cbee9f88ec
NOTE: This patch is based on "sched, numa, mm: Add fault driven placement and migration policy" but as it throws away all the policy to just leave a basic foundation I had to drop the signed-offs-by. This patch creates a bare-bones method for setting PTEs pte_numa in the context of the scheduler that when faulted later will be faulted onto the node the CPU is running on. In itself this does nothing useful but any placement policy will fundamentally depend on receiving hints on placement from fault context and doing something intelligent about it. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com>
2508 lines
65 KiB
C
2508 lines
65 KiB
C
/*
|
|
* Copyright (C) 2009 Red Hat, Inc.
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2. See
|
|
* the COPYING file in the top-level directory.
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/mmu_notifier.h>
|
|
#include <linux/rmap.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/mm_inline.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/khugepaged.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/migrate.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/pgalloc.h>
|
|
#include "internal.h"
|
|
|
|
/*
|
|
* By default transparent hugepage support is enabled for all mappings
|
|
* and khugepaged scans all mappings. Defrag is only invoked by
|
|
* khugepaged hugepage allocations and by page faults inside
|
|
* MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
|
|
* allocations.
|
|
*/
|
|
unsigned long transparent_hugepage_flags __read_mostly =
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
|
|
(1<<TRANSPARENT_HUGEPAGE_FLAG)|
|
|
#endif
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
|
|
(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
|
|
#endif
|
|
(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
|
|
(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
|
|
|
|
/* default scan 8*512 pte (or vmas) every 30 second */
|
|
static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
|
|
static unsigned int khugepaged_pages_collapsed;
|
|
static unsigned int khugepaged_full_scans;
|
|
static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
|
|
/* during fragmentation poll the hugepage allocator once every minute */
|
|
static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
|
|
static struct task_struct *khugepaged_thread __read_mostly;
|
|
static DEFINE_MUTEX(khugepaged_mutex);
|
|
static DEFINE_SPINLOCK(khugepaged_mm_lock);
|
|
static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
|
|
/*
|
|
* default collapse hugepages if there is at least one pte mapped like
|
|
* it would have happened if the vma was large enough during page
|
|
* fault.
|
|
*/
|
|
static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
|
|
|
|
static int khugepaged(void *none);
|
|
static int mm_slots_hash_init(void);
|
|
static int khugepaged_slab_init(void);
|
|
static void khugepaged_slab_free(void);
|
|
|
|
#define MM_SLOTS_HASH_HEADS 1024
|
|
static struct hlist_head *mm_slots_hash __read_mostly;
|
|
static struct kmem_cache *mm_slot_cache __read_mostly;
|
|
|
|
/**
|
|
* struct mm_slot - hash lookup from mm to mm_slot
|
|
* @hash: hash collision list
|
|
* @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
|
|
* @mm: the mm that this information is valid for
|
|
*/
|
|
struct mm_slot {
|
|
struct hlist_node hash;
|
|
struct list_head mm_node;
|
|
struct mm_struct *mm;
|
|
};
|
|
|
|
/**
|
|
* struct khugepaged_scan - cursor for scanning
|
|
* @mm_head: the head of the mm list to scan
|
|
* @mm_slot: the current mm_slot we are scanning
|
|
* @address: the next address inside that to be scanned
|
|
*
|
|
* There is only the one khugepaged_scan instance of this cursor structure.
|
|
*/
|
|
struct khugepaged_scan {
|
|
struct list_head mm_head;
|
|
struct mm_slot *mm_slot;
|
|
unsigned long address;
|
|
};
|
|
static struct khugepaged_scan khugepaged_scan = {
|
|
.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
|
|
};
|
|
|
|
|
|
static int set_recommended_min_free_kbytes(void)
|
|
{
|
|
struct zone *zone;
|
|
int nr_zones = 0;
|
|
unsigned long recommended_min;
|
|
extern int min_free_kbytes;
|
|
|
|
if (!khugepaged_enabled())
|
|
return 0;
|
|
|
|
for_each_populated_zone(zone)
|
|
nr_zones++;
|
|
|
|
/* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
|
|
recommended_min = pageblock_nr_pages * nr_zones * 2;
|
|
|
|
/*
|
|
* Make sure that on average at least two pageblocks are almost free
|
|
* of another type, one for a migratetype to fall back to and a
|
|
* second to avoid subsequent fallbacks of other types There are 3
|
|
* MIGRATE_TYPES we care about.
|
|
*/
|
|
recommended_min += pageblock_nr_pages * nr_zones *
|
|
MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
|
|
|
|
/* don't ever allow to reserve more than 5% of the lowmem */
|
|
recommended_min = min(recommended_min,
|
|
(unsigned long) nr_free_buffer_pages() / 20);
|
|
recommended_min <<= (PAGE_SHIFT-10);
|
|
|
|
if (recommended_min > min_free_kbytes)
|
|
min_free_kbytes = recommended_min;
|
|
setup_per_zone_wmarks();
|
|
return 0;
|
|
}
|
|
late_initcall(set_recommended_min_free_kbytes);
|
|
|
|
static int start_khugepaged(void)
|
|
{
|
|
int err = 0;
|
|
if (khugepaged_enabled()) {
|
|
if (!khugepaged_thread)
|
|
khugepaged_thread = kthread_run(khugepaged, NULL,
|
|
"khugepaged");
|
|
if (unlikely(IS_ERR(khugepaged_thread))) {
|
|
printk(KERN_ERR
|
|
"khugepaged: kthread_run(khugepaged) failed\n");
|
|
err = PTR_ERR(khugepaged_thread);
|
|
khugepaged_thread = NULL;
|
|
}
|
|
|
|
if (!list_empty(&khugepaged_scan.mm_head))
|
|
wake_up_interruptible(&khugepaged_wait);
|
|
|
|
set_recommended_min_free_kbytes();
|
|
} else if (khugepaged_thread) {
|
|
kthread_stop(khugepaged_thread);
|
|
khugepaged_thread = NULL;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
#ifdef CONFIG_SYSFS
|
|
|
|
static ssize_t double_flag_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf,
|
|
enum transparent_hugepage_flag enabled,
|
|
enum transparent_hugepage_flag req_madv)
|
|
{
|
|
if (test_bit(enabled, &transparent_hugepage_flags)) {
|
|
VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
|
|
return sprintf(buf, "[always] madvise never\n");
|
|
} else if (test_bit(req_madv, &transparent_hugepage_flags))
|
|
return sprintf(buf, "always [madvise] never\n");
|
|
else
|
|
return sprintf(buf, "always madvise [never]\n");
|
|
}
|
|
static ssize_t double_flag_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count,
|
|
enum transparent_hugepage_flag enabled,
|
|
enum transparent_hugepage_flag req_madv)
|
|
{
|
|
if (!memcmp("always", buf,
|
|
min(sizeof("always")-1, count))) {
|
|
set_bit(enabled, &transparent_hugepage_flags);
|
|
clear_bit(req_madv, &transparent_hugepage_flags);
|
|
} else if (!memcmp("madvise", buf,
|
|
min(sizeof("madvise")-1, count))) {
|
|
clear_bit(enabled, &transparent_hugepage_flags);
|
|
set_bit(req_madv, &transparent_hugepage_flags);
|
|
} else if (!memcmp("never", buf,
|
|
min(sizeof("never")-1, count))) {
|
|
clear_bit(enabled, &transparent_hugepage_flags);
|
|
clear_bit(req_madv, &transparent_hugepage_flags);
|
|
} else
|
|
return -EINVAL;
|
|
|
|
return count;
|
|
}
|
|
|
|
static ssize_t enabled_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
return double_flag_show(kobj, attr, buf,
|
|
TRANSPARENT_HUGEPAGE_FLAG,
|
|
TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
|
|
}
|
|
static ssize_t enabled_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
ssize_t ret;
|
|
|
|
ret = double_flag_store(kobj, attr, buf, count,
|
|
TRANSPARENT_HUGEPAGE_FLAG,
|
|
TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
|
|
|
|
if (ret > 0) {
|
|
int err;
|
|
|
|
mutex_lock(&khugepaged_mutex);
|
|
err = start_khugepaged();
|
|
mutex_unlock(&khugepaged_mutex);
|
|
|
|
if (err)
|
|
ret = err;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
static struct kobj_attribute enabled_attr =
|
|
__ATTR(enabled, 0644, enabled_show, enabled_store);
|
|
|
|
static ssize_t single_flag_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf,
|
|
enum transparent_hugepage_flag flag)
|
|
{
|
|
return sprintf(buf, "%d\n",
|
|
!!test_bit(flag, &transparent_hugepage_flags));
|
|
}
|
|
|
|
static ssize_t single_flag_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count,
|
|
enum transparent_hugepage_flag flag)
|
|
{
|
|
unsigned long value;
|
|
int ret;
|
|
|
|
ret = kstrtoul(buf, 10, &value);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (value > 1)
|
|
return -EINVAL;
|
|
|
|
if (value)
|
|
set_bit(flag, &transparent_hugepage_flags);
|
|
else
|
|
clear_bit(flag, &transparent_hugepage_flags);
|
|
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* Currently defrag only disables __GFP_NOWAIT for allocation. A blind
|
|
* __GFP_REPEAT is too aggressive, it's never worth swapping tons of
|
|
* memory just to allocate one more hugepage.
