linux-hardened/fs/f2fs/node.h
Chao Yu 7c1a000d46 f2fs: add SPDX license identifiers
Remove the verbose license text from f2fs files and replace them with
SPDX tags.  This does not change the license of any of the code.

Signed-off-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2018-09-12 13:07:10 -07:00

455 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* fs/f2fs/node.h
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*/
/* start node id of a node block dedicated to the given node id */
#define START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
/* node block offset on the NAT area dedicated to the given start node id */
#define NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
/* # of pages to perform synchronous readahead before building free nids */
#define FREE_NID_PAGES 8
#define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
#define DEF_RA_NID_PAGES 0 /* # of nid pages to be readaheaded */
/* maximum readahead size for node during getting data blocks */
#define MAX_RA_NODE 128
/* control the memory footprint threshold (10MB per 1GB ram) */
#define DEF_RAM_THRESHOLD 1
/* control dirty nats ratio threshold (default: 10% over max nid count) */
#define DEF_DIRTY_NAT_RATIO_THRESHOLD 10
/* control total # of nats */
#define DEF_NAT_CACHE_THRESHOLD 100000
/* vector size for gang look-up from nat cache that consists of radix tree */
#define NATVEC_SIZE 64
#define SETVEC_SIZE 32
/* return value for read_node_page */
#define LOCKED_PAGE 1
/* For flag in struct node_info */
enum {
IS_CHECKPOINTED, /* is it checkpointed before? */
HAS_FSYNCED_INODE, /* is the inode fsynced before? */
HAS_LAST_FSYNC, /* has the latest node fsync mark? */
IS_DIRTY, /* this nat entry is dirty? */
IS_PREALLOC, /* nat entry is preallocated */
};
/*
* For node information
*/
struct node_info {
nid_t nid; /* node id */
nid_t ino; /* inode number of the node's owner */
block_t blk_addr; /* block address of the node */
unsigned char version; /* version of the node */
unsigned char flag; /* for node information bits */
};
struct nat_entry {
struct list_head list; /* for clean or dirty nat list */
struct node_info ni; /* in-memory node information */
};
#define nat_get_nid(nat) ((nat)->ni.nid)
#define nat_set_nid(nat, n) ((nat)->ni.nid = (n))
#define nat_get_blkaddr(nat) ((nat)->ni.blk_addr)
#define nat_set_blkaddr(nat, b) ((nat)->ni.blk_addr = (b))
#define nat_get_ino(nat) ((nat)->ni.ino)
#define nat_set_ino(nat, i) ((nat)->ni.ino = (i))
#define nat_get_version(nat) ((nat)->ni.version)
#define nat_set_version(nat, v) ((nat)->ni.version = (v))
#define inc_node_version(version) (++(version))
static inline void copy_node_info(struct node_info *dst,
struct node_info *src)
{
dst->nid = src->nid;
dst->ino = src->ino;
dst->blk_addr = src->blk_addr;
dst->version = src->version;
/* should not copy flag here */
}
static inline void set_nat_flag(struct nat_entry *ne,
unsigned int type, bool set)
{
unsigned char mask = 0x01 << type;
if (set)
ne->ni.flag |= mask;
else
ne->ni.flag &= ~mask;
}
static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
{
unsigned char mask = 0x01 << type;
return ne->ni.flag & mask;
}
static inline void nat_reset_flag(struct nat_entry *ne)
{
/* these states can be set only after checkpoint was done */
set_nat_flag(ne, IS_CHECKPOINTED, true);
set_nat_flag(ne, HAS_FSYNCED_INODE, false);
set_nat_flag(ne, HAS_LAST_FSYNC, true);
}
static inline void node_info_from_raw_nat(struct node_info *ni,
struct f2fs_nat_entry *raw_ne)
{
ni->ino = le32_to_cpu(raw_ne->ino);
ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
ni->version = raw_ne->version;
}
static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
struct node_info *ni)
{
raw_ne->ino = cpu_to_le32(ni->ino);
raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
raw_ne->version = ni->version;
}
static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
{
return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid *
NM_I(sbi)->dirty_nats_ratio / 100;
}
static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
{
return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD;
}
static inline bool excess_dirty_nodes(struct f2fs_sb_info *sbi)
{
return get_pages(sbi, F2FS_DIRTY_NODES) >= sbi->blocks_per_seg * 8;
}
enum mem_type {
FREE_NIDS, /* indicates the free nid list */
NAT_ENTRIES, /* indicates the cached nat entry */
DIRTY_DENTS, /* indicates dirty dentry pages */
INO_ENTRIES, /* indicates inode entries */
