save_base;
u32 base;
int index = 0;
struct pci_resource *mem_node;
struct pci_resource *p_mem_node;
struct pci_resource *io_node;
struct pci_resource *bus_node;
struct pci_bus *pci_bus = ctrl->pci_bus;
unsigned int devfn;
func = cpqhp_slot_find(func->bus, func->device, index++);
while ((func != NULL) && func->is_a_board) {
pci_bus->number = func->bus;
devfn = PCI_DEVFN(func->device, func->function);
/* Save the command register */
pci_bus_read_config_word(pci_bus, devfn, PCI_COMMAND, &save_command);
/* disable card */
command = 0x00;
pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
/* Check for Bridge */
pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
/* Clear Bridge Control Register */
command = 0x00;
pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
pci_bus_read_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, &temp_byte);
bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
if (!bus_node)
return -ENOMEM;
bus_node->base = secondary_bus;
bus_node->length = temp_byte - secondary_bus + 1;
bus_node->next = func->bus_head;
func->bus_head = bus_node;
/* Save IO base and Limit registers */
pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_BASE, &b_base);
pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_LIMIT, &b_length);
if ((b_base <= b_length) && (save_command & 0x01)) {
io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
if (!io_node)
return -ENOMEM;
io_node->base = (b_base & 0xF0) << 8;
io_node->length = (b_length - b_base + 0x10) << 8;
io_node->next = func->io_head;
func->io_head = io_node;
}
/* Save memory base and Limit registers */
pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_BASE, &w_base);
pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, &w_length);
if ((w_base <= w_length) && (save_command & 0x02)) {
mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
if (!mem_node)
return -ENOMEM;
mem_node->base = w_base << 16;
mem_node->length = (w_length - w_base + 0x10) << 16;
mem_node->next = func->mem_head;
func->mem_head = mem_node;
}
/* Save prefetchable memory base and Limit registers */
pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, &w_base);
pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, &w_length);
if ((w_base <= w_length) && (save_command & 0x02)) {
p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
if (!p_mem_node)
return -ENOMEM;
p_mem_node->base = w_base << 16;
p_mem_node->length = (w_length - w_base + 0x10) << 16;
p_mem_node->next = func->p_mem_head;
func->p_mem_head = p_mem_node;
}
/* Figure out IO and memory base lengths */
for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
pci_bus_read_config_dword (pci_bus, devfn, cloop, &save_base);
temp_register = 0xFFFFFFFF;
pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
temp_register = base;
/* If this register is implemented */
if (base) {
if (((base & 0x03L) == 0x01)
&& (save_command & 0x01)) {
/* IO base
* set temp_register = amount
* of IO space requested
*/
temp_register = base & 0xFFFFFFFE;
temp_register = (~temp_register) + 1;
io_node = kmalloc(sizeof(*io_node),
GFP_KERNEL);
if (!io_node)
return -ENOMEM;
io_node->base =
save_base & (~0x03L);
io_node->length = temp_register;
io_node->next = func->io_head;
func->io_head = io_node;
} else
if (((base & 0x0BL) == 0x08)
&& (save_command & 0x02)) {
/* prefetchable memory base */
temp_register = base & 0xFFFFFFF0;
temp_register = (~temp_register) + 1;
p_mem_node = kmalloc(sizeof(*p_mem_node),
GFP_KERNEL);
if (!p_mem_node)
return -ENOMEM;
p_mem_node->base = save_base & (~0x0FL);
p_mem_node->length = temp_register;
p_mem_node->next = func->p_mem_head;
func->p_mem_head = p_mem_node;
} else
if (((base & 0x0BL) == 0x00)
&& (save_command & 0x02)) {
/* prefetchable memory base */
temp_register = base & 0xFFFFFFF0;
temp_register = (~temp_register) + 1;
mem_node = kmalloc(sizeof(*mem_node),
GFP_KERNEL);
if (!mem_node)
return -ENOMEM;
mem_node->base = save_base & (~0x0FL);
mem_node->length = temp_register;