|
|
*/
|
|
static ssize_t defrag_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
return double_flag_show(kobj, attr, buf,
|
|
TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
|
|
TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
|
|
}
|
|
static ssize_t defrag_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
return double_flag_store(kobj, attr, buf, count,
|
|
TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
|
|
TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
|
|
}
|
|
static struct kobj_attribute defrag_attr =
|
|
__ATTR(defrag, 0644, defrag_show, defrag_store);
|
|
|
|
#ifdef CONFIG_DEBUG_VM
|
|
static ssize_t debug_cow_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
return single_flag_show(kobj, attr, buf,
|
|
TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
|
|
}
|
|
static ssize_t debug_cow_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
return single_flag_store(kobj, attr, buf, count,
|
|
TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
|
|
}
|
|
static struct kobj_attribute debug_cow_attr =
|
|
__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
|
|
#endif /* CONFIG_DEBUG_VM */
|
|
|
|
static struct attribute *hugepage_attr[] = {
|
|
&enabled_attr.attr,
|
|
&defrag_attr.attr,
|
|
#ifdef CONFIG_DEBUG_VM
|
|
&debug_cow_attr.attr,
|
|
#endif
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute_group hugepage_attr_group = {
|
|
.attrs = hugepage_attr,
|
|
};
|
|
|
|
static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
|
|
}
|
|
|
|
static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned long msecs;
|
|
int err;
|
|
|
|
err = strict_strtoul(buf, 10, &msecs);
|
|
if (err || msecs > UINT_MAX)
|
|
return -EINVAL;
|
|
|
|
khugepaged_scan_sleep_millisecs = msecs;
|
|
wake_up_interruptible(&khugepaged_wait);
|
|
|
|
return count;
|
|
}
|
|
static struct kobj_attribute scan_sleep_millisecs_attr =
|
|
__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
|
|
scan_sleep_millisecs_store);
|
|
|
|
static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
|
|
}
|
|
|
|
static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned long msecs;
|
|
int err;
|
|
|
|
err = strict_strtoul(buf, 10, &msecs);
|
|
if (err || msecs > UINT_MAX)
|
|
return -EINVAL;
|
|
|
|
khugepaged_alloc_sleep_millisecs = msecs;
|
|
wake_up_interruptible(&khugepaged_wait);
|
|
|
|
return count;
|
|
}
|
|
static struct kobj_attribute alloc_sleep_millisecs_attr =
|
|
__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
|
|
alloc_sleep_millisecs_store);
|
|
|
|
static ssize_t pages_to_scan_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
|
|
}
|
|
static ssize_t pages_to_scan_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
int err;
|
|
unsigned long pages;
|
|
|
|
err = strict_strtoul(buf, 10, &pages);
|
|
if (err || !pages || pages > UINT_MAX)
|
|
return -EINVAL;
|
|
|
|
khugepaged_pages_to_scan = pages;
|
|
|
|
return count;
|
|
}
|
|
static struct kobj_attribute pages_to_scan_attr =
|
|
__ATTR(pages_to_scan, 0644, pages_to_scan_show,
|
|
pages_to_scan_store);
|
|
|
|
static ssize_t pages_collapsed_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
|
|
}
|
|
static struct kobj_attribute pages_collapsed_attr =
|
|
__ATTR_RO(pages_collapsed);
|
|
|
|
static ssize_t full_scans_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sprintf(buf, "%u\n", khugepaged_full_scans);
|
|
}
|
|
static struct kobj_attribute full_scans_attr =
|
|
__ATTR_RO(full_scans);
|
|
|
|
static ssize_t khugepaged_defrag_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
return single_flag_show(kobj, attr, buf,
|
|
TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
|
|
}
|
|
static ssize_t khugepaged_defrag_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
return single_flag_store(kobj, attr, buf, count,
|
|
TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
|
|
}
|
|
static struct kobj_attribute khugepaged_defrag_attr =
|
|
__ATTR(defrag, 0644, khugepaged_defrag_show,
|
|
khugepaged_defrag_store);
|
|
|
|
/*
|
|
* max_ptes_none controls if khugepaged should collapse hugepages over
|
|
* any unmapped ptes in turn potentially increasing the memory
|
|
* footprint of the vmas. When max_ptes_none is 0 khugepaged will not
|
|
* reduce the available free memory in the system as it
|
|
* runs. Increasing max_ptes_none will instead potentially reduce the
|
|
* free memory in the system during the khugepaged scan.
|
|
*/
|
|
static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
|
|
}
|
|
static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
int err;
|
|
unsigned long max_ptes_none;
|
|
|
|
err = strict_strtoul(buf, 10, &max_ptes_none);
|
|
if (err || max_ptes_none > HPAGE_PMD_NR-1)
|
|
return -EINVAL;
|
|
|
|
khugepaged_max_ptes_none = max_ptes_none;
|
|
|
|
return count;
|
|
}
|
|
static struct kobj_attribute khugepaged_max_ptes_none_attr =
|
|
__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
|
|
khugepaged_max_ptes_none_store);
|
|
|
|
static struct attribute *khugepaged_attr[] = {
|
|
&khugepaged_defrag_attr.attr,
|
|
&khugepaged_max_ptes_none_attr.attr,
|
|
&pages_to_scan_attr.attr,
|
|
&pages_collapsed_attr.attr,
|
|
&full_scans_attr.attr,
|
|
&scan_sleep_millisecs_attr.attr,
|
|
&alloc_sleep_millisecs_attr.attr,
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute_group khugepaged_attr_group = {
|
|
.attrs = khugepaged_attr,
|
|
.name = "khugepaged",
|
|
};
|
|
|
|
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
|
|
{
|
|
int err;
|
|
|
|
*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
|
|
if (unlikely(!*hugepage_kobj)) {
|
|
printk(KERN_ERR "hugepage: failed kobject create\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
|
|
if (err) {
|
|
printk(KERN_ERR "hugepage: failed register hugeage group\n");
|
|
goto delete_obj;
|
|
}
|
|
|
|
err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
|
|
if (err) {
|
|
printk(KERN_ERR "hugepage: failed register hugeage group\n");
|
|
goto remove_hp_group;
|
|
}
|
|
|
|
return 0;
|
|
|
|
remove_hp_group:
|
|
sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
|
|
delete_obj:
|
|
kobject_put(*hugepage_kobj);
|
|
return err;
|
|
}
|
|
|
|
static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
|
|
{
|
|
sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
|
|
sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
|
|
kobject_put(hugepage_kobj);
|
|
}
|
|
#else
|
|
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
|
|
{
|
|
}
|
|
#endif /* CONFIG_SYSFS */
|
|
|
|
static int __init hugepage_init(void)
|
|
{
|
|
int err;
|
|
struct kobject *hugepage_kobj;
|
|
|
|
if (!has_transparent_hugepage()) {
|
|
transparent_hugepage_flags = 0;
|
|
return -EINVAL;
|
|
}
|
|
|
|
err = hugepage_init_sysfs(&hugepage_kobj);
|
|
if (err)
|
|
return err;
|
|
|
|
err = khugepaged_slab_init();
|
|
if (err)
|
|
goto out;
|
|
|
|
err = mm_slots_hash_init();
|
|
if (err) {
|
|
khugepaged_slab_free();
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* By default disable transparent hugepages on smaller systems,
|
|
* where the extra memory used could hurt more than TLB overhead
|
|
* is likely to save. The admin can still enable it through /sys.
|
|
*/
|
|
if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
|
|
transparent_hugepage_flags = 0;
|
|
|
|
start_khugepaged();
|
|
|
|
return 0;
|
|
out:
|
|
hugepage_exit_sysfs(hugepage_kobj);
|
|
return err;
|
|
}
|
|
module_init(hugepage_init)
|
|
|
|
static int __init setup_transparent_hugepage(char *str)
|
|
{
|
|
int ret = 0;
|
|
if (!str)
|
|
goto out;
|
|
if (!strcmp(str, "always")) {
|
|
set_bit(TRANSPARENT_HUGEPAGE_FLAG,
|
|
&transparent_hugepage_flags);
|
|
clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
|
|
&transparent_hugepage_flags);
|
|
ret = 1;
|
|
} else if (!strcmp(str, "madvise")) {
|
|
clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
|
|
&transparent_hugepage_flags);
|
|
set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
|
|
&transparent_hugepage_flags);
|
|
ret = 1;
|
|
} else if (!strcmp(str, "never")) {
|
|
clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
|
|
&transparent_hugepage_flags);
|
|
clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
|
|
&transparent_hugepage_flags);
|
|
ret = 1;
|
|
}
|
|
out:
|
|
if (!ret)
|
|
printk(KERN_WARNING
|
|
"transparent_hugepage= cannot parse, ignored\n");
|
|
return ret;
|
|
}
|
|
__setup("transparent_hugepage=", setup_transparent_hugepage);
|
|
|
|
static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
|
|
{
|
|
if (likely(vma->vm_flags & VM_WRITE))
|
|
pmd = pmd_mkwrite(pmd);
|
|
return pmd;
|
|
}
|
|
|
|
static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
|
|
struct vm_area_struct *vma,
|
|
unsigned long haddr, pmd_t *pmd,
|
|
struct page *page)
|
|
{
|
|
pgtable_t pgtable;
|
|
|
|
VM_BUG_ON(!PageCompound(page));
|
|
pgtable = pte_alloc_one(mm, haddr);
|
|
if (unlikely(!pgtable))
|
|
return VM_FAULT_OOM;
|
|
|
|
clear_huge_page(page, haddr, HPAGE_PMD_NR);
|
|
__SetPageUptodate(page);
|
|
|
|
spin_lock(&mm->page_table_lock);
|
|
if (unlikely(!pmd_none(*pmd))) {
|
|
spin_unlock(&mm->page_table_lock);
|
|
mem_cgroup_uncharge_page(page);
|
|
put_page(page);
|
|
pte_free(mm, pgtable);
|
|
} else {
|
|
pmd_t entry;
|
|
entry = mk_pmd(page, vma->vm_page_prot);
|
|
entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
|
|
entry = pmd_mkhuge(entry);
|
|
/*
|
|
* The spinlocking to take the lru_lock inside
|
|
* page_add_new_anon_rmap() acts as a full memory
|
|
* barrier to be sure clear_huge_page writes become
|
|
* visible after the set_pmd_at() write.
|
|
*/
|
|
page_add_new_anon_rmap(page, vma, haddr);
|
|
set_pmd_at(mm, haddr, pmd, entry);
|
|
pgtable_trans_huge_deposit(mm, pgtable);
|
|
add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
|
|
mm->nr_ptes++;
|
|
spin_unlock(&mm->page_table_lock);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
|
|
{
|
|
return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
|
|
}
|
|
|
|
static inline struct page *alloc_hugepage_vma(int defrag,
|
|
struct vm_area_struct *vma,
|
|
unsigned long haddr, int nd,
|
|
gfp_t extra_gfp)
|
|
{
|
|
return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
|
|
HPAGE_PMD_ORDER, vma, haddr, nd);
|
|
}
|
|
|
|
#ifndef CONFIG_NUMA
|
|
static inline struct page *alloc_hugepage(int defrag)
|
|
{
|
|
return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
|
|
HPAGE_PMD_ORDER);
|
|
}
|
|
#endif
|
|
|
|
int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
|
|
unsigned long address, pmd_t *pmd,
|
|
unsigned int flags)
|
|
{
|
|
struct page *page;
|
|
unsigned long haddr = address & HPAGE_PMD_MASK;
|
|
pte_t *pte;
|
|
|
|
if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
|
|
if (unlikely(anon_vma_prepare(vma)))
|
|
return VM_FAULT_OOM;
|
|
if (unlikely(khugepaged_enter(vma)))
|
|
return VM_FAULT_OOM;
|
|
page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
|
|
vma, haddr, numa_node_id(), 0);
|
|
if (unlikely(!page)) {
|
|
count_vm_event(THP_FAULT_FALLBACK);
|
|
goto out;
|
|
}
|
|
count_vm_event(THP_FAULT_ALLOC);
|
|
if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
|
|
put_page(page);
|
|
goto out;
|
|
}
|
|
if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
|
|
page))) {
|
|
mem_cgroup_uncharge_page(page);
|
|
put_page(page);
|
|
goto out;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
out:
|
|
/*
|
|
* Use __pte_alloc instead of pte_alloc_map, because we can't
|
|
* run pte_offset_map on the pmd, if an huge pmd could
|
|
* materialize from under us from a different thread.