EXTENT_CACHE, /* indicates extent cache */
INMEM_PAGES, /* indicates inmemory pages */
BASE_CHECK, /* check kernel status */
};
struct nat_entry_set {
struct list_head set_list; /* link with other nat sets */
struct list_head entry_list; /* link with dirty nat entries */
nid_t set; /* set number*/
unsigned int entry_cnt; /* the # of nat entries in set */
};
struct free_nid {
struct list_head list; /* for free node id list */
nid_t nid; /* node id */
int state; /* in use or not: FREE_NID or PREALLOC_NID */
};
static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
struct free_nid *fnid;
spin_lock(&nm_i->nid_list_lock);
if (nm_i->nid_cnt[FREE_NID] <= 0) {
spin_unlock(&nm_i->nid_list_lock);
return;
}
fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list);
*nid = fnid->nid;
spin_unlock(&nm_i->nid_list_lock);
}
/*
* inline functions
*/
static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
#ifdef CONFIG_F2FS_CHECK_FS
if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
nm_i->bitmap_size))
f2fs_bug_on(sbi, 1);
#endif
memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
}
static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
pgoff_t block_off;
pgoff_t block_addr;
/*
* block_off = segment_off * 512 + off_in_segment
* OLD = (segment_off * 512) * 2 + off_in_segment
* NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment
*/
block_off = NAT_BLOCK_OFFSET(start);
block_addr = (pgoff_t)(nm_i->nat_blkaddr +
(block_off << 1) -
(block_off & (sbi->blocks_per_seg - 1)));
if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
block_addr += sbi->blocks_per_seg;
return block_addr;
}
static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
pgoff_t block_addr)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
block_addr -= nm_i->nat_blkaddr;
block_addr ^= 1 << sbi->log_blocks_per_seg;
return block_addr + nm_i->nat_blkaddr;
}
static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
{
unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
f2fs_change_bit(block_off, nm_i->nat_bitmap);
#ifdef CONFIG_F2FS_CHECK_FS
f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
#endif
}
static inline nid_t ino_of_node(struct page *node_page)
{
struct f2fs_node *rn = F2FS_NODE(node_page);
return le32_to_cpu(rn->footer.ino);
}
static inline nid_t nid_of_node(struct page *node_page)
{
struct f2fs_node *rn = F2FS_NODE(node_page);
return le32_to_cpu(rn->footer.nid);
}
static inline unsigned int ofs_of_node(struct page *node_page)
{
struct f2fs_node *rn = F2FS_NODE(node_page);
unsigned flag = le32_to_cpu(rn->footer.flag);
return flag >> OFFSET_BIT_SHIFT;
}
static inline __u64 cpver_of_node(struct page *node_page)
{
struct f2fs_node *rn = F2FS_NODE(node_page);
return le64_to_cpu(rn->footer.cp_ver);
}
static inline block_t next_blkaddr_of_node(struct page *node_page)
{
struct f2fs_node *rn = F2FS_NODE(node_page);
return le32_to_cpu(rn->footer.next_blkaddr);
}
static inline void fill_node_footer(struct page *page, nid_t nid,
nid_t ino, unsigned int ofs, bool reset)
{
struct f2fs_node *rn = F2FS_NODE(page);
unsigned int old_flag = 0;
if (reset)
memset(rn, 0, sizeof(*rn));
else
old_flag = le32_to_cpu(rn->footer.flag);
rn->footer.nid = cpu_to_le32(nid);
rn->footer.ino = cpu_to_le32(ino);
/* should remain old flag bits such as COLD_BIT_SHIFT */
rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
(old_flag & OFFSET_BIT_MASK));
}
static inline void copy_node_footer(struct page *dst, struct page *src)
{
struct f2fs_node *src_rn = F2FS_NODE(src);
struct f2fs_node *dst_rn = F2FS_NODE(dst);
memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
}
static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
{
struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
struct f2fs_node *rn = F2FS_NODE(page);
__u64 cp_ver = cur_cp_version(ckpt);
if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
cp_ver |= (cur_cp_crc(ckpt) << 32);
rn->footer.cp_ver = cpu_to_le64(cp_ver);
rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
}
static inline bool is_recoverable_dnode(struct page *page)
{
struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
__u64 cp_ver = cur_cp_version(ckpt);
/* Don't care crc part, if fsck.f2fs sets it. */
if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG))
return (cp_ver << 32) == (cpver_of_node(page) << 32);
if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
cp_ver |= (cur_cp_crc(ckpt) << 32);
return cp_ver == cpver_of_node(page);
}
/*
* f2fs assigns the following node offsets described as (num).