mem_node->next = func->mem_head;
func->mem_head = mem_node;
} else
return(1);
}
} /* End of base register loop */
/* Standard header */
} else if ((header_type & 0x7F) == 0x00) {
/* Figure out IO and memory base lengths */
for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base);
temp_register = 0xFFFFFFFF;
pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
temp_register = base;
/* If this register is implemented */
if (base) {
if (((base & 0x03L) == 0x01)
&& (save_command & 0x01)) {
/* IO base
* set temp_register = amount
* of IO space requested
*/
temp_register = base & 0xFFFFFFFE;
temp_register = (~temp_register) + 1;
io_node = kmalloc(sizeof(*io_node),
GFP_KERNEL);
if (!io_node)
return -ENOMEM;
io_node->base = save_base & (~0x01L);
io_node->length = temp_register;
io_node->next = func->io_head;
func->io_head = io_node;
} else
if (((base & 0x0BL) == 0x08)
&& (save_command & 0x02)) {
/* prefetchable memory base */
temp_register = base & 0xFFFFFFF0;
temp_register = (~temp_register) + 1;
p_mem_node = kmalloc(sizeof(*p_mem_node),
GFP_KERNEL);
if (!p_mem_node)
return -ENOMEM;
p_mem_node->base = save_base & (~0x0FL);
p_mem_node->length = temp_register;
p_mem_node->next = func->p_mem_head;
func->p_mem_head = p_mem_node;
} else
if (((base & 0x0BL) == 0x00)
&& (save_command & 0x02)) {
/* prefetchable memory base */
temp_register = base & 0xFFFFFFF0;
temp_register = (~temp_register) + 1;
mem_node = kmalloc(sizeof(*mem_node),
GFP_KERNEL);
if (!mem_node)
return -ENOMEM;
mem_node->base = save_base & (~0x0FL);
mem_node->length = temp_register;
mem_node->next = func->mem_head;
func->mem_head = mem_node;
} else
return(1);
}
} /* End of base register loop */
}
/* find the next device in this slot */
func = cpqhp_slot_find(func->bus, func->device, index++);
}
return 0;
}
/*
* cpqhp_configure_board
*
* Copies saved configuration information to one slot.
* this is called recursively for bridge devices.
* this is for hot plug REPLACE!
*
* returns 0 if success
*/
int cpqhp_configure_board(struct controller *ctrl, struct pci_func * func)
{
int cloop;
u8 header_type;
u8 secondary_bus;
int sub_bus;
struct pci_func *next;
u32 temp;
u32 rc;
int index = 0;
struct pci_bus *pci_bus = ctrl->pci_bus;
unsigned int devfn;
func = cpqhp_slot_find(func->bus, func->device, index++);
while (func != NULL) {
pci_bus->number = func->bus;
devfn = PCI_DEVFN(func->device, func->function);
/* Start at the top of config space so that the control
* registers are programmed last
*/
for (cloop = 0x3C; cloop > 0; cloop -= 4)
pci_bus_write_config_dword (pci_bus, devfn, cloop, func->config_space[cloop >> 2]);
pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
/* If this is a bridge device, restore subordinate devices */
if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
pci_bus_read_config_byte (pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
sub_bus = (int) secondary_bus;
next = cpqhp_slot_list[sub_bus];
while (next != NULL) {
rc = cpqhp_configure_board(ctrl, next);
if (rc)
return rc;
next = next->next;
}
} else {
/* Check all the base Address Registers to make sure
* they are the same. If not, the board is different.
*/
for (cloop = 16; cloop < 40; cloop += 4) {
pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp);
if (temp != func->config_space[cloop >> 2]) {
dbg("Config space compare failure!!! offset = %x\n", cloop);
dbg("bus = %x, device = %x, function = %x\n", func->bus, func->device, func->function);
dbg("temp = %x, config space = %x\n\n", temp, func->config_space[cloop >> 2]);
return 1;
}
}
}
func->configured = 1;
func = cpqhp_slot_find(func->bus, func->device, index++);
}
return 0;
}
/*
* cpqhp_valid_replace
*
* this function checks to see if a board is the same as the
* one it is replacing. this check will detect if the device's
* vendor or device id's are the same
*
* returns 0 if the board is the same nonzero otherwise
*/
int cpqhp_valid_replace(struct controller *ctrl, struct pci_func * func)