|
|
*/
|
|
if (unlikely(pmd_none(*pmd)) &&
|
|
unlikely(__pte_alloc(mm, vma, pmd, address)))
|
|
return VM_FAULT_OOM;
|
|
/* if an huge pmd materialized from under us just retry later */
|
|
if (unlikely(pmd_trans_huge(*pmd)))
|
|
return 0;
|
|
/*
|
|
* A regular pmd is established and it can't morph into a huge pmd
|
|
* from under us anymore at this point because we hold the mmap_sem
|
|
* read mode and khugepaged takes it in write mode. So now it's
|
|
* safe to run pte_offset_map().
|
|
*/
|
|
pte = pte_offset_map(pmd, address);
|
|
return handle_pte_fault(mm, vma, address, pte, pmd, flags);
|
|
}
|
|
|
|
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
|
|
pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
|
|
struct vm_area_struct *vma)
|
|
{
|
|
struct page *src_page;
|
|
pmd_t pmd;
|
|
pgtable_t pgtable;
|
|
int ret;
|
|
|
|
ret = -ENOMEM;
|
|
pgtable = pte_alloc_one(dst_mm, addr);
|
|
if (unlikely(!pgtable))
|
|
goto out;
|
|
|
|
spin_lock(&dst_mm->page_table_lock);
|
|
spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
|
|
|
|
ret = -EAGAIN;
|
|
pmd = *src_pmd;
|
|
if (unlikely(!pmd_trans_huge(pmd))) {
|
|
pte_free(dst_mm, pgtable);
|
|
goto out_unlock;
|
|
}
|
|
if (unlikely(pmd_trans_splitting(pmd))) {
|
|
/* split huge page running from under us */
|
|
spin_unlock(&src_mm->page_table_lock);
|
|
spin_unlock(&dst_mm->page_table_lock);
|
|
pte_free(dst_mm, pgtable);
|
|
|
|
wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
|
|
goto out;
|
|
}
|
|
src_page = pmd_page(pmd);
|
|
VM_BUG_ON(!PageHead(src_page));
|
|
get_page(src_page);
|
|
page_dup_rmap(src_page);
|
|
add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
|
|
|
|
pmdp_set_wrprotect(src_mm, addr, src_pmd);
|
|
pmd = pmd_mkold(pmd_wrprotect(pmd));
|
|
set_pmd_at(dst_mm, addr, dst_pmd, pmd);
|
|
pgtable_trans_huge_deposit(dst_mm, pgtable);
|
|
dst_mm->nr_ptes++;
|
|
|
|
ret = 0;
|
|
out_unlock:
|
|
spin_unlock(&src_mm->page_table_lock);
|
|
spin_unlock(&dst_mm->page_table_lock);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
|
|
struct vm_area_struct *vma,
|
|
unsigned long address,
|
|
pmd_t *pmd, pmd_t orig_pmd,
|
|
struct page *page,
|
|
unsigned long haddr)
|
|
{
|
|
pgtable_t pgtable;
|
|
pmd_t _pmd;
|
|
int ret = 0, i;
|
|
struct page **pages;
|
|
unsigned long mmun_start; /* For mmu_notifiers */
|
|
unsigned long mmun_end; /* For mmu_notifiers */
|
|
|
|
pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
|
|
GFP_KERNEL);
|
|
if (unlikely(!pages)) {
|
|
ret |= VM_FAULT_OOM;
|
|
goto out;
|
|
}
|
|
|
|
for (i = 0; i < HPAGE_PMD_NR; i++) {
|
|
pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
|
|
__GFP_OTHER_NODE,
|
|
vma, address, page_to_nid(page));
|
|
if (unlikely(!pages[i] ||
|
|
mem_cgroup_newpage_charge(pages[i], mm,
|
|
GFP_KERNEL))) {
|
|
if (pages[i])
|
|
put_page(pages[i]);
|
|
mem_cgroup_uncharge_start();
|
|
while (--i >= 0) {
|
|
mem_cgroup_uncharge_page(pages[i]);
|
|
put_page(pages[i]);
|
|
}
|
|
mem_cgroup_uncharge_end();
|
|
kfree(pages);
|
|
ret |= VM_FAULT_OOM;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < HPAGE_PMD_NR; i++) {
|
|
copy_user_highpage(pages[i], page + i,
|
|
haddr + PAGE_SIZE * i, vma);
|
|
__SetPageUptodate(pages[i]);
|
|
cond_resched();
|
|
}
|
|
|
|
mmun_start = haddr;
|
|
mmun_end = haddr + HPAGE_PMD_SIZE;
|
|
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
|
|
|
|
spin_lock(&mm->page_table_lock);
|
|
if (unlikely(!pmd_same(*pmd, orig_pmd)))
|
|
goto out_free_pages;
|
|
VM_BUG_ON(!PageHead(page));
|
|
|
|
pmdp_clear_flush(vma, haddr, pmd);
|
|
/* leave pmd empty until pte is filled */
|
|
|
|
pgtable = pgtable_trans_huge_withdraw(mm);
|
|
pmd_populate(mm, &_pmd, pgtable);
|
|
|
|
for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
|
|
pte_t *pte, entry;
|
|
entry = mk_pte(pages[i], vma->vm_page_prot);
|
|
entry = maybe_mkwrite(pte_mkdirty(entry), vma);
|
|
page_add_new_anon_rmap(pages[i], vma, haddr);
|
|
pte = pte_offset_map(&_pmd, haddr);
|
|
VM_BUG_ON(!pte_none(*pte));
|
|
set_pte_at(mm, haddr, pte, entry);
|
|
pte_unmap(pte);
|
|
}
|
|
kfree(pages);
|
|
|
|
smp_wmb(); /* make pte visible before pmd */
|
|
pmd_populate(mm, pmd, pgtable);
|
|
page_remove_rmap(page);
|
|
spin_unlock(&mm->page_table_lock);
|
|
|
|
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
|
|
|
|
ret |= VM_FAULT_WRITE;
|
|
put_page(page);
|
|
|
|
out:
|
|
return ret;
|
|
|
|
out_free_pages:
|
|
spin_unlock(&mm->page_table_lock);
|
|
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
|
|
mem_cgroup_uncharge_start();
|
|
for (i = 0; i < HPAGE_PMD_NR; i++) {
|
|
mem_cgroup_uncharge_page(pages[i]);
|
|
put_page(pages[i]);
|
|
}
|
|
mem_cgroup_uncharge_end();
|
|
kfree(pages);
|
|
goto out;
|
|
}
|
|
|
|
int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
|
|
unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
|
|
{
|
|
int ret = 0;
|
|
struct page *page, *new_page;
|
|
unsigned long haddr;
|
|
unsigned long mmun_start; /* For mmu_notifiers */
|
|
unsigned long mmun_end; /* For mmu_notifiers */
|
|
|
|
VM_BUG_ON(!vma->anon_vma);
|
|
spin_lock(&mm->page_table_lock);
|
|
if (unlikely(!pmd_same(*pmd, orig_pmd)))
|
|
goto out_unlock;
|
|
|
|
page = pmd_page(orig_pmd);
|
|
VM_BUG_ON(!PageCompound(page) || !PageHead(page));
|
|
haddr = address & HPAGE_PMD_MASK;
|
|
if (page_mapcount(page) == 1) {
|
|
pmd_t entry;
|
|
entry = pmd_mkyoung(orig_pmd);
|
|
entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
|
|
if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
|
|
update_mmu_cache_pmd(vma, address, pmd);
|
|
ret |= VM_FAULT_WRITE;
|
|
goto out_unlock;
|
|
}
|
|
get_page(page);
|
|
spin_unlock(&mm->page_table_lock);
|
|
|
|
if (transparent_hugepage_enabled(vma) &&
|
|
!transparent_hugepage_debug_cow())
|
|
new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
|
|
vma, haddr, numa_node_id(), 0);
|
|
else
|
|
new_page = NULL;
|
|
|
|
if (unlikely(!new_page)) {
|
|
count_vm_event(THP_FAULT_FALLBACK);
|
|
ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
|
|
pmd, orig_pmd, page, haddr);
|
|
if (ret & VM_FAULT_OOM)
|
|
split_huge_page(page);
|
|
put_page(page);
|
|
goto out;
|
|
}
|
|
count_vm_event(THP_FAULT_ALLOC);
|
|
|
|
if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
|
|
put_page(new_page);
|
|
split_huge_page(page);
|
|
put_page(page);
|
|
ret |= VM_FAULT_OOM;
|
|
goto out;
|
|
}
|
|
|
|
copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
|
|
__SetPageUptodate(new_page);
|
|
|
|
mmun_start = haddr;
|
|
mmun_end = haddr + HPAGE_PMD_SIZE;
|
|
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
|
|
|
|
spin_lock(&mm->page_table_lock);
|
|
put_page(page);
|
|
if (unlikely(!pmd_same(*pmd, orig_pmd))) {
|
|
spin_unlock(&mm->page_table_lock);
|
|
mem_cgroup_uncharge_page(new_page);
|
|
put_page(new_page);
|
|
goto out_mn;
|
|
} else {
|
|
pmd_t entry;
|
|
VM_BUG_ON(!PageHead(page));
|
|
entry = mk_pmd(new_page, vma->vm_page_prot);
|
|
entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
|
|
entry = pmd_mkhuge(entry);
|
|
pmdp_clear_flush(vma, haddr, pmd);
|
|
page_add_new_anon_rmap(new_page, vma, haddr);
|
|
set_pmd_at(mm, haddr, pmd, entry);
|
|
update_mmu_cache_pmd(vma, address, pmd);
|
|
page_remove_rmap(page);
|
|
put_page(page);
|
|
ret |= VM_FAULT_WRITE;
|
|
}
|
|
spin_unlock(&mm->page_table_lock);
|
|
out_mn:
|
|
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
|
|
out:
|
|
return ret;
|
|
out_unlock:
|
|
spin_unlock(&mm->page_table_lock);
|
|
return ret;
|
|
}
|
|
|
|
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
|
|
unsigned long addr,
|
|
pmd_t *pmd,
|
|
unsigned int flags)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
struct page *page = NULL;
|
|
|
|
assert_spin_locked(&mm->page_table_lock);
|
|
|
|
if (flags & FOLL_WRITE && !pmd_write(*pmd))
|
|
goto out;
|
|
|
|
page = pmd_page(*pmd);
|
|
VM_BUG_ON(!PageHead(page));
|
|
if (flags & FOLL_TOUCH) {
|
|
pmd_t _pmd;
|
|
/*
|
|
* We should set the dirty bit only for FOLL_WRITE but
|
|
* for now the dirty bit in the pmd is meaningless.
