linux-hardened/fs/f2fs/segment.h
Linus Torvalds bf5f89463f Merge branch 'akpm' (patches from Andrew)
Merge more updates from Andrew Morton:

 - the rest of MM

 - various misc things

 - procfs updates

 - lib/ updates

 - checkpatch updates

 - kdump/kexec updates

 - add kvmalloc helpers, use them

 - time helper updates for Y2038 issues. We're almost ready to remove
   current_fs_time() but that awaits a btrfs merge.

 - add tracepoints to DAX

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (114 commits)
  drivers/staging/ccree/ssi_hash.c: fix build with gcc-4.4.4
  selftests/vm: add a test for virtual address range mapping
  dax: add tracepoint to dax_insert_mapping()
  dax: add tracepoint to dax_writeback_one()
  dax: add tracepoints to dax_writeback_mapping_range()
  dax: add tracepoints to dax_load_hole()
  dax: add tracepoints to dax_pfn_mkwrite()
  dax: add tracepoints to dax_iomap_pte_fault()
  mtd: nand: nandsim: convert to memalloc_noreclaim_*()
  treewide: convert PF_MEMALLOC manipulations to new helpers
  mm: introduce memalloc_noreclaim_{save,restore}
  mm: prevent potential recursive reclaim due to clearing PF_MEMALLOC
  mm/huge_memory.c: deposit a pgtable for DAX PMD faults when required
  mm/huge_memory.c: use zap_deposited_table() more
  time: delete CURRENT_TIME_SEC and CURRENT_TIME
  gfs2: replace CURRENT_TIME with current_time
  apparmorfs: replace CURRENT_TIME with current_time()
  lustre: replace CURRENT_TIME macro
  fs: ubifs: replace CURRENT_TIME_SEC with current_time
  fs: ufs: use ktime_get_real_ts64() for birthtime
  ...
2017-05-08 18:17:56 -07:00

