linux-hardened/kernel/power/suspend.c
Rafael J. Wysocki c125e96f04 PM: Make it possible to avoid races between wakeup and system sleep
One of the arguments during the suspend blockers discussion was that
the mainline kernel didn't contain any mechanisms making it possible
to avoid races between wakeup and system suspend.

Generally, there are two problems in that area.  First, if a wakeup
event occurs exactly when /sys/power/state is being written to, it
may be delivered to user space right before the freezer kicks in, so
the user space consumer of the event may not be able to process it
before the system is suspended.  Second, if a wakeup event occurs
after user space has been frozen, it is not generally guaranteed that
the ongoing transition of the system into a sleep state will be
aborted.

To address these issues introduce a new global sysfs attribute,
/sys/power/wakeup_count, associated with a running counter of wakeup
events and three helper functions, pm_stay_awake(), pm_relax(), and
pm_wakeup_event(), that may be used by kernel subsystems to control
the behavior of this attribute and to request the PM core to abort
system transitions into a sleep state already in progress.

The /sys/power/wakeup_count file may be read from or written to by
user space.  Reads will always succeed (unless interrupted by a
signal) and return the current value of the wakeup events counter.
Writes, however, will only succeed if the written number is equal to
the current value of the wakeup events counter.  If a write is
successful, it will cause the kernel to save the current value of the
wakeup events counter and to abort the subsequent system transition
into a sleep state if any wakeup events are reported after the write
has returned.

[The assumption is that before writing to /sys/power/state user space
will first read from /sys/power/wakeup_count.  Next, user space
consumers of wakeup events will have a chance to acknowledge or
veto the upcoming system transition to a sleep state.  Finally, if
the transition is allowed to proceed, /sys/power/wakeup_count will
be written to and if that succeeds, /sys/power/state will be written
to as well.  Still, if any wakeup events are reported to the PM core
by kernel subsystems after that point, the transition will be
aborted.]

Additionally, put a wakeup events counter into struct dev_pm_info and
make these per-device wakeup event counters available via sysfs,
so that it's possible to check the activity of various wakeup event
sources within the kernel.

To illustrate how subsystems can use pm_wakeup_event(), make the
low-level PCI runtime PM wakeup-handling code use it.

Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
Acked-by: markgross <markgross@thegnar.org>
Reviewed-by: Alan Stern <stern@rowland.harvard.edu>
2010-07-19 01:58:48 +02:00