|
|
* And if the dirty bit will become meaningful and
|
|
* we'll only set it with FOLL_WRITE, an atomic
|
|
* set_bit will be required on the pmd to set the
|
|
* young bit, instead of the current set_pmd_at.
|
|
*/
|
|
_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
|
|
set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
|
|
}
|
|
if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
|
|
if (page->mapping && trylock_page(page)) {
|
|
lru_add_drain();
|
|
if (page->mapping)
|
|
mlock_vma_page(page);
|
|
unlock_page(page);
|
|
}
|
|
}
|
|
page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
|
|
VM_BUG_ON(!PageCompound(page));
|
|
if (flags & FOLL_GET)
|
|
get_page_foll(page);
|
|
|
|
out:
|
|
return page;
|
|
}
|
|
|
|
/* NUMA hinting page fault entry point for trans huge pmds */
|
|
int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
|
|
unsigned long addr, pmd_t pmd, pmd_t *pmdp)
|
|
{
|
|
struct page *page = NULL;
|
|
unsigned long haddr = addr & HPAGE_PMD_MASK;
|
|
int target_nid;
|
|
|
|
spin_lock(&mm->page_table_lock);
|
|
if (unlikely(!pmd_same(pmd, *pmdp)))
|
|
goto out_unlock;
|
|
|
|
page = pmd_page(pmd);
|
|
get_page(page);
|
|
spin_unlock(&mm->page_table_lock);
|
|
|
|
target_nid = mpol_misplaced(page, vma, haddr);
|
|
if (target_nid == -1)
|
|
goto clear_pmdnuma;
|
|
|
|
/*
|
|
* Due to lacking code to migrate thp pages, we'll split
|
|
* (which preserves the special PROT_NONE) and re-take the
|
|
* fault on the normal pages.
|
|
*/
|
|
split_huge_page(page);
|
|
put_page(page);
|
|
|
|
return 0;
|
|
|
|
clear_pmdnuma:
|
|
spin_lock(&mm->page_table_lock);
|
|
if (unlikely(!pmd_same(pmd, *pmdp)))
|
|
goto out_unlock;
|
|
|
|
pmd = pmd_mknonnuma(pmd);
|
|
set_pmd_at(mm, haddr, pmdp, pmd);
|
|
VM_BUG_ON(pmd_numa(*pmdp));
|
|
update_mmu_cache_pmd(vma, addr, pmdp);
|
|
|
|
out_unlock:
|
|
spin_unlock(&mm->page_table_lock);
|
|
if (page) {
|
|
put_page(page);
|
|
task_numa_fault(numa_node_id(), HPAGE_PMD_NR);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
|
|
pmd_t *pmd, unsigned long addr)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (__pmd_trans_huge_lock(pmd, vma) == 1) {
|
|
struct page *page;
|
|
pgtable_t pgtable;
|
|
pmd_t orig_pmd;
|
|
pgtable = pgtable_trans_huge_withdraw(tlb->mm);
|
|
orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
|
|
page = pmd_page(orig_pmd);
|
|
tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
|
|
page_remove_rmap(page);
|
|
VM_BUG_ON(page_mapcount(page) < 0);
|
|
add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
|
|
VM_BUG_ON(!PageHead(page));
|
|
tlb->mm->nr_ptes--;
|
|
spin_unlock(&tlb->mm->page_table_lock);
|
|
tlb_remove_page(tlb, page);
|
|
pte_free(tlb->mm, pgtable);
|
|
ret = 1;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
|
|
unsigned long addr, unsigned long end,
|
|
unsigned char *vec)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (__pmd_trans_huge_lock(pmd, vma) == 1) {
|
|
/*
|
|
* All logical pages in the range are present
|
|
* if backed by a huge page.
|
|
*/
|
|
spin_unlock(&vma->vm_mm->page_table_lock);
|
|
memset(vec, 1, (end - addr) >> PAGE_SHIFT);
|
|
ret = 1;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
|
|
unsigned long old_addr,
|
|
unsigned long new_addr, unsigned long old_end,
|
|
pmd_t *old_pmd, pmd_t *new_pmd)
|
|
{
|
|
int ret = 0;
|
|
pmd_t pmd;
|
|
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
|
|
if ((old_addr & ~HPAGE_PMD_MASK) ||
|
|
(new_addr & ~HPAGE_PMD_MASK) ||
|
|
old_end - old_addr < HPAGE_PMD_SIZE ||
|
|
(new_vma->vm_flags & VM_NOHUGEPAGE))
|
|
goto out;
|
|
|
|
/*
|
|
* The destination pmd shouldn't be established, free_pgtables()
|
|
* should have release it.
|
|
*/
|
|
if (WARN_ON(!pmd_none(*new_pmd))) {
|
|
VM_BUG_ON(pmd_trans_huge(*new_pmd));
|
|
goto out;
|
|
}
|
|
|
|
ret = __pmd_trans_huge_lock(old_pmd, vma);
|
|
if (ret == 1) {
|
|
pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
|
|
VM_BUG_ON(!pmd_none(*new_pmd));
|
|
set_pmd_at(mm, new_addr, new_pmd, pmd);
|
|
spin_unlock(&mm->page_table_lock);
|
|
}
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
|
|
unsigned long addr, pgprot_t newprot, int prot_numa)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
int ret = 0;
|
|
|
|
if (__pmd_trans_huge_lock(pmd, vma) == 1) {
|
|
pmd_t entry;
|
|
entry = pmdp_get_and_clear(mm, addr, pmd);
|
|
if (!prot_numa)
|
|
entry = pmd_modify(entry, newprot);
|
|
else {
|
|
struct page *page = pmd_page(*pmd);
|
|
|
|
/* only check non-shared pages */
|
|
if (page_mapcount(page) == 1 &&
|
|
!pmd_numa(*pmd)) {
|
|
entry = pmd_mknuma(entry);
|
|
}
|
|
}
|
|
set_pmd_at(mm, addr, pmd, entry);
|
|
spin_unlock(&vma->vm_mm->page_table_lock);
|
|
ret = 1;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Returns 1 if a given pmd maps a stable (not under splitting) thp.
|
|
* Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
|
|
*
|
|
* Note that if it returns 1, this routine returns without unlocking page
|
|
* table locks. So callers must unlock them.
|
|
*/
|
|
int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
|
|
{
|
|
spin_lock(&vma->vm_mm->page_table_lock);
|
|
if (likely(pmd_trans_huge(*pmd))) {
|
|
if (unlikely(pmd_trans_splitting(*pmd))) {
|
|
spin_unlock(&vma->vm_mm->page_table_lock);
|
|
wait_split_huge_page(vma->anon_vma, pmd);
|
|
return -1;
|
|
} else {
|
|
/* Thp mapped by 'pmd' is stable, so we can
|
|
* handle it as it is. */
|
|
return 1;
|
|
}
|
|
}
|
|
spin_unlock(&vma->vm_mm->page_table_lock);
|
|
return 0;
|
|
}
|
|
|
|
pmd_t *page_check_address_pmd(struct page *page,
|
|
struct mm_struct *mm,
|
|
unsigned long address,
|
|
enum page_check_address_pmd_flag flag)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd, *ret = NULL;
|
|
|
|
if (address & ~HPAGE_PMD_MASK)
|
|
goto out;
|
|
|
|
pgd = pgd_offset(mm, address);
|
|
if (!pgd_present(*pgd))
|
|
goto out;
|
|
|
|
pud = pud_offset(pgd, address);
|
|
if (!pud_present(*pud))
|
|
goto out;
|
|
|
|
pmd = pmd_offset(pud, address);
|
|
if (pmd_none(*pmd))
|
|
goto out;
|
|
if (pmd_page(*pmd) != page)
|
|
goto out;
|
|
/*
|
|
* split_vma() may create temporary aliased mappings. There is
|
|
* no risk as long as all huge pmd are found and have their
|
|
* splitting bit set before __split_huge_page_refcount
|
|
* runs. Finding the same huge pmd more than once during the
|
|
* same rmap walk is not a problem.
|
|
*/
|
|
if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
|
|
pmd_trans_splitting(*pmd))
|
|
goto out;
|
|
if (pmd_trans_huge(*pmd)) {
|
|
VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
|
|
!pmd_trans_splitting(*pmd));
|
|
ret = pmd;
|
|
}
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int __split_huge_page_splitting(struct page *page,
|
|
struct vm_area_struct *vma,
|
|
unsigned long address)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
pmd_t *pmd;
|
|
int ret = 0;
|
|
/* For mmu_notifiers */
|
|
const unsigned long mmun_start = address;
|
|
const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
|
|
|
|
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
|
|
spin_lock(&mm->page_table_lock);
|
|
pmd = page_check_address_pmd(page, mm, address,
|
|
PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
|
|
if (pmd) {
|
|
/*
|
|
* We can't temporarily set the pmd to null in order
|
|
* to split it, the pmd must remain marked huge at all
|
|
* times or the VM won't take the pmd_trans_huge paths
|
|
* and it won't wait on the anon_vma->root->mutex to
|
|
* serialize against split_huge_page*.
|
|
*/
|
|
pmdp_splitting_flush(vma, address, pmd);
|
|
ret = 1;
|
|
}
|
|
spin_unlock(&mm->page_table_lock);
|
|
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void __split_huge_page_refcount(struct page *page)
|
|
{
|
|
int i;
|
|
struct zone *zone = page_zone(page);
|
|
struct lruvec *lruvec;
|
|
int tail_count = 0;
|
|
|
|
/* prevent PageLRU to go away from under us, and freeze lru stats */
|
|
spin_lock_irq(&zone->lru_lock);
|
|
lruvec = mem_cgroup_page_lruvec(page, zone);
|
|
|
|
compound_lock(page);
|
|
/* complete memcg works before add pages to LRU */
|
|
mem_cgroup_split_huge_fixup(page);
|
|
|
|
for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
|
|
struct page *page_tail = page + i;
|
|
|
|
/* tail_page->_mapcount cannot change */
|
|
BUG_ON(page_mapcount(page_tail) < 0);
|
|
tail_count += page_mapcount(page_tail);
|
|
/* check for overflow */
|
|
BUG_ON(tail_count < 0);
|
|
BUG_ON(atomic_read(&page_tail->_count) != 0);
|
|
/*
|
|
* tail_page->_count is zero and not changing from
|
|
* under us. But get_page_unless_zero() may be running
|
|
* from under us on the tail_page. If we used
|
|
* atomic_set() below instead of atomic_add(), we
|
|
* would then run atomic_set() concurrently with
|
|
* get_page_unless_zero(), and atomic_set() is
|
|
* implemented in C not using locked ops. spin_unlock
|
|
* on x86 sometime uses locked ops because of PPro
|
|
* errata 66, 92, so unless somebody can guarantee
|
|
* atomic_set() here would be safe on all archs (and
|
|
* not only on x86), it's safer to use atomic_add().