797 lines
24 KiB
C

/*
* fs/f2fs/segment.h
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/blkdev.h>
#include <linux/backing-dev.h>
/* constant macro */
#define NULL_SEGNO ((unsigned int)(~0))
#define NULL_SECNO ((unsigned int)(~0))
#define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
#define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */
#define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
/* L: Logical segment # in volume, R: Relative segment # in main area */
#define GET_L2R_SEGNO(free_i, segno) ((segno) - (free_i)->start_segno)
#define GET_R2L_SEGNO(free_i, segno) ((segno) + (free_i)->start_segno)
#define IS_DATASEG(t) ((t) <= CURSEG_COLD_DATA)
#define IS_NODESEG(t) ((t) >= CURSEG_HOT_NODE)
#define IS_CURSEG(sbi, seg) \
(((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
#define IS_CURSEC(sbi, secno) \
(((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
(sbi)->segs_per_sec) || \
((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
(sbi)->segs_per_sec) || \
((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
(sbi)->segs_per_sec) || \
((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
(sbi)->segs_per_sec) || \
((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
(sbi)->segs_per_sec) || \
((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
(sbi)->segs_per_sec)) \
#define MAIN_BLKADDR(sbi) (SM_I(sbi)->main_blkaddr)
#define SEG0_BLKADDR(sbi) (SM_I(sbi)->seg0_blkaddr)
#define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
#define MAIN_SECS(sbi) ((sbi)->total_sections)
#define TOTAL_SEGS(sbi) (SM_I(sbi)->segment_count)
#define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
#define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
#define SEGMENT_SIZE(sbi) (1ULL << ((sbi)->log_blocksize + \
(sbi)->log_blocks_per_seg))
#define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
(GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
#define NEXT_FREE_BLKADDR(sbi, curseg) \
(START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
#define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
#define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
#define GET_SEGNO(sbi, blk_addr) \
((((blk_addr) == NULL_ADDR) || ((blk_addr) == NEW_ADDR)) ? \
NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
#define BLKS_PER_SEC(sbi) \
((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
#define GET_SEC_FROM_SEG(sbi, segno) \
((segno) / (sbi)->segs_per_sec)
#define GET_SEG_FROM_SEC(sbi, secno) \
((secno) * (sbi)->segs_per_sec)
#define GET_ZONE_FROM_SEC(sbi, secno) \
((secno) / (sbi)->secs_per_zone)
#define GET_ZONE_FROM_SEG(sbi, segno) \
GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
#define GET_SUM_BLOCK(sbi, segno) \
((sbi)->sm_info->ssa_blkaddr + (segno))
#define GET_SUM_TYPE(footer) ((footer)->entry_type)
#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
#define SIT_ENTRY_OFFSET(sit_i, segno) \
((segno) % (sit_i)->sents_per_block)
#define SIT_BLOCK_OFFSET(segno) \
((segno) / SIT_ENTRY_PER_BLOCK)
#define START_SEGNO(segno) \
(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
#define SIT_BLK_CNT(sbi) \
((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
#define f2fs_bitmap_size(nr) \
(BITS_TO_LONGS(nr) * sizeof(unsigned long))
#define SECTOR_FROM_BLOCK(blk_addr) \
(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
#define SECTOR_TO_BLOCK(sectors) \
((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
/*
* indicate a block allocation direction: RIGHT and LEFT.
* RIGHT means allocating new sections towards the end of volume.
* LEFT means the opposite direction.
*/
enum {
ALLOC_RIGHT = 0,
ALLOC_LEFT
};
/*
* In the victim_sel_policy->alloc_mode, there are two block allocation modes.
* LFS writes data sequentially with cleaning operations.
* SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
*/
enum {
LFS = 0,
SSR
};
/*
* In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
* GC_CB is based on cost-benefit algorithm.
* GC_GREEDY is based on greedy algorithm.
*/
enum {
GC_CB = 0,
GC_GREEDY,
ALLOC_NEXT,
FLUSH_DEVICE,
MAX_GC_POLICY,
};
/*
* BG_GC means the background cleaning job.
* FG_GC means the on-demand cleaning job.
* FORCE_FG_GC means on-demand cleaning job in background.
*/
enum {
BG_GC = 0,
FG_GC,
FORCE_FG_GC,
};
/* for a function parameter to select a victim segment */
struct victim_sel_policy {
int alloc_mode; /* LFS or SSR */
int gc_mode; /* GC_CB or GC_GREEDY */
unsigned long *dirty_segmap; /* dirty segment bitmap */
unsigned int max_search; /* maximum # of segments to search */
unsigned int offset; /* last scanned bitmap offset */
unsigned int ofs_unit; /* bitmap search unit */
unsigned int min_cost; /* minimum cost */
unsigned int min_segno; /* segment # having min. cost */
};
struct seg_entry {
unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */
unsigned int valid_blocks:10; /* # of valid blocks */
unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */
unsigned int padding:6; /* padding */
unsigned char *cur_valid_map; /* validity bitmap of blocks */
#ifdef CONFIG_F2FS_CHECK_FS
unsigned char *cur_valid_map_mir; /* mirror of current valid bitmap */
#endif
/*
* # of valid blocks and the validity bitmap stored in the the last
* checkpoint pack. This information is used by the SSR mode.
*/
unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */
unsigned char *discard_map;
unsigned long long mtime; /* modification time of the segment */
};
struct sec_entry {
unsigned int valid_blocks; /* # of valid blocks in a section */
};
struct segment_allocation {
void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
};
/*
* this value is set in page as a private data which indicate that
* the page is atomically written, and it is in inmem_pages list.
*/
#define ATOMIC_WRITTEN_PAGE ((unsigned long)-1)
#define DUMMY_WRITTEN_PAGE ((unsigned long)-2)
#define IS_ATOMIC_WRITTEN_PAGE(page) \
(page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
#define IS_DUMMY_WRITTEN_PAGE(page) \
(page_private(page) == (unsigned long)DUMMY_WRITTEN_PAGE)
struct inmem_pages {
struct list_head list;
struct page *page;
block_t old_addr; /* for revoking when fail to commit */
};
struct sit_info {
const struct segment_allocation *s_ops;
block_t sit_base_addr; /* start block address of SIT area */
block_t sit_blocks; /* # of blocks used by SIT area */
block_t written_valid_blocks; /* # of valid blocks in main area */
char *sit_bitmap; /* SIT bitmap pointer */
#ifdef CONFIG_F2FS_CHECK_FS
char *sit_bitmap_mir; /* SIT bitmap mirror */
#endif
unsigned int bitmap_size; /* SIT bitmap size */
unsigned long *tmp_map; /* bitmap for temporal use */
unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
unsigned int dirty_sentries; /* # of dirty sentries */
unsigned int sents_per_block; /* # of SIT entries per block */
struct mutex sentry_lock; /* to protect SIT cache */
struct seg_entry *sentries; /* SIT segment-level cache */
struct sec_entry *sec_entries; /* SIT section-level cache */
/* for cost-benefit algorithm in cleaning procedure */
unsigned long long elapsed_time; /* elapsed time after mount */
unsigned long long mounted_time; /* mount time */
unsigned long long min_mtime; /* min. modification time */
unsigned long long max_mtime; /* max. modification time */
unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
};
struct free_segmap_info {
unsigned int start_segno; /* start segment number logically */
unsigned int free_segments; /* # of free segments */
unsigned int free_sections; /* # of free sections */
spinlock_t segmap_lock; /* free segmap lock */
unsigned long *free_segmap; /* free segment bitmap */
unsigned long *free_secmap; /* free section bitmap */
};
/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
enum dirty_type {
DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
DIRTY, /* to count # of dirty segments */
PRE, /* to count # of entirely obsolete segments */
NR_DIRTY_TYPE
};
struct dirty_seglist_info {
const struct victim_selection *v_ops; /* victim selction operation */
unsigned long *dirty_segmap[NR_DIRTY_TYPE];
struct mutex seglist_lock; /* lock for segment bitmaps */
int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
unsigned long *victim_secmap; /* background GC victims */
};
/* victim selection function for cleaning and SSR */
struct victim_selection {
int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
int, int, char);
};
/* for active log information */
struct curseg_info {
struct mutex curseg_mutex; /* lock for consistency */
struct f2fs_summary_block *sum_blk; /* cached summary block */
struct rw_semaphore journal_rwsem; /* protect journal area */
struct f2fs_journal *journal; /* cached journal info */
unsigned char alloc_type; /* current allocation type */
unsigned int segno; /* current segment number */
unsigned short next_blkoff; /* next block offset to write */
unsigned int zone; /* current zone number */
unsigned int next_segno; /* preallocated segment */
};
struct sit_entry_set {
struct list_head set_list; /* link with all sit sets */
unsigned int start_segno; /* start segno of sits in set */
unsigned int entry_cnt; /* the # of sit entries in set */
};
/*
* inline functions
*/
static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
{
return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
}
static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
unsigned int segno)
{
struct sit_info *sit_i = SIT_I(sbi);
return &sit_i->sentries[segno];
}
static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
unsigned int segno)
{
struct sit_info *sit_i = SIT_I(sbi);
return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
}
static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
unsigned int segno, bool use_section)
{
/*
* In order to get # of valid blocks in a section instantly from many
* segments, f2fs manages two counting structures separately.
*/
if (use_section && sbi->segs_per_sec > 1)
return get_sec_entry(sbi, segno)->valid_blocks;
else
return get_seg_entry(sbi, segno)->valid_blocks;
}
static inline void seg_info_from_raw_sit(struct seg_entry *se,
struct f2fs_sit_entry *rs)
{
se->valid_blocks = GET_SIT_VBLOCKS(rs);
se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
#ifdef CONFIG_F2FS_CHECK_FS
memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
#endif
se->type = GET_SIT_TYPE(rs);
se->mtime = le64_to_cpu(rs->mtime);
}
static inline void seg_info_to_raw_sit(struct seg_entry *se,
struct f2fs_sit_entry *rs)
{
unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
se->valid_blocks;
rs->vblocks = cpu_to_le16(raw_vblocks);
memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