312 lines
6.8 KiB
C

/*
* kernel/power/suspend.c - Suspend to RAM and standby functionality.
*
* Copyright (c) 2003 Patrick Mochel
* Copyright (c) 2003 Open Source Development Lab
* Copyright (c) 2009 Rafael J. Wysocki <rjw@sisk.pl>, Novell Inc.
*
* This file is released under the GPLv2.
*/
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/console.h>
#include <linux/cpu.h>
#include <linux/syscalls.h>
#include <linux/gfp.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/suspend.h>
#include "power.h"
const char *const pm_states[PM_SUSPEND_MAX] = {
[PM_SUSPEND_STANDBY] = "standby",
[PM_SUSPEND_MEM] = "mem",
};
static struct platform_suspend_ops *suspend_ops;
/**
* suspend_set_ops - Set the global suspend method table.
* @ops: Pointer to ops structure.
*/
void suspend_set_ops(struct platform_suspend_ops *ops)
{
mutex_lock(&pm_mutex);
suspend_ops = ops;
mutex_unlock(&pm_mutex);
}
bool valid_state(suspend_state_t state)
{
/*
* All states need lowlevel support and need to be valid to the lowlevel
* implementation, no valid callback implies that none are valid.
*/
return suspend_ops && suspend_ops->valid && suspend_ops->valid(state);
}
/**
* suspend_valid_only_mem - generic memory-only valid callback
*
* Platform drivers that implement mem suspend only and only need
* to check for that in their .valid callback can use this instead
* of rolling their own .valid callback.
*/
int suspend_valid_only_mem(suspend_state_t state)
{
return state == PM_SUSPEND_MEM;
}
static int suspend_test(int level)
{
#ifdef CONFIG_PM_DEBUG
if (pm_test_level == level) {
printk(KERN_INFO "suspend debug: Waiting for 5 seconds.\n");
mdelay(5000);
return 1;
}
#endif /* !CONFIG_PM_DEBUG */
return 0;
}
/**
* suspend_prepare - Do prep work before entering low-power state.
*
* This is common code that is called for each state that we're entering.
* Run suspend notifiers, allocate a console and stop all processes.
*/
static int suspend_prepare(void)
{
int error;
if (!suspend_ops || !suspend_ops->enter)
return -EPERM;
pm_prepare_console();
error = pm_notifier_call_chain(PM_SUSPEND_PREPARE);
if (error)
goto Finish;
error = usermodehelper_disable();
if (error)
goto Finish;
error = suspend_freeze_processes();
if (!error)
return 0;
suspend_thaw_processes();
usermodehelper_enable();
Finish:
pm_notifier_call_chain(PM_POST_SUSPEND);
pm_restore_console();
return error;
}
/* default implementation */
void __attribute__ ((weak)) arch_suspend_disable_irqs(void)
{
local_irq_disable();
}
/* default implementation */
void __attribute__ ((weak)) arch_suspend_enable_irqs(void)
{
local_irq_enable();
}
/**
* suspend_enter - enter the desired system sleep state.
* @state: state to enter
*
* This function should be called after devices have been suspended.
*/
static int suspend_enter(suspend_state_t state)
{
int error;
if (suspend_ops->prepare) {
error = suspend_ops->prepare();
if (error)
return error;
}
error = dpm_suspend_noirq(PMSG_SUSPEND);
if (error) {
printk(KERN_ERR "PM: Some devices failed to power down\n");
goto Platfrom_finish;
}
if (suspend_ops->prepare_late) {
error = suspend_ops->prepare_late();
if (error)
goto Power_up_devices;
}
if (suspend_test(TEST_PLATFORM))
goto Platform_wake;
error = disable_nonboot_cpus();
if (error || suspend_test(TEST_CPUS))
goto Enable_cpus;
arch_suspend_disable_irqs();
BUG_ON(!irqs_disabled());
error = sysdev_suspend(PMSG_SUSPEND);
if (!error) {
if (!suspend_test(TEST_CORE) && pm_check_wakeup_events()) {
error = suspend_ops->enter(state);
events_check_enabled = false;
}
sysdev_resume();
}
arch_suspend_enable_irqs();
BUG_ON(irqs_disabled());
Enable_cpus:
enable_nonboot_cpus();
Platform_wake:
if (suspend_ops->wake)
suspend_ops->wake();
Power_up_devices:
dpm_resume_noirq(PMSG_RESUME);
Platfrom_finish:
if (suspend_ops->finish)
suspend_ops->finish();
return error;
}
/**
* suspend_devices_and_enter - suspend devices and enter the desired system
* sleep state.
* @state: state to enter
*/
int suspend_devices_and_enter(suspend_state_t state)
{
int error;
gfp_t saved_mask;
if (!suspend_ops)
return -ENOSYS;
if (suspend_ops->begin) {
error = suspend_ops->begin(state);
if (error)
goto Close;
}
suspend_console();
saved_mask = clear_gfp_allowed_mask(GFP_IOFS);
suspend_test_start();
error = dpm_suspend_start(PMSG_SUSPEND);
if (error) {
printk(KERN_ERR "PM: Some devices failed to suspend\n");
goto Recover_platform;
}
suspend_test_finish("suspend devices");
if (suspend_test(TEST_DEVICES))
goto Recover_platform;
suspend_enter(state);
Resume_devices:
suspend_test_start();
dpm_resume_end(PMSG_RESUME);
suspend_test_finish("resume devices");
set_gfp_allowed_mask(saved_mask);
resume_console();
Close:
if (suspend_ops->end)
suspend_ops->end();
return error;
Recover_platform:
if (suspend_ops->recover)
suspend_ops->recover();
goto Resume_devices;
}
/**
* suspend_finish - Do final work before exiting suspend sequence.
*
* Call platform code to clean up, restart processes, and free the
* console that we've allocated. This is not called for suspend-to-disk.
*/
static void suspend_finish(void)
{
suspend_thaw_processes();
usermodehelper_enable();
pm_notifier_call_chain(PM_POST_SUSPEND);
pm_restore_console();
}
/**
* enter_state - Do common work of entering low-power state.
* @state: pm_state structure for state we're entering.
*
* Make sure we're the only ones trying to enter a sleep state. Fail
* if someone has beat us to it, since we don't want anything weird to
* happen when we wake up.
* Then, do the setup for suspend, enter the state, and cleaup (after
* we've woken up).
*/
int enter_state(suspend_state_t state)
{
int error;
if (!valid_state(state))
return -ENODEV;
if (!mutex_trylock(&pm_mutex))
return -EBUSY;
printk(KERN_INFO "PM: Syncing filesystems ... ");
sys_sync();
printk("done.\n");
pr_debug("PM: Preparing system for %s sleep\n", pm_states[state]);
error = suspend_prepare();
if (error)
goto Unlock;
if (suspend_test(TEST_FREEZER))
goto Finish;
pr_debug("PM: Entering %s sleep\n", pm_states[state]);
error = suspend_devices_and_enter(state);
Finish:
pr_debug("PM: Finishing wakeup.\n");
suspend_finish();
Unlock:
mutex_unlock(&pm_mutex);
return error;
}
/**
* pm_suspend - Externally visible function for suspending system.
* @state: Enumerated value of state to enter.
*
* Determine whether or not value is within range, get state
* structure, and enter (above).
*/
int pm_suspend(suspend_state_t state)
{
if (state > PM_SUSPEND_ON && state <= PM_SUSPEND_MAX)
return enter_state(state);
return -EINVAL;
}
EXPORT_SYMBOL(pm_suspend);