|
|
*/
|
|
atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
|
|
&page_tail->_count);
|
|
|
|
/* after clearing PageTail the gup refcount can be released */
|
|
smp_mb();
|
|
|
|
/*
|
|
* retain hwpoison flag of the poisoned tail page:
|
|
* fix for the unsuitable process killed on Guest Machine(KVM)
|
|
* by the memory-failure.
|
|
*/
|
|
page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
|
|
page_tail->flags |= (page->flags &
|
|
((1L << PG_referenced) |
|
|
(1L << PG_swapbacked) |
|
|
(1L << PG_mlocked) |
|
|
(1L << PG_uptodate)));
|
|
page_tail->flags |= (1L << PG_dirty);
|
|
|
|
/* clear PageTail before overwriting first_page */
|
|
smp_wmb();
|
|
|
|
/*
|
|
* __split_huge_page_splitting() already set the
|
|
* splitting bit in all pmd that could map this
|
|
* hugepage, that will ensure no CPU can alter the
|
|
* mapcount on the head page. The mapcount is only
|
|
* accounted in the head page and it has to be
|
|
* transferred to all tail pages in the below code. So
|
|
* for this code to be safe, the split the mapcount
|
|
* can't change. But that doesn't mean userland can't
|
|
* keep changing and reading the page contents while
|
|
* we transfer the mapcount, so the pmd splitting
|
|
* status is achieved setting a reserved bit in the
|
|
* pmd, not by clearing the present bit.
|
|
*/
|
|
page_tail->_mapcount = page->_mapcount;
|
|
|
|
BUG_ON(page_tail->mapping);
|
|
page_tail->mapping = page->mapping;
|
|
|
|
page_tail->index = page->index + i;
|
|
|
|
BUG_ON(!PageAnon(page_tail));
|
|
BUG_ON(!PageUptodate(page_tail));
|
|
BUG_ON(!PageDirty(page_tail));
|
|
BUG_ON(!PageSwapBacked(page_tail));
|
|
|
|
lru_add_page_tail(page, page_tail, lruvec);
|
|
}
|
|
atomic_sub(tail_count, &page->_count);
|
|
BUG_ON(atomic_read(&page->_count) <= 0);
|
|
|
|
__mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
|
|
__mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
|
|
|
|
ClearPageCompound(page);
|
|
compound_unlock(page);
|
|
spin_unlock_irq(&zone->lru_lock);
|
|
|
|
for (i = 1; i < HPAGE_PMD_NR; i++) {
|
|
struct page *page_tail = page + i;
|
|
BUG_ON(page_count(page_tail) <= 0);
|
|
/*
|
|
* Tail pages may be freed if there wasn't any mapping
|
|
* like if add_to_swap() is running on a lru page that
|
|
* had its mapping zapped. And freeing these pages
|
|
* requires taking the lru_lock so we do the put_page
|
|
* of the tail pages after the split is complete.
|
|
*/
|
|
put_page(page_tail);
|
|
}
|
|
|
|
/*
|
|
* Only the head page (now become a regular page) is required
|
|
* to be pinned by the caller.
|
|
*/
|
|
BUG_ON(page_count(page) <= 0);
|
|
}
|
|
|
|
static int __split_huge_page_map(struct page *page,
|
|
struct vm_area_struct *vma,
|
|
unsigned long address)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
pmd_t *pmd, _pmd;
|
|
int ret = 0, i;
|
|
pgtable_t pgtable;
|
|
unsigned long haddr;
|
|
|
|
spin_lock(&mm->page_table_lock);
|
|
pmd = page_check_address_pmd(page, mm, address,
|
|
PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
|
|
if (pmd) {
|
|
pgtable = pgtable_trans_huge_withdraw(mm);
|
|
pmd_populate(mm, &_pmd, pgtable);
|
|
|
|
haddr = address;
|
|
for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
|
|
pte_t *pte, entry;
|
|
BUG_ON(PageCompound(page+i));
|
|
entry = mk_pte(page + i, vma->vm_page_prot);
|
|
entry = maybe_mkwrite(pte_mkdirty(entry), vma);
|
|
if (!pmd_write(*pmd))
|
|
entry = pte_wrprotect(entry);
|
|
else
|
|
BUG_ON(page_mapcount(page) != 1);
|
|
if (!pmd_young(*pmd))
|
|
entry = pte_mkold(entry);
|
|
if (pmd_numa(*pmd))
|
|
entry = pte_mknuma(entry);
|
|
pte = pte_offset_map(&_pmd, haddr);
|
|
BUG_ON(!pte_none(*pte));
|
|
set_pte_at(mm, haddr, pte, entry);
|
|
pte_unmap(pte);
|
|
}
|
|
|
|
smp_wmb(); /* make pte visible before pmd */
|
|
/*
|
|
* Up to this point the pmd is present and huge and
|
|
* userland has the whole access to the hugepage
|
|
* during the split (which happens in place). If we
|
|
* overwrite the pmd with the not-huge version
|
|
* pointing to the pte here (which of course we could
|
|
* if all CPUs were bug free), userland could trigger
|
|
* a small page size TLB miss on the small sized TLB
|
|
* while the hugepage TLB entry is still established
|
|
* in the huge TLB. Some CPU doesn't like that. See
|
|
* http://support.amd.com/us/Processor_TechDocs/41322.pdf,
|
|
* Erratum 383 on page 93. Intel should be safe but is
|
|
* also warns that it's only safe if the permission
|
|
* and cache attributes of the two entries loaded in
|
|
* the two TLB is identical (which should be the case
|
|
* here). But it is generally safer to never allow
|
|
* small and huge TLB entries for the same virtual
|
|
* address to be loaded simultaneously. So instead of
|
|
* doing "pmd_populate(); flush_tlb_range();" we first
|
|
* mark the current pmd notpresent (atomically because
|
|
* here the pmd_trans_huge and pmd_trans_splitting
|
|
* must remain set at all times on the pmd until the
|
|
* split is complete for this pmd), then we flush the
|
|
* SMP TLB and finally we write the non-huge version
|
|
* of the pmd entry with pmd_populate.
|
|
*/
|
|
pmdp_invalidate(vma, address, pmd);
|
|
pmd_populate(mm, pmd, pgtable);
|
|
ret = 1;
|
|
}
|
|
spin_unlock(&mm->page_table_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* must be called with anon_vma->root->mutex hold */
|
|
static void __split_huge_page(struct page *page,
|
|
struct anon_vma *anon_vma)
|
|
{
|
|
int mapcount, mapcount2;
|
|
pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
|
|
struct anon_vma_chain *avc;
|
|
|
|
BUG_ON(!PageHead(page));
|
|
BUG_ON(PageTail(page));
|
|
|
|
mapcount = 0;
|
|
anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
|
|
struct vm_area_struct *vma = avc->vma;
|
|
unsigned long addr = vma_address(page, vma);
|
|
BUG_ON(is_vma_temporary_stack(vma));
|
|
mapcount += __split_huge_page_splitting(page, vma, addr);
|
|
}
|
|
/*
|
|
* It is critical that new vmas are added to the tail of the
|
|
* anon_vma list. This guarantes that if copy_huge_pmd() runs
|
|
* and establishes a child pmd before
|
|
* __split_huge_page_splitting() freezes the parent pmd (so if
|
|
* we fail to prevent copy_huge_pmd() from running until the
|
|
* whole __split_huge_page() is complete), we will still see
|
|
* the newly established pmd of the child later during the
|
|
* walk, to be able to set it as pmd_trans_splitting too.
|
|
*/
|
|
if (mapcount != page_mapcount(page))
|
|
printk(KERN_ERR "mapcount %d page_mapcount %d\n",
|
|
mapcount, page_mapcount(page));
|
|
BUG_ON(mapcount != page_mapcount(page));
|
|
|
|
__split_huge_page_refcount(page);
|
|
|
|
mapcount2 = 0;
|
|
anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
|
|
struct vm_area_struct *vma = avc->vma;
|
|
unsigned long addr = vma_address(page, vma);
|
|
BUG_ON(is_vma_temporary_stack(vma));
|
|
mapcount2 += __split_huge_page_map(page, vma, addr);
|
|
}
|
|
if (mapcount != mapcount2)
|
|
printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
|
|
mapcount, mapcount2, page_mapcount(page));
|
|
BUG_ON(mapcount != mapcount2);
|
|
}
|
|
|
|
int split_huge_page(struct page *page)
|
|
{
|
|
struct anon_vma *anon_vma;
|
|
int ret = 1;
|
|
|
|
BUG_ON(!PageAnon(page));
|
|
anon_vma = page_lock_anon_vma(page);
|
|
if (!anon_vma)
|
|
goto out;
|
|
ret = 0;
|
|
if (!PageCompound(page))
|
|
goto out_unlock;
|
|
|
|
BUG_ON(!PageSwapBacked(page));
|
|
__split_huge_page(page, anon_vma);
|
|
count_vm_event(THP_SPLIT);
|
|
|
|
BUG_ON(PageCompound(page));
|
|
out_unlock:
|
|
page_unlock_anon_vma(anon_vma);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
#define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
|
|
|
|
int hugepage_madvise(struct vm_area_struct *vma,
|
|
unsigned long *vm_flags, int advice)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
|
|
switch (advice) {
|
|
case MADV_HUGEPAGE:
|
|
/*
|
|
* Be somewhat over-protective like KSM for now!
|
|
*/
|
|
if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
|
|
return -EINVAL;
|
|
if (mm->def_flags & VM_NOHUGEPAGE)
|
|
return -EINVAL;
|
|
*vm_flags &= ~VM_NOHUGEPAGE;
|
|
*vm_flags |= VM_HUGEPAGE;
|
|
/*
|
|
* If the vma become good for khugepaged to scan,
|
|
* register it here without waiting a page fault that
|
|
* may not happen any time soon.
