linux-hardened/include/net/tcp_ecn.h
Herbert Xu f83ef8c0b5 [IPV6]: Added GSO support for TCPv6
This patch adds GSO support for IPv6 and TCPv6.  This is based on a patch
by Ananda Raju <Ananda.Raju@neterion.com>.  His original description is:

	This patch enables TSO over IPv6. Currently Linux network stacks
	restricts TSO over IPv6 by clearing of the NETIF_F_TSO bit from
	"dev->features". This patch will remove this restriction.

	This patch will introduce a new flag NETIF_F_TSO6 which will be used
	to check whether device supports TSO over IPv6. If device support TSO
	over IPv6 then we don't clear of NETIF_F_TSO and which will make the
	TCP layer to create TSO packets. Any device supporting TSO over IPv6
	will set NETIF_F_TSO6 flag in "dev->features" along with NETIF_F_TSO.

	In case when user disables TSO using ethtool, NETIF_F_TSO will get
	cleared from "dev->features". So even if we have NETIF_F_TSO6 we don't
	get TSO packets created by TCP layer.

	SKB_GSO_TCPV4 renamed to SKB_GSO_TCP to make it generic GSO packet.
	SKB_GSO_UDPV4 renamed to SKB_GSO_UDP as UFO is not a IPv4 feature.
	UFO is supported over IPv6 also

	The following table shows there is significant improvement in
	throughput with normal frames and CPU usage for both normal and jumbo.

	--------------------------------------------------
	|          |     1500        |      9600         |
	|          ------------------|-------------------|
	|          | thru     CPU    |  thru     CPU     |
	--------------------------------------------------
	| TSO OFF  | 2.00   5.5% id  |  5.66   20.0% id  |
	--------------------------------------------------
	| TSO ON   | 2.63   78.0 id  |  5.67   39.0% id  |
	--------------------------------------------------

Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
2006-06-30 14:12:10 -07:00

127 lines
3.1 KiB
C

#ifndef _NET_TCP_ECN_H_
#define _NET_TCP_ECN_H_ 1
#include <net/inet_ecn.h>
#include <net/request_sock.h>
#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
#define TCP_ECN_OK 1
#define TCP_ECN_QUEUE_CWR 2
#define TCP_ECN_DEMAND_CWR 4
static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
{
if (tp->ecn_flags&TCP_ECN_OK)
tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
}
/* Output functions */
static inline void TCP_ECN_send_synack(struct tcp_sock *tp,
struct sk_buff *skb)
{
TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_CWR;
if (!(tp->ecn_flags&TCP_ECN_OK))
TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_ECE;
}
static inline void TCP_ECN_send_syn(struct sock *sk, struct tcp_sock *tp,
struct sk_buff *skb)
{
tp->ecn_flags = 0;
if (sysctl_tcp_ecn) {
TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ECE|TCPCB_FLAG_CWR;
tp->ecn_flags = TCP_ECN_OK;
}
}
static __inline__ void
TCP_ECN_make_synack(struct request_sock *req, struct tcphdr *th)
{
if (inet_rsk(req)->ecn_ok)
th->ece = 1;
}
static inline void TCP_ECN_send(struct sock *sk, struct tcp_sock *tp,
struct sk_buff *skb, int tcp_header_len)
{
if (tp->ecn_flags & TCP_ECN_OK) {
/* Not-retransmitted data segment: set ECT and inject CWR. */
if (skb->len != tcp_header_len &&
!before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
INET_ECN_xmit(sk);
if (tp->ecn_flags&TCP_ECN_QUEUE_CWR) {
tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
skb->h.th->cwr = 1;
skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
}
} else {
/* ACK or retransmitted segment: clear ECT|CE */
INET_ECN_dontxmit(sk);
}
if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
skb->h.th->ece = 1;
}
}
/* Input functions */
static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
{
if (skb->h.th->cwr)
tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
}
static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
{
tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
}
static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
{
if (tp->ecn_flags&TCP_ECN_OK) {
if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
/* Funny extension: if ECT is not set on a segment,
* it is surely retransmit. It is not in ECN RFC,
* but Linux follows this rule. */
else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
tcp_enter_quickack_mode((struct sock *)tp);
}
}
static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
{
if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || th->cwr))
tp->ecn_flags &= ~TCP_ECN_OK;
}
static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
{
if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || !th->cwr))
tp->ecn_flags &= ~TCP_ECN_OK;
}
static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
{
if (th->ece && !th->syn && (tp->ecn_flags&TCP_ECN_OK))
return 1;
return 0;
}
static inline void TCP_ECN_openreq_child(struct tcp_sock *tp,
struct request_sock *req)
{
tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
}
static __inline__ void
TCP_ECN_create_request(struct request_sock *req, struct tcphdr *th)
{
if (sysctl_tcp_ecn && th->ece && th->cwr)
inet_rsk(req)->ecn_ok = 1;
}
#endif