se->ckpt_valid_blocks = se->valid_blocks;
rs->mtime = cpu_to_le64(se->mtime);
}
static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
unsigned int max, unsigned int segno)
{
unsigned int ret;
spin_lock(&free_i->segmap_lock);
ret = find_next_bit(free_i->free_segmap, max, segno);
spin_unlock(&free_i->segmap_lock);
return ret;
}
static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
{
struct free_segmap_info *free_i = FREE_I(sbi);
unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
unsigned int next;
spin_lock(&free_i->segmap_lock);
clear_bit(segno, free_i->free_segmap);
free_i->free_segments++;
next = find_next_bit(free_i->free_segmap,
start_segno + sbi->segs_per_sec, start_segno);
if (next >= start_segno + sbi->segs_per_sec) {
clear_bit(secno, free_i->free_secmap);
free_i->free_sections++;
}
spin_unlock(&free_i->segmap_lock);
}
static inline void __set_inuse(struct f2fs_sb_info *sbi,
unsigned int segno)
{
struct free_segmap_info *free_i = FREE_I(sbi);
unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
set_bit(segno, free_i->free_segmap);
free_i->free_segments--;
if (!test_and_set_bit(secno, free_i->free_secmap))
free_i->free_sections--;
}
static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
unsigned int segno)
{
struct free_segmap_info *free_i = FREE_I(sbi);
unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
unsigned int next;
spin_lock(&free_i->segmap_lock);
if (test_and_clear_bit(segno, free_i->free_segmap)) {
free_i->free_segments++;
next = find_next_bit(free_i->free_segmap,
start_segno + sbi->segs_per_sec, start_segno);
if (next >= start_segno + sbi->segs_per_sec) {
if (test_and_clear_bit(secno, free_i->free_secmap))
free_i->free_sections++;
}
}
spin_unlock(&free_i->segmap_lock);
}
static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
unsigned int segno)
{
struct free_segmap_info *free_i = FREE_I(sbi);
unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
spin_lock(&free_i->segmap_lock);
if (!test_and_set_bit(segno, free_i->free_segmap)) {
free_i->free_segments--;
if (!test_and_set_bit(secno, free_i->free_secmap))
free_i->free_sections--;
}
spin_unlock(&free_i->segmap_lock);
}
static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
void *dst_addr)
{
struct sit_info *sit_i = SIT_I(sbi);
#ifdef CONFIG_F2FS_CHECK_FS
if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
sit_i->bitmap_size))
f2fs_bug_on(sbi, 1);
#endif
memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
}
static inline block_t written_block_count(struct f2fs_sb_info *sbi)
{
return SIT_I(sbi)->written_valid_blocks;
}
static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
{
return FREE_I(sbi)->free_segments;
}
static inline int reserved_segments(struct f2fs_sb_info *sbi)
{
return SM_I(sbi)->reserved_segments;
}
static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
{
return FREE_I(sbi)->free_sections;
}
static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
{
return DIRTY_I(sbi)->nr_dirty[PRE];
}
static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
{
return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
}
static inline int overprovision_segments(struct f2fs_sb_info *sbi)
{
return SM_I(sbi)->ovp_segments;
}
static inline int overprovision_sections(struct f2fs_sb_info *sbi)
{
return GET_SEC_FROM_SEG(sbi, (unsigned int)overprovision_segments(sbi));
}
static inline int reserved_sections(struct f2fs_sb_info *sbi)
{
return GET_SEC_FROM_SEG(sbi, (unsigned int)reserved_segments(sbi));
}
static inline bool need_SSR(struct f2fs_sb_info *sbi)
{
int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
if (test_opt(sbi, LFS))
return false;
return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
2 * reserved_sections(sbi));
}
static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
int freed, int needed)
{
int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
return false;
return (free_sections(sbi) + freed) <=
(node_secs + 2 * dent_secs + imeta_secs +
reserved_sections(sbi) + needed);
}
static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
{
return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
}
static inline int utilization(struct f2fs_sb_info *sbi)
{
return div_u64((u64)valid_user_blocks(sbi) * 100,
sbi->user_block_count);
}
/*
* Sometimes f2fs may be better to drop out-of-place update policy.
* And, users can control the policy through sysfs entries.
* There are five policies with triggering conditions as follows.
* F2FS_IPU_FORCE - all the time,
* F2FS_IPU_SSR - if SSR mode is activated,
* F2FS_IPU_UTIL - if FS utilization is over threashold,
* F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
* threashold,
* F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
* storages. IPU will be triggered only if the # of dirty
* pages over min_fsync_blocks.
* F2FS_IPUT_DISABLE - disable IPU. (=default option)
*/
#define DEF_MIN_IPU_UTIL 70
#define DEF_MIN_FSYNC_BLOCKS 8
#define DEF_MIN_HOT_BLOCKS 16
enum {
F2FS_IPU_FORCE,
F2FS_IPU_SSR,
F2FS_IPU_UTIL,
F2FS_IPU_SSR_UTIL,
F2FS_IPU_FSYNC,
F2FS_IPU_ASYNC,
};
static inline bool need_inplace_update_policy(struct inode *inode,
struct f2fs_io_info *fio)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
unsigned int policy = SM_I(sbi)->ipu_policy;
if (test_opt(sbi, LFS))
return false;