|
|
*/
|
|
if (unlikely(khugepaged_enter_vma_merge(vma)))
|
|
return -ENOMEM;
|
|
break;
|
|
case MADV_NOHUGEPAGE:
|
|
/*
|
|
* Be somewhat over-protective like KSM for now!
|
|
*/
|
|
if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
|
|
return -EINVAL;
|
|
*vm_flags &= ~VM_HUGEPAGE;
|
|
*vm_flags |= VM_NOHUGEPAGE;
|
|
/*
|
|
* Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
|
|
* this vma even if we leave the mm registered in khugepaged if
|
|
* it got registered before VM_NOHUGEPAGE was set.
|
|
*/
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init khugepaged_slab_init(void)
|
|
{
|
|
mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
|
|
sizeof(struct mm_slot),
|
|
__alignof__(struct mm_slot), 0, NULL);
|
|
if (!mm_slot_cache)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __init khugepaged_slab_free(void)
|
|
{
|
|
kmem_cache_destroy(mm_slot_cache);
|
|
mm_slot_cache = NULL;
|
|
}
|
|
|
|
static inline struct mm_slot *alloc_mm_slot(void)
|
|
{
|
|
if (!mm_slot_cache) /* initialization failed */
|
|
return NULL;
|
|
return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
|
|
}
|
|
|
|
static inline void free_mm_slot(struct mm_slot *mm_slot)
|
|
{
|
|
kmem_cache_free(mm_slot_cache, mm_slot);
|
|
}
|
|
|
|
static int __init mm_slots_hash_init(void)
|
|
{
|
|
mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
|
|
GFP_KERNEL);
|
|
if (!mm_slots_hash)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
#if 0
|
|
static void __init mm_slots_hash_free(void)
|
|
{
|
|
kfree(mm_slots_hash);
|
|
mm_slots_hash = NULL;
|
|
}
|
|
#endif
|
|
|
|
static struct mm_slot *get_mm_slot(struct mm_struct *mm)
|
|
{
|
|
struct mm_slot *mm_slot;
|
|
struct hlist_head *bucket;
|
|
struct hlist_node *node;
|
|
|
|
bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
|
|
% MM_SLOTS_HASH_HEADS];
|
|
hlist_for_each_entry(mm_slot, node, bucket, hash) {
|
|
if (mm == mm_slot->mm)
|
|
return mm_slot;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void insert_to_mm_slots_hash(struct mm_struct *mm,
|
|
struct mm_slot *mm_slot)
|
|
{
|
|
struct hlist_head *bucket;
|
|
|
|
bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
|
|
% MM_SLOTS_HASH_HEADS];
|
|
mm_slot->mm = mm;
|
|
hlist_add_head(&mm_slot->hash, bucket);
|
|
}
|
|
|
|
static inline int khugepaged_test_exit(struct mm_struct *mm)
|
|
{
|
|
return atomic_read(&mm->mm_users) == 0;
|
|
}
|
|
|
|
int __khugepaged_enter(struct mm_struct *mm)
|
|
{
|
|
struct mm_slot *mm_slot;
|
|
int wakeup;
|
|
|
|
mm_slot = alloc_mm_slot();
|
|
if (!mm_slot)
|
|
return -ENOMEM;
|
|
|
|
/* __khugepaged_exit() must not run from under us */
|
|
VM_BUG_ON(khugepaged_test_exit(mm));
|
|
if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
|
|
free_mm_slot(mm_slot);
|
|
return 0;
|
|
}
|
|
|
|
spin_lock(&khugepaged_mm_lock);
|
|
insert_to_mm_slots_hash(mm, mm_slot);
|
|
/*
|
|
* Insert just behind the scanning cursor, to let the area settle
|
|
* down a little.
|
|
*/
|
|
wakeup = list_empty(&khugepaged_scan.mm_head);
|
|
list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
|
|
spin_unlock(&khugepaged_mm_lock);
|
|
|
|
atomic_inc(&mm->mm_count);
|
|
if (wakeup)
|
|
wake_up_interruptible(&khugepaged_wait);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
|
|
{
|
|
unsigned long hstart, hend;
|
|
if (!vma->anon_vma)
|
|
/*
|
|
* Not yet faulted in so we will register later in the
|
|
* page fault if needed.
|
|
*/
|
|
return 0;
|
|
if (vma->vm_ops)
|
|
/* khugepaged not yet working on file or special mappings */
|
|
return 0;
|
|
VM_BUG_ON(vma->vm_flags & VM_NO_THP);
|
|
hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
|
|
hend = vma->vm_end & HPAGE_PMD_MASK;
|
|
if (hstart < hend)
|
|
return khugepaged_enter(vma);
|
|
return 0;
|
|
}
|
|
|
|
void __khugepaged_exit(struct mm_struct *mm)
|
|
{
|
|
struct mm_slot *mm_slot;
|
|
int free = 0;
|
|
|
|
spin_lock(&khugepaged_mm_lock);
|
|
mm_slot = get_mm_slot(mm);
|
|
if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
|
|
hlist_del(&mm_slot->hash);
|
|
list_del(&mm_slot->mm_node);
|
|
free = 1;
|
|
}
|
|
spin_unlock(&khugepaged_mm_lock);
|
|
|
|
if (free) {
|
|
clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
|
|
free_mm_slot(mm_slot);
|
|
mmdrop(mm);
|
|
} else if (mm_slot) {
|
|
/*
|
|
* This is required to serialize against
|
|
* khugepaged_test_exit() (which is guaranteed to run
|
|
* under mmap sem read mode). Stop here (after we
|
|
* return all pagetables will be destroyed) until
|
|
* khugepaged has finished working on the pagetables
|
|
* under the mmap_sem.
|
|
*/
|
|
down_write(&mm->mmap_sem);
|
|
up_write(&mm->mmap_sem);
|
|
}
|
|
}
|
|
|
|
static void release_pte_page(struct page *page)
|
|
{
|
|
/* 0 stands for page_is_file_cache(page) == false */
|
|
dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
|
|
unlock_page(page);
|
|
putback_lru_page(page);
|
|
}
|
|
|
|
static void release_pte_pages(pte_t *pte, pte_t *_pte)
|
|
{
|
|
while (--_pte >= pte) {
|
|
pte_t pteval = *_pte;
|
|
if (!pte_none(pteval))
|
|
release_pte_page(pte_page(pteval));
|
|
}
|
|
}
|
|
|
|
static void release_all_pte_pages(pte_t *pte)
|
|
{
|
|
release_pte_pages(pte, pte + HPAGE_PMD_NR);
|
|
}
|
|
|
|
static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
|
|
unsigned long address,
|
|
pte_t *pte)
|
|
{
|
|
struct page *page;
|
|
pte_t *_pte;
|
|
int referenced = 0, isolated = 0, none = 0;
|
|
for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
|
|
_pte++, address += PAGE_SIZE) {
|
|
pte_t pteval = *_pte;
|
|
if (pte_none(pteval)) {
|
|
if (++none <= khugepaged_max_ptes_none)
|
|
continue;
|
|
else {
|
|
release_pte_pages(pte, _pte);
|
|
goto out;
|
|
}
|
|
}
|
|
if (!pte_present(pteval) || !pte_write(pteval)) {
|
|
release_pte_pages(pte, _pte);
|
|
goto out;
|
|
}
|
|
page = vm_normal_page(vma, address, pteval);
|
|
if (unlikely(!page)) {
|
|
release_pte_pages(pte, _pte);
|
|
goto out;
|
|
}
|
|
VM_BUG_ON(PageCompound(page));
|
|
BUG_ON(!PageAnon(page));
|
|
VM_BUG_ON(!PageSwapBacked(page));
|
|
|
|
/* cannot use mapcount: can't collapse if there's a gup pin */
|
|
if (page_count(page) != 1) {
|
|
release_pte_pages(pte, _pte);
|
|
goto out;
|
|
}
|
|
/*
|
|
* We can do it before isolate_lru_page because the
|
|
* page can't be freed from under us. NOTE: PG_lock
|
|
* is needed to serialize against split_huge_page
|
|
* when invoked from the VM.
|
|
*/
|
|
if (!trylock_page(page)) {
|
|
release_pte_pages(pte, _pte);
|
|
goto out;
|
|
}
|
|
/*
|
|
* Isolate the page to avoid collapsing an hugepage
|
|
* currently in use by the VM.
|
|
*/
|
|
if (isolate_lru_page(page)) {
|
|
unlock_page(page);
|
|
release_pte_pages(pte, _pte);
|
|
goto out;
|
|
}
|
|
/* 0 stands for page_is_file_cache(page) == false */
|
|
inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
|
|
VM_BUG_ON(!PageLocked(page));
|
|
VM_BUG_ON(PageLRU(page));
|
|
|
|
/* If there is no mapped pte young don't collapse the page */
|
|
if (pte_young(pteval) || PageReferenced(page) ||
|
|
mmu_notifier_test_young(vma->vm_mm, address))
|
|
referenced = 1;
|
|
}
|
|
if (unlikely(!referenced))
|
|
release_all_pte_pages(pte);
|
|
else
|
|
isolated = 1;
|
|
out:
|
|
return isolated;
|
|
}
|
|
|
|
static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
|
|
struct vm_area_struct *vma,
|
|
unsigned long address,
|
|
spinlock_t *ptl)
|
|
{
|
|
pte_t *_pte;
|
|
for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
|
|
pte_t pteval = *_pte;
|
|
struct page *src_page;
|
|
|
|
if (pte_none(pteval)) {
|
|
clear_user_highpage(page, address);
|
|
add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
|
|
} else {
|
|
src_page = pte_page(pteval);
|
|
copy_user_highpage(page, src_page, address, vma);
|
|
VM_BUG_ON(page_mapcount(src_page) != 1);
|
|
release_pte_page(src_page);
|
|
/*
|
|
* ptl mostly unnecessary, but preempt has to
|
|
* be disabled to update the per-cpu stats
|
|
* inside page_remove_rmap().
|
|
*/
|
|
spin_lock(ptl);
|
|
/*
|
|
* paravirt calls inside pte_clear here are
|
|
* superfluous.