{
u8 cloop;
u8 header_type;
u8 secondary_bus;
u8 type;
u32 temp_register = 0;
u32 base;
u32 rc;
struct pci_func *next;
int index = 0;
struct pci_bus *pci_bus = ctrl->pci_bus;
unsigned int devfn;
if (!func->is_a_board)
return(ADD_NOT_SUPPORTED);
func = cpqhp_slot_find(func->bus, func->device, index++);
while (func != NULL) {
pci_bus->number = func->bus;
devfn = PCI_DEVFN(func->device, func->function);
pci_bus_read_config_dword (pci_bus, devfn, PCI_VENDOR_ID, &temp_register);
/* No adapter present */
if (temp_register == 0xFFFFFFFF)
return(NO_ADAPTER_PRESENT);
if (temp_register != func->config_space[0])
return(ADAPTER_NOT_SAME);
/* Check for same revision number and class code */
pci_bus_read_config_dword (pci_bus, devfn, PCI_CLASS_REVISION, &temp_register);
/* Adapter not the same */
if (temp_register != func->config_space[0x08 >> 2])
return(ADAPTER_NOT_SAME);
/* Check for Bridge */
pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
/* In order to continue checking, we must program the
* bus registers in the bridge to respond to accesses
* for its subordinate bus(es)
*/
temp_register = func->config_space[0x18 >> 2];
pci_bus_write_config_dword (pci_bus, devfn, PCI_PRIMARY_BUS, temp_register);
secondary_bus = (temp_register >> 8) & 0xFF;
next = cpqhp_slot_list[secondary_bus];
while (next != NULL) {
rc = cpqhp_valid_replace(ctrl, next);
if (rc)
return rc;
next = next->next;
}
}
/* Check to see if it is a standard config header */
else if ((header_type & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
/* Check subsystem vendor and ID */
pci_bus_read_config_dword (pci_bus, devfn, PCI_SUBSYSTEM_VENDOR_ID, &temp_register);
if (temp_register != func->config_space[0x2C >> 2]) {
/* If it's a SMART-2 and the register isn't
* filled in, ignore the difference because
* they just have an old rev of the firmware
*/
if (!((func->config_space[0] == 0xAE100E11)
&& (temp_register == 0x00L)))
return(ADAPTER_NOT_SAME);
}
/* Figure out IO and memory base lengths */
for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
temp_register = 0xFFFFFFFF;
pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
pci_bus_read_config_dword (pci_bus, devfn, cloop, &base);
/* If this register is implemented */
if (base) {
if (base & 0x01L) {
/* IO base
* set base = amount of IO
* space requested
*/
base = base & 0xFFFFFFFE;
base = (~base) + 1;
type = 1;
} else {
/* memory base */
base = base & 0xFFFFFFF0;
base = (~base) + 1;
type = 0;
}
} else {
base = 0x0L;
type = 0;
}
/* Check information in slot structure */
if (func->base_length[(cloop - 0x10) >> 2] != base)
return(ADAPTER_NOT_SAME);
if (func->base_type[(cloop - 0x10) >> 2] != type)
return(ADAPTER_NOT_SAME);
} /* End of base register loop */
} /* End of (type 0 config space) else */
else {
/* this is not a type 0 or 1 config space header so
* we don't know how to do it
*/
return(DEVICE_TYPE_NOT_SUPPORTED);
}
/* Get the next function */
func = cpqhp_slot_find(func->bus, func->device, index++);
}
return 0;
}
/*
* cpqhp_find_available_resources
*
* Finds available memory, IO, and IRQ resources for programming
* devices which may be added to the system
* this function is for hot plug ADD!
*
* returns 0 if success
*/
int cpqhp_find_available_resources(struct controller *ctrl, void __iomem *rom_start)
{
u8 temp;
u8 populated_slot;
u8 bridged_slot;
void __iomem *one_slot;
void __iomem *rom_resource_table;
struct pci_func *func = NULL;
int i = 10, index;
u32 temp_dword, rc;
struct pci_resource *mem_node;
struct pci_resource *p_mem_node;
struct pci_resource *io_node;
struct pci_resource *bus_node;
rom_resource_table = detect_HRT_floating_pointer(rom_start, rom_start+0xffff);
dbg("rom_resource_table = %p\n", rom_resource_table);
if (rom_resource_table == NULL)
return -ENODEV;
/* Sum all resources and setup resource maps */
unused_IRQ = readl(rom_resource_table + UNUSED_IRQ);
dbg("unused_IRQ = %x\n", unused_IRQ);
temp = 0;