* N = NIDS_PER_BLOCK
*
* Inode block (0)
* |- direct node (1)
* |- direct node (2)
* |- indirect node (3)
* | `- direct node (4 => 4 + N - 1)
* |- indirect node (4 + N)
* | `- direct node (5 + N => 5 + 2N - 1)
* `- double indirect node (5 + 2N)
* `- indirect node (6 + 2N)
* `- direct node
* ......
* `- indirect node ((6 + 2N) + x(N + 1))
* `- direct node
* ......
* `- indirect node ((6 + 2N) + (N - 1)(N + 1))
* `- direct node
*/
static inline bool IS_DNODE(struct page *node_page)
{
unsigned int ofs = ofs_of_node(node_page);
if (f2fs_has_xattr_block(ofs))
return true;
if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
ofs == 5 + 2 * NIDS_PER_BLOCK)
return false;
if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
ofs -= 6 + 2 * NIDS_PER_BLOCK;
if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
return false;
}
return true;
}
static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
{
struct f2fs_node *rn = F2FS_NODE(p);
f2fs_wait_on_page_writeback(p, NODE, true);
if (i)
rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
else
rn->in.nid[off] = cpu_to_le32(nid);
return set_page_dirty(p);
}
static inline nid_t get_nid(struct page *p, int off, bool i)
{
struct f2fs_node *rn = F2FS_NODE(p);
if (i)
return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
return le32_to_cpu(rn->in.nid[off]);
}
/*
* Coldness identification:
* - Mark cold files in f2fs_inode_info
* - Mark cold node blocks in their node footer
* - Mark cold data pages in page cache
*/
static inline int is_cold_data(struct page *page)
{
return PageChecked(page);
}
static inline void set_cold_data(struct page *page)
{
SetPageChecked(page);
}
static inline void clear_cold_data(struct page *page)
{
ClearPageChecked(page);
}
static inline int is_node(struct page *page, int type)
{
struct f2fs_node *rn = F2FS_NODE(page);
return le32_to_cpu(rn->footer.flag) & (1 << type);
}
#define is_cold_node(page) is_node(page, COLD_BIT_SHIFT)
#define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT)
#define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT)
static inline int is_inline_node(struct page *page)
{
return PageChecked(page);
}
static inline void set_inline_node(struct page *page)
{
SetPageChecked(page);
}
static inline void clear_inline_node(struct page *page)
{
ClearPageChecked(page);
}
static inline void set_cold_node(struct page *page, bool is_dir)
{
struct f2fs_node *rn = F2FS_NODE(page);
unsigned int flag = le32_to_cpu(rn->footer.flag);
if (is_dir)
flag &= ~(0x1 << COLD_BIT_SHIFT);
else
flag |= (0x1 << COLD_BIT_SHIFT);
rn->footer.flag = cpu_to_le32(flag);
}
static inline void set_mark(struct page *page, int mark, int type)
{
struct f2fs_node *rn = F2FS_NODE(page);
unsigned int flag = le32_to_cpu(rn->footer.flag);
if (mark)
flag |= (0x1 << type);
else
flag &= ~(0x1 << type);
rn->footer.flag = cpu_to_le32(flag);
#ifdef CONFIG_F2FS_CHECK_FS
f2fs_inode_chksum_set(F2FS_P_SB(page), page);
#endif
}
#define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT)
#define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)