|
|
*/
|
|
pte_clear(vma->vm_mm, address, _pte);
|
|
page_remove_rmap(src_page);
|
|
spin_unlock(ptl);
|
|
free_page_and_swap_cache(src_page);
|
|
}
|
|
|
|
address += PAGE_SIZE;
|
|
page++;
|
|
}
|
|
}
|
|
|
|
static void khugepaged_alloc_sleep(void)
|
|
{
|
|
wait_event_freezable_timeout(khugepaged_wait, false,
|
|
msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
|
|
{
|
|
if (IS_ERR(*hpage)) {
|
|
if (!*wait)
|
|
return false;
|
|
|
|
*wait = false;
|
|
*hpage = NULL;
|
|
khugepaged_alloc_sleep();
|
|
} else if (*hpage) {
|
|
put_page(*hpage);
|
|
*hpage = NULL;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static struct page
|
|
*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
|
|
struct vm_area_struct *vma, unsigned long address,
|
|
int node)
|
|
{
|
|
VM_BUG_ON(*hpage);
|
|
/*
|
|
* Allocate the page while the vma is still valid and under
|
|
* the mmap_sem read mode so there is no memory allocation
|
|
* later when we take the mmap_sem in write mode. This is more
|
|
* friendly behavior (OTOH it may actually hide bugs) to
|
|
* filesystems in userland with daemons allocating memory in
|
|
* the userland I/O paths. Allocating memory with the
|
|
* mmap_sem in read mode is good idea also to allow greater
|
|
* scalability.
|
|
*/
|
|
*hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
|
|
node, __GFP_OTHER_NODE);
|
|
|
|
/*
|
|
* After allocating the hugepage, release the mmap_sem read lock in
|
|
* preparation for taking it in write mode.
|
|
*/
|
|
up_read(&mm->mmap_sem);
|
|
if (unlikely(!*hpage)) {
|
|
count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
|
|
*hpage = ERR_PTR(-ENOMEM);
|
|
return NULL;
|
|
}
|
|
|
|
count_vm_event(THP_COLLAPSE_ALLOC);
|
|
return *hpage;
|
|
}
|
|
#else
|
|
static struct page *khugepaged_alloc_hugepage(bool *wait)
|
|
{
|
|
struct page *hpage;
|
|
|
|
do {
|
|
hpage = alloc_hugepage(khugepaged_defrag());
|
|
if (!hpage) {
|
|
count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
|
|
if (!*wait)
|
|
return NULL;
|
|
|
|
*wait = false;
|
|
khugepaged_alloc_sleep();
|
|
} else
|
|
count_vm_event(THP_COLLAPSE_ALLOC);
|
|
} while (unlikely(!hpage) && likely(khugepaged_enabled()));
|
|
|
|
return hpage;
|
|
}
|
|
|
|
static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
|
|
{
|
|
if (!*hpage)
|
|
*hpage = khugepaged_alloc_hugepage(wait);
|
|
|
|
if (unlikely(!*hpage))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static struct page
|
|
*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
|
|
struct vm_area_struct *vma, unsigned long address,
|
|
int node)
|
|
{
|
|
up_read(&mm->mmap_sem);
|
|
VM_BUG_ON(!*hpage);
|
|
return *hpage;
|
|
}
|
|
#endif
|
|
|
|
static void collapse_huge_page(struct mm_struct *mm,
|
|
unsigned long address,
|
|
struct page **hpage,
|
|
struct vm_area_struct *vma,
|
|
int node)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd, _pmd;
|
|
pte_t *pte;
|
|
pgtable_t pgtable;
|
|
struct page *new_page;
|
|
spinlock_t *ptl;
|
|
int isolated;
|
|
unsigned long hstart, hend;
|
|
unsigned long mmun_start; /* For mmu_notifiers */
|
|
unsigned long mmun_end; /* For mmu_notifiers */
|
|
|
|
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
|
|
|
|
/* release the mmap_sem read lock. */
|
|
new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
|
|
if (!new_page)
|
|
return;
|
|
|
|
if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
|
|
return;
|
|
|
|
/*
|
|
* Prevent all access to pagetables with the exception of
|
|
* gup_fast later hanlded by the ptep_clear_flush and the VM
|
|
* handled by the anon_vma lock + PG_lock.
|
|
*/
|
|
down_write(&mm->mmap_sem);
|
|
if (unlikely(khugepaged_test_exit(mm)))
|
|
goto out;
|
|
|
|
vma = find_vma(mm, address);
|
|
hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
|
|
hend = vma->vm_end & HPAGE_PMD_MASK;
|
|
if (address < hstart || address + HPAGE_PMD_SIZE > hend)
|
|
goto out;
|
|
|
|
if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
|
|
(vma->vm_flags & VM_NOHUGEPAGE))
|
|
goto out;
|
|
|
|
if (!vma->anon_vma || vma->vm_ops)
|
|
goto out;
|
|
if (is_vma_temporary_stack(vma))
|
|
goto out;
|
|
VM_BUG_ON(vma->vm_flags & VM_NO_THP);
|
|
|
|
pgd = pgd_offset(mm, address);
|
|
if (!pgd_present(*pgd))
|
|
goto out;
|
|
|
|
pud = pud_offset(pgd, address);
|
|
if (!pud_present(*pud))
|
|
goto out;
|
|
|
|
pmd = pmd_offset(pud, address);
|
|
/* pmd can't go away or become huge under us */
|
|
if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
|
|
goto out;
|
|
|
|
anon_vma_lock(vma->anon_vma);
|
|
|
|
pte = pte_offset_map(pmd, address);
|
|
ptl = pte_lockptr(mm, pmd);
|
|
|
|
mmun_start = address;
|
|
mmun_end = address + HPAGE_PMD_SIZE;
|
|
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
|
|
spin_lock(&mm->page_table_lock); /* probably unnecessary */
|
|
/*
|
|
* After this gup_fast can't run anymore. This also removes
|
|
* any huge TLB entry from the CPU so we won't allow
|
|
* huge and small TLB entries for the same virtual address
|
|
* to avoid the risk of CPU bugs in that area.
|
|
*/
|
|
_pmd = pmdp_clear_flush(vma, address, pmd);
|
|
spin_unlock(&mm->page_table_lock);
|
|
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
|
|
|
|
spin_lock(ptl);
|
|
isolated = __collapse_huge_page_isolate(vma, address, pte);
|
|
spin_unlock(ptl);
|
|
|
|
if (unlikely(!isolated)) {
|
|
pte_unmap(pte);
|
|
spin_lock(&mm->page_table_lock);
|
|
BUG_ON(!pmd_none(*pmd));
|
|
set_pmd_at(mm, address, pmd, _pmd);
|
|
spin_unlock(&mm->page_table_lock);
|
|
anon_vma_unlock(vma->anon_vma);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* All pages are isolated and locked so anon_vma rmap
|
|
* can't run anymore.
|
|
*/
|
|
anon_vma_unlock(vma->anon_vma);
|
|
|
|
__collapse_huge_page_copy(pte, new_page, vma, address, ptl);
|
|
pte_unmap(pte);
|
|
__SetPageUptodate(new_page);
|
|
pgtable = pmd_pgtable(_pmd);
|
|
|
|
_pmd = mk_pmd(new_page, vma->vm_page_prot);
|
|
_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
|
|
_pmd = pmd_mkhuge(_pmd);
|
|
|
|
/*
|
|
* spin_lock() below is not the equivalent of smp_wmb(), so
|
|
* this is needed to avoid the copy_huge_page writes to become
|
|
* visible after the set_pmd_at() write.
|
|
*/
|
|
smp_wmb();
|
|
|
|
spin_lock(&mm->page_table_lock);
|
|
BUG_ON(!pmd_none(*pmd));
|
|
page_add_new_anon_rmap(new_page, vma, address);
|
|
set_pmd_at(mm, address, pmd, _pmd);
|
|
update_mmu_cache_pmd(vma, address, pmd);
|
|
pgtable_trans_huge_deposit(mm, pgtable);
|
|
spin_unlock(&mm->page_table_lock);
|
|
|
|
*hpage = NULL;
|
|
|
|
khugepaged_pages_collapsed++;
|
|
out_up_write:
|
|
up_write(&mm->mmap_sem);
|
|
return;
|
|
|
|
out:
|
|
mem_cgroup_uncharge_page(new_page);
|
|
goto out_up_write;
|
|
}
|
|
|
|
static int khugepaged_scan_pmd(struct mm_struct *mm,
|
|
struct vm_area_struct *vma,
|
|
unsigned long address,
|
|
struct page **hpage)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte, *_pte;
|
|
int ret = 0, referenced = 0, none = 0;
|
|
struct page *page;
|
|
unsigned long _address;
|
|
spinlock_t *ptl;
|
|
int node = -1;
|
|
|
|
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
|
|
|
|
pgd = pgd_offset(mm, address);
|
|
if (!pgd_present(*pgd))
|
|
goto out;
|
|
|
|
pud = pud_offset(pgd, address);
|
|
if (!pud_present(*pud))
|
|
goto out;
|
|
|
|
pmd = pmd_offset(pud, address);
|
|
if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
|
|
goto out;
|
|
|
|
pte = pte_offset_map_lock(mm, pmd, address, &ptl);
|
|
for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
|
|
_pte++, _address += PAGE_SIZE) {
|
|
pte_t pteval = *_pte;
|
|
if (pte_none(pteval)) {
|
|
if (++none <= khugepaged_max_ptes_none)
|
|
continue;
|
|
else
|
|
goto out_unmap;
|
|
}
|
|
if (!pte_present(pteval) || !pte_write(pteval))
|
|
goto out_unmap;
|
|
page = vm_normal_page(vma, _address, pteval);
|
|
if (unlikely(!page))
|
|
goto out_unmap;
|
|
/*
|
|
* Chose the node of the first page. This could
|
|
* be more sophisticated and look at more pages,
|
|
* but isn't for now.
|
|
*/
|
|
if (node == -1)
|
|
node = page_to_nid(page);
|
|
VM_BUG_ON(PageCompound(page));
|
|
if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
|
|
goto out_unmap;
|
|
/* cannot use mapcount: can't collapse if there's a gup pin */
|
|
if (page_count(page) != 1)
|
|
goto out_unmap;
|
|
if (pte_young(pteval) || PageReferenced(page) ||
|
|
mmu_notifier_test_young(vma->vm_mm, address))
|
|
referenced = 1;
|
|
}
|
|
if (referenced)
|
|
ret = 1;
|
|
out_unmap:
|
|
pte_unmap_unlock(pte, ptl);
|
|
if (ret)
|
|
/* collapse_huge_page will return with the mmap_sem released */
|
|
collapse_huge_page(mm, address, hpage, vma, node);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static void collect_mm_slot(struct mm_slot *mm_slot)
|
|
{
|
|
struct mm_struct *mm = mm_slot->mm;
|
|
|
|
VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
|
|
|
|
if (khugepaged_test_exit(mm)) {
|
|
/* free mm_slot */
|
|
hlist_del(&mm_slot->hash);
|
|
list_del(&mm_slot->mm_node);
|
|
|
|
/*
|
|
* Not strictly needed because the mm exited already.