while (unused_IRQ) {
if (unused_IRQ & 1) {
cpqhp_disk_irq = temp;
break;
}
unused_IRQ = unused_IRQ >> 1;
temp++;
}
dbg("cpqhp_disk_irq= %d\n", cpqhp_disk_irq);
unused_IRQ = unused_IRQ >> 1;
temp++;
while (unused_IRQ) {
if (unused_IRQ & 1) {
cpqhp_nic_irq = temp;
break;
}
unused_IRQ = unused_IRQ >> 1;
temp++;
}
dbg("cpqhp_nic_irq= %d\n", cpqhp_nic_irq);
unused_IRQ = readl(rom_resource_table + PCIIRQ);
temp = 0;
if (!cpqhp_nic_irq)
cpqhp_nic_irq = ctrl->cfgspc_irq;
if (!cpqhp_disk_irq)
cpqhp_disk_irq = ctrl->cfgspc_irq;
dbg("cpqhp_disk_irq, cpqhp_nic_irq= %d, %d\n", cpqhp_disk_irq, cpqhp_nic_irq);
rc = compaq_nvram_load(rom_start, ctrl);
if (rc)
return rc;
one_slot = rom_resource_table + sizeof (struct hrt);
i = readb(rom_resource_table + NUMBER_OF_ENTRIES);
dbg("number_of_entries = %d\n", i);
if (!readb(one_slot + SECONDARY_BUS))
return 1;
dbg("dev|IO base|length|Mem base|length|Pre base|length|PB SB MB\n");
while (i && readb(one_slot + SECONDARY_BUS)) {
u8 dev_func = readb(one_slot + DEV_FUNC);
u8 primary_bus = readb(one_slot + PRIMARY_BUS);
u8 secondary_bus = readb(one_slot + SECONDARY_BUS);
u8 max_bus = readb(one_slot + MAX_BUS);
u16 io_base = readw(one_slot + IO_BASE);
u16 io_length = readw(one_slot + IO_LENGTH);
u16 mem_base = readw(one_slot + MEM_BASE);
u16 mem_length = readw(one_slot + MEM_LENGTH);
u16 pre_mem_base = readw(one_slot + PRE_MEM_BASE);
u16 pre_mem_length = readw(one_slot + PRE_MEM_LENGTH);
dbg("%2.2x | %4.4x | %4.4x | %4.4x | %4.4x | %4.4x | %4.4x |%2.2x %2.2x %2.2x\n",
dev_func, io_base, io_length, mem_base, mem_length, pre_mem_base, pre_mem_length,
primary_bus, secondary_bus, max_bus);
/* If this entry isn't for our controller's bus, ignore it */
if (primary_bus != ctrl->bus) {
i--;
one_slot += sizeof (struct slot_rt);
continue;
}
/* find out if this entry is for an occupied slot */
ctrl->pci_bus->number = primary_bus;
pci_bus_read_config_dword (ctrl->pci_bus, dev_func, PCI_VENDOR_ID, &temp_dword);
dbg("temp_D_word = %x\n", temp_dword);
if (temp_dword != 0xFFFFFFFF) {
index = 0;
func = cpqhp_slot_find(primary_bus, dev_func >> 3, 0);
while (func && (func->function != (dev_func & 0x07))) {
dbg("func = %p (bus, dev, fun) = (%d, %d, %d)\n", func, primary_bus, dev_func >> 3, index);
func = cpqhp_slot_find(primary_bus, dev_func >> 3, index++);
}
/* If we can't find a match, skip this table entry */
if (!func) {
i--;
one_slot += sizeof (struct slot_rt);
continue;
}
/* this may not work and shouldn't be used */
if (secondary_bus != primary_bus)
bridged_slot = 1;
else
bridged_slot = 0;
populated_slot = 1;
} else {
populated_slot = 0;
bridged_slot = 0;
}
/* If we've got a valid IO base, use it */
temp_dword = io_base + io_length;
if ((io_base) && (temp_dword < 0x10000)) {
io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
if (!io_node)
return -ENOMEM;
io_node->base = io_base;
io_node->length = io_length;
dbg("found io_node(base, length) = %x, %x\n",
io_node->base, io_node->length);
dbg("populated slot =%d \n", populated_slot);
if (!populated_slot) {
io_node->next = ctrl->io_head;
ctrl->io_head = io_node;
} else {
io_node->next = func->io_head;
func->io_head = io_node;
}
}
/* If we've got a valid memory base, use it */
temp_dword = mem_base + mem_length;
if ((mem_base) && (temp_dword < 0x10000)) {
mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
if (!mem_node)
return -ENOMEM;
mem_node->base = mem_base << 16;
mem_node->length = mem_length << 16;
dbg("found mem_node(base, length) = %x, %x\n",
mem_node->base, mem_node->length);
dbg("populated slot =%d \n", populated_slot);
if (!populated_slot) {
mem_node->next = ctrl->mem_head;
ctrl->mem_head = mem_node;
} else {
mem_node->next = func->mem_head;
func->mem_head = mem_node;
}
}
/* If we've got a valid prefetchable memory base, and
* the base + length isn't greater than 0xFFFF
*/
temp_dword = pre_mem_base + pre_mem_length;
if ((pre_mem_base) && (temp_dword < 0x10000)) {
p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