if (policy & (0x1 << F2FS_IPU_FORCE))
return true;
if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
return true;
if (policy & (0x1 << F2FS_IPU_UTIL) &&
utilization(sbi) > SM_I(sbi)->min_ipu_util)
return true;
if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
utilization(sbi) > SM_I(sbi)->min_ipu_util)
return true;
/*
* IPU for rewrite async pages
*/
if (policy & (0x1 << F2FS_IPU_ASYNC) &&
fio && fio->op == REQ_OP_WRITE &&
!(fio->op_flags & REQ_SYNC) &&
!f2fs_encrypted_inode(inode))
return true;
/* this is only set during fdatasync */
if (policy & (0x1 << F2FS_IPU_FSYNC) &&
is_inode_flag_set(inode, FI_NEED_IPU))
return true;
return false;
}
static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
int type)
{
struct curseg_info *curseg = CURSEG_I(sbi, type);
return curseg->segno;
}
static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
int type)
{
struct curseg_info *curseg = CURSEG_I(sbi, type);
return curseg->alloc_type;
}
static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
{
struct curseg_info *curseg = CURSEG_I(sbi, type);
return curseg->next_blkoff;
}
static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
{
f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
}
static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
{
BUG_ON(blk_addr < SEG0_BLKADDR(sbi)
|| blk_addr >= MAX_BLKADDR(sbi));
}
/*
* Summary block is always treated as an invalid block
*/
static inline void check_block_count(struct f2fs_sb_info *sbi,
int segno, struct f2fs_sit_entry *raw_sit)
{
#ifdef CONFIG_F2FS_CHECK_FS
bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
int valid_blocks = 0;
int cur_pos = 0, next_pos;
/* check bitmap with valid block count */
do {
if (is_valid) {
next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
sbi->blocks_per_seg,
cur_pos);
valid_blocks += next_pos - cur_pos;
} else
next_pos = find_next_bit_le(&raw_sit->valid_map,
sbi->blocks_per_seg,
cur_pos);
cur_pos = next_pos;
is_valid = !is_valid;
} while (cur_pos < sbi->blocks_per_seg);
BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
#endif
/* check segment usage, and check boundary of a given segment number */
f2fs_bug_on(sbi, GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
|| segno > TOTAL_SEGS(sbi) - 1);
}
static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
unsigned int start)
{
struct sit_info *sit_i = SIT_I(sbi);
unsigned int offset = SIT_BLOCK_OFFSET(start);
block_t blk_addr = sit_i->sit_base_addr + offset;
check_seg_range(sbi, start);
#ifdef CONFIG_F2FS_CHECK_FS
if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
f2fs_bug_on(sbi, 1);
#endif
/* calculate sit block address */
if (f2fs_test_bit(offset, sit_i->sit_bitmap))
blk_addr += sit_i->sit_blocks;
return blk_addr;
}
static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
pgoff_t block_addr)
{
struct sit_info *sit_i = SIT_I(sbi);
block_addr -= sit_i->sit_base_addr;
if (block_addr < sit_i->sit_blocks)
block_addr += sit_i->sit_blocks;
else
block_addr -= sit_i->sit_blocks;
return block_addr + sit_i->sit_base_addr;
}
static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
{
unsigned int block_off = SIT_BLOCK_OFFSET(start);
f2fs_change_bit(block_off, sit_i->sit_bitmap);
#ifdef CONFIG_F2FS_CHECK_FS
f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
#endif
}
static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
{
struct sit_info *sit_i = SIT_I(sbi);
time64_t now = ktime_get_real_seconds();
return sit_i->elapsed_time + now - sit_i->mounted_time;
}
static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
unsigned int ofs_in_node, unsigned char version)
{
sum->nid = cpu_to_le32(nid);
sum->ofs_in_node = cpu_to_le16(ofs_in_node);
sum->version = version;
}
static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
{
return __start_cp_addr(sbi) +
le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
}
static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
{
return __start_cp_addr(sbi) +
le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
- (base + 1) + type;
}
static inline bool no_fggc_candidate(struct f2fs_sb_info *sbi,
unsigned int secno)
{
if (get_valid_blocks(sbi, GET_SEG_FROM_SEC(sbi, secno), true) >=
sbi->fggc_threshold)
return true;
return false;
}
static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
{
if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
return true;
return false;
}
/*
* It is very important to gather dirty pages and write at once, so that we can
* submit a big bio without interfering other data writes.
* By default, 512 pages for directory data,
* 512 pages (2MB) * 8 for nodes, and
* 256 pages * 8 for meta are set.
*/
static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
{
if (sbi->sb->s_bdi->wb.dirty_exceeded)
return 0;
if (type == DATA)
return sbi->blocks_per_seg;
else if (type == NODE)
return 8 * sbi->blocks_per_seg;
else if (type == META)
return 8 * BIO_MAX_PAGES;
else
return 0;
}
/*
* When writing pages, it'd better align nr_to_write for segment size.
*/
static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
struct writeback_control *wbc)
{
long nr_to_write, desired;
if (wbc->sync_mode != WB_SYNC_NONE)
return 0;
nr_to_write = wbc->nr_to_write;
desired = BIO_MAX_PAGES;
if (type == NODE)
desired <<= 1;
wbc->nr_to_write = desired;
return desired - nr_to_write;
}