|
|
*
|
|
* clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
|
|
*/
|
|
|
|
/* khugepaged_mm_lock actually not necessary for the below */
|
|
free_mm_slot(mm_slot);
|
|
mmdrop(mm);
|
|
}
|
|
}
|
|
|
|
static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
|
|
struct page **hpage)
|
|
__releases(&khugepaged_mm_lock)
|
|
__acquires(&khugepaged_mm_lock)
|
|
{
|
|
struct mm_slot *mm_slot;
|
|
struct mm_struct *mm;
|
|
struct vm_area_struct *vma;
|
|
int progress = 0;
|
|
|
|
VM_BUG_ON(!pages);
|
|
VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
|
|
|
|
if (khugepaged_scan.mm_slot)
|
|
mm_slot = khugepaged_scan.mm_slot;
|
|
else {
|
|
mm_slot = list_entry(khugepaged_scan.mm_head.next,
|
|
struct mm_slot, mm_node);
|
|
khugepaged_scan.address = 0;
|
|
khugepaged_scan.mm_slot = mm_slot;
|
|
}
|
|
spin_unlock(&khugepaged_mm_lock);
|
|
|
|
mm = mm_slot->mm;
|
|
down_read(&mm->mmap_sem);
|
|
if (unlikely(khugepaged_test_exit(mm)))
|
|
vma = NULL;
|
|
else
|
|
vma = find_vma(mm, khugepaged_scan.address);
|
|
|
|
progress++;
|
|
for (; vma; vma = vma->vm_next) {
|
|
unsigned long hstart, hend;
|
|
|
|
cond_resched();
|
|
if (unlikely(khugepaged_test_exit(mm))) {
|
|
progress++;
|
|
break;
|
|
}
|
|
|
|
if ((!(vma->vm_flags & VM_HUGEPAGE) &&
|
|
!khugepaged_always()) ||
|
|
(vma->vm_flags & VM_NOHUGEPAGE)) {
|
|
skip:
|
|
progress++;
|
|
continue;
|
|
}
|
|
if (!vma->anon_vma || vma->vm_ops)
|
|
goto skip;
|
|
if (is_vma_temporary_stack(vma))
|
|
goto skip;
|
|
VM_BUG_ON(vma->vm_flags & VM_NO_THP);
|
|
|
|
hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
|
|
hend = vma->vm_end & HPAGE_PMD_MASK;
|
|
if (hstart >= hend)
|
|
goto skip;
|
|
if (khugepaged_scan.address > hend)
|
|
goto skip;
|
|
if (khugepaged_scan.address < hstart)
|
|
khugepaged_scan.address = hstart;
|
|
VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
|
|
|
|
while (khugepaged_scan.address < hend) {
|
|
int ret;
|
|
cond_resched();
|
|
if (unlikely(khugepaged_test_exit(mm)))
|
|
goto breakouterloop;
|
|
|
|
VM_BUG_ON(khugepaged_scan.address < hstart ||
|
|
khugepaged_scan.address + HPAGE_PMD_SIZE >
|
|
hend);
|
|
ret = khugepaged_scan_pmd(mm, vma,
|
|
khugepaged_scan.address,
|
|
hpage);
|
|
/* move to next address */
|
|
khugepaged_scan.address += HPAGE_PMD_SIZE;
|
|
progress += HPAGE_PMD_NR;
|
|
if (ret)
|
|
/* we released mmap_sem so break loop */
|
|
goto breakouterloop_mmap_sem;
|
|
if (progress >= pages)
|
|
goto breakouterloop;
|
|
}
|
|
}
|
|
breakouterloop:
|
|
up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
|
|
breakouterloop_mmap_sem:
|
|
|
|
spin_lock(&khugepaged_mm_lock);
|
|
VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
|
|
/*
|
|
* Release the current mm_slot if this mm is about to die, or
|
|
* if we scanned all vmas of this mm.
|
|
*/
|
|
if (khugepaged_test_exit(mm) || !vma) {
|
|
/*
|
|
* Make sure that if mm_users is reaching zero while
|
|
* khugepaged runs here, khugepaged_exit will find
|
|
* mm_slot not pointing to the exiting mm.
|
|
*/
|
|
if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
|
|
khugepaged_scan.mm_slot = list_entry(
|
|
mm_slot->mm_node.next,
|
|
struct mm_slot, mm_node);
|
|
khugepaged_scan.address = 0;
|
|
} else {
|
|
khugepaged_scan.mm_slot = NULL;
|
|
khugepaged_full_scans++;
|
|
}
|
|
|
|
collect_mm_slot(mm_slot);
|
|
}
|
|
|
|
return progress;
|
|
}
|
|
|
|
static int khugepaged_has_work(void)
|
|
{
|
|
return !list_empty(&khugepaged_scan.mm_head) &&
|
|
khugepaged_enabled();
|
|
}
|
|
|
|
static int khugepaged_wait_event(void)
|
|
{
|
|
return !list_empty(&khugepaged_scan.mm_head) ||
|
|
kthread_should_stop();
|
|
}
|
|
|
|
static void khugepaged_do_scan(void)
|
|
{
|
|
struct page *hpage = NULL;
|
|
unsigned int progress = 0, pass_through_head = 0;
|
|
unsigned int pages = khugepaged_pages_to_scan;
|
|
bool wait = true;
|
|
|
|
barrier(); /* write khugepaged_pages_to_scan to local stack */
|
|
|
|
while (progress < pages) {
|
|
if (!khugepaged_prealloc_page(&hpage, &wait))
|
|
break;
|
|
|
|
cond_resched();
|
|
|
|
if (unlikely(kthread_should_stop() || freezing(current)))
|
|
break;
|
|
|
|
spin_lock(&khugepaged_mm_lock);
|
|
if (!khugepaged_scan.mm_slot)
|
|
pass_through_head++;
|
|
if (khugepaged_has_work() &&
|
|
pass_through_head < 2)
|
|
progress += khugepaged_scan_mm_slot(pages - progress,
|
|
&hpage);
|
|
else
|
|
progress = pages;
|
|
spin_unlock(&khugepaged_mm_lock);
|
|
}
|
|
|
|
if (!IS_ERR_OR_NULL(hpage))
|
|
put_page(hpage);
|
|
}
|
|
|
|
static void khugepaged_wait_work(void)
|
|
{
|
|
try_to_freeze();
|
|
|
|
if (khugepaged_has_work()) {
|
|
if (!khugepaged_scan_sleep_millisecs)
|
|
return;
|
|
|
|
wait_event_freezable_timeout(khugepaged_wait,
|
|
kthread_should_stop(),
|
|
msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
|
|
return;
|
|
}
|
|
|
|
if (khugepaged_enabled())
|
|
wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
|
|
}
|
|
|
|
static int khugepaged(void *none)
|
|
{
|
|
struct mm_slot *mm_slot;
|
|
|
|
set_freezable();
|
|
set_user_nice(current, 19);
|
|
|
|
while (!kthread_should_stop()) {
|
|
khugepaged_do_scan();
|
|
khugepaged_wait_work();
|
|
}
|
|
|
|
spin_lock(&khugepaged_mm_lock);
|
|
mm_slot = khugepaged_scan.mm_slot;
|
|
khugepaged_scan.mm_slot = NULL;
|
|
if (mm_slot)
|
|
collect_mm_slot(mm_slot);
|
|
spin_unlock(&khugepaged_mm_lock);
|
|
return 0;
|
|
}
|
|
|
|
void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
|
|
{
|
|
struct page *page;
|
|
|
|
spin_lock(&mm->page_table_lock);
|
|
if (unlikely(!pmd_trans_huge(*pmd))) {
|
|
spin_unlock(&mm->page_table_lock);
|
|
return;
|
|
}
|
|
page = pmd_page(*pmd);
|
|
VM_BUG_ON(!page_count(page));
|
|
get_page(page);
|
|
spin_unlock(&mm->page_table_lock);
|
|
|
|
split_huge_page(page);
|
|
|
|
put_page(page);
|
|
BUG_ON(pmd_trans_huge(*pmd));
|
|
}
|
|
|
|
static void split_huge_page_address(struct mm_struct *mm,
|
|
unsigned long address)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
|
|
VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
|
|
|
|
pgd = pgd_offset(mm, address);
|
|
if (!pgd_present(*pgd))
|
|
return;
|
|
|
|
pud = pud_offset(pgd, address);
|
|
if (!pud_present(*pud))
|
|
return;
|
|
|
|
pmd = pmd_offset(pud, address);
|
|
if (!pmd_present(*pmd))
|
|
return;
|
|
/*
|
|
* Caller holds the mmap_sem write mode, so a huge pmd cannot
|
|
* materialize from under us.
|
|
*/
|
|
split_huge_page_pmd(mm, pmd);
|
|
}
|
|
|
|
void __vma_adjust_trans_huge(struct vm_area_struct *vma,
|
|
unsigned long start,
|
|
unsigned long end,
|
|
long adjust_next)
|
|
{
|
|
/*
|
|
* If the new start address isn't hpage aligned and it could
|
|
* previously contain an hugepage: check if we need to split
|
|
* an huge pmd.
|
|
*/
|
|
if (start & ~HPAGE_PMD_MASK &&
|
|
(start & HPAGE_PMD_MASK) >= vma->vm_start &&
|
|
(start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
|
|
split_huge_page_address(vma->vm_mm, start);
|
|
|
|
/*
|
|
* If the new end address isn't hpage aligned and it could
|
|
* previously contain an hugepage: check if we need to split
|
|
* an huge pmd.
|
|
*/
|
|
if (end & ~HPAGE_PMD_MASK &&
|
|
(end & HPAGE_PMD_MASK) >= vma->vm_start &&
|
|
(end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
|
|
split_huge_page_address(vma->vm_mm, end);
|
|
|
|
/*
|
|
* If we're also updating the vma->vm_next->vm_start, if the new
|
|
* vm_next->vm_start isn't page aligned and it could previously
|
|
* contain an hugepage: check if we need to split an huge pmd.
|
|
*/
|
|
if (adjust_next > 0) {
|
|
struct vm_area_struct *next = vma->vm_next;
|
|
unsigned long nstart = next->vm_start;
|
|
nstart += adjust_next << PAGE_SHIFT;
|
|
if (nstart & ~HPAGE_PMD_MASK &&
|
|
(nstart & HPAGE_PMD_MASK) >= next->vm_start &&
|
|
(nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
|
|
split_huge_page_address(next->vm_mm, nstart);
|
|
}
|
|
}
|