if (!p_mem_node)
return -ENOMEM;
p_mem_node->base = pre_mem_base << 16;
p_mem_node->length = pre_mem_length << 16;
dbg("found p_mem_node(base, length) = %x, %x\n",
p_mem_node->base, p_mem_node->length);
dbg("populated slot =%d \n", populated_slot);
if (!populated_slot) {
p_mem_node->next = ctrl->p_mem_head;
ctrl->p_mem_head = p_mem_node;
} else {
p_mem_node->next = func->p_mem_head;
func->p_mem_head = p_mem_node;
}
}
/* If we've got a valid bus number, use it
* The second condition is to ignore bus numbers on
* populated slots that don't have PCI-PCI bridges
*/
if (secondary_bus && (secondary_bus != primary_bus)) {
bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
if (!bus_node)
return -ENOMEM;
bus_node->base = secondary_bus;
bus_node->length = max_bus - secondary_bus + 1;
dbg("found bus_node(base, length) = %x, %x\n",
bus_node->base, bus_node->length);
dbg("populated slot =%d \n", populated_slot);
if (!populated_slot) {
bus_node->next = ctrl->bus_head;
ctrl->bus_head = bus_node;
} else {
bus_node->next = func->bus_head;
func->bus_head = bus_node;
}
}
i--;
one_slot += sizeof (struct slot_rt);
}
/* If all of the following fail, we don't have any resources for
* hot plug add
*/
rc = 1;
rc &= cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
rc &= cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
rc &= cpqhp_resource_sort_and_combine(&(ctrl->io_head));
rc &= cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
return rc;
}
/*
* cpqhp_return_board_resources
*
* this routine returns all resources allocated to a board to
* the available pool.
*
* returns 0 if success
*/
int cpqhp_return_board_resources(struct pci_func * func, struct resource_lists * resources)
{
int rc = 0;
struct pci_resource *node;
struct pci_resource *t_node;
dbg("%s\n", __func__);
if (!func)
return 1;
node = func->io_head;
func->io_head = NULL;
while (node) {
t_node = node->next;
return_resource(&(resources->io_head), node);
node = t_node;
}
node = func->mem_head;
func->mem_head = NULL;
while (node) {
t_node = node->next;
return_resource(&(resources->mem_head), node);
node = t_node;
}
node = func->p_mem_head;
func->p_mem_head = NULL;
while (node) {
t_node = node->next;
return_resource(&(resources->p_mem_head), node);
node = t_node;
}
node = func->bus_head;
func->bus_head = NULL;
while (node) {
t_node = node->next;
return_resource(&(resources->bus_head), node);
node = t_node;
}
rc |= cpqhp_resource_sort_and_combine(&(resources->mem_head));
rc |= cpqhp_resource_sort_and_combine(&(resources->p_mem_head));
rc |= cpqhp_resource_sort_and_combine(&(resources->io_head));
rc |= cpqhp_resource_sort_and_combine(&(resources->bus_head));
return rc;
}
/*
* cpqhp_destroy_resource_list
*
* Puts node back in the resource list pointed to by head
*/
void cpqhp_destroy_resource_list (struct resource_lists * resources)
{
struct pci_resource *res, *tres;
res = resources->io_head;
resources->io_head = NULL;
while (res) {
tres = res;
res = res->next;
kfree(tres);
}
res = resources->mem_head;
resources->mem_head = NULL;
while (res) {
tres = res;
res = res->next;
kfree(tres);
}
res = resources->p_mem_head;
resources->p_mem_head = NULL;
while (res) {
tres = res;
res = res->next;
kfree(tres);
}
res = resources->bus_head;
resources->bus_head = NULL;
while (res) {
tres = res;
res = res->next;
kfree(tres);
}
}
/*
* cpqhp_destroy_board_resources
*
* Puts node back in the resource list pointed to by head
*/
void cpqhp_destroy_board_resources (struct pci_func * func)
{
struct pci_resource *res, *tres;
res = func->io_head;
func->io_head = NULL;
while (res) {
tres = res;
res = res->next;
kfree(tres);
}
res = func->mem_head;
func->mem_head = NULL;
while (res) {
tres = res;
res = res->next;
kfree(tres);
}
res = func->p_mem_head;
func->p_mem_head = NULL;
while (res) {
tres = res;
res = res->next;
kfree(tres);
}
res = func->bus_head;
func->bus_head = NULL;
while (res) {
tres = res;
res = res->next;
kfree(tres);
}
}