fa63aa3dea
Tegra CVB tables encode the relationship between operating voltage and optimal frequency as a function of the so-called speedo value. The speedo value is written to the on-chip fuses at the factory, which allows the voltage-frequency operating points to be calculated on an per-chip basis. Add utility functions to parse the Tegra-specific tables and export the voltage-frequency pairs to the generic OPP framework for other drivers to use. Signed-off-by: Tuomas Tynkkynen <ttynkkynen@nvidia.com> Signed-off-by: Mikko Perttunen <mikko.perttunen@kapsi.fi> Acked-by: Peter De Schrijver <pdeschrijver@nvidia.com> Acked-by: Michael Turquette <mturquette@linaro.org> Signed-off-by: Thierry Reding <treding@nvidia.com>
140 lines
4 KiB
C
140 lines
4 KiB
C
/*
|
|
* Utility functions for parsing Tegra CVB voltage tables
|
|
*
|
|
* Copyright (C) 2012-2014 NVIDIA Corporation. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
*/
|
|
#include <linux/err.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/pm_opp.h>
|
|
|
|
#include "cvb.h"
|
|
|
|
/* cvb_mv = ((c2 * speedo / s_scale + c1) * speedo / s_scale + c0) */
|
|
static inline int get_cvb_voltage(int speedo, int s_scale,
|
|
const struct cvb_coefficients *cvb)
|
|
{
|
|
int mv;
|
|
|
|
/* apply only speedo scale: output mv = cvb_mv * v_scale */
|
|
mv = DIV_ROUND_CLOSEST(cvb->c2 * speedo, s_scale);
|
|
mv = DIV_ROUND_CLOSEST((mv + cvb->c1) * speedo, s_scale) + cvb->c0;
|
|
return mv;
|
|
}
|
|
|
|
static int round_cvb_voltage(int mv, int v_scale,
|
|
const struct rail_alignment *align)
|
|
{
|
|
/* combined: apply voltage scale and round to cvb alignment step */
|
|
int uv;
|
|
int step = (align->step_uv ? : 1000) * v_scale;
|
|
int offset = align->offset_uv * v_scale;
|
|
|
|
uv = max(mv * 1000, offset) - offset;
|
|
uv = DIV_ROUND_UP(uv, step) * align->step_uv + align->offset_uv;
|
|
return uv / 1000;
|
|
}
|
|
|
|
enum {
|
|
DOWN,
|
|
UP
|
|
};
|
|
|
|
static int round_voltage(int mv, const struct rail_alignment *align, int up)
|
|
{
|
|
if (align->step_uv) {
|
|
int uv;
|
|
|
|
uv = max(mv * 1000, align->offset_uv) - align->offset_uv;
|
|
uv = (uv + (up ? align->step_uv - 1 : 0)) / align->step_uv;
|
|
return (uv * align->step_uv + align->offset_uv) / 1000;
|
|
}
|
|
return mv;
|
|
}
|
|
|
|
static int build_opp_table(const struct cvb_table *d,
|
|
int speedo_value,
|
|
unsigned long max_freq,
|
|
struct device *opp_dev)
|
|
{
|
|
int i, ret, dfll_mv, min_mv, max_mv;
|
|
const struct cvb_table_freq_entry *table = NULL;
|
|
const struct rail_alignment *align = &d->alignment;
|
|
|
|
min_mv = round_voltage(d->min_millivolts, align, UP);
|
|
max_mv = round_voltage(d->max_millivolts, align, DOWN);
|
|
|
|
for (i = 0; i < MAX_DVFS_FREQS; i++) {
|
|
table = &d->cvb_table[i];
|
|
if (!table->freq || (table->freq > max_freq))
|
|
break;
|
|
|
|
/*
|
|
* FIXME after clk_round_rate/clk_determine_rate prototypes
|
|
* have been updated
|
|
*/
|
|
if (table->freq & (1<<31))
|
|
continue;
|
|
|
|
dfll_mv = get_cvb_voltage(
|
|
speedo_value, d->speedo_scale, &table->coefficients);
|
|
dfll_mv = round_cvb_voltage(dfll_mv, d->voltage_scale, align);
|
|
dfll_mv = clamp(dfll_mv, min_mv, max_mv);
|
|
|
|
ret = dev_pm_opp_add(opp_dev, table->freq, dfll_mv * 1000);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* tegra_cvb_build_opp_table - build OPP table from Tegra CVB tables
|
|
* @cvb_tables: array of CVB tables
|
|
* @sz: size of the previously mentioned array
|
|
* @process_id: process id of the HW module
|
|
* @speedo_id: speedo id of the HW module
|
|
* @speedo_value: speedo value of the HW module
|
|
* @max_rate: highest safe clock rate
|
|
* @opp_dev: the struct device * for which the OPP table is built
|
|
*
|
|
* On Tegra, a CVB table encodes the relationship between operating voltage
|
|
* and safe maximal frequency for a given module (e.g. GPU or CPU). This
|
|
* function calculates the optimal voltage-frequency operating points
|
|
* for the given arguments and exports them via the OPP library for the
|
|
* given @opp_dev. Returns a pointer to the struct cvb_table that matched
|
|
* or an ERR_PTR on failure.
|
|
*/
|
|
const struct cvb_table *tegra_cvb_build_opp_table(
|
|
const struct cvb_table *cvb_tables,
|
|
size_t sz, int process_id,
|
|
int speedo_id, int speedo_value,
|
|
unsigned long max_rate,
|
|
struct device *opp_dev)
|
|
{
|
|
int i, ret;
|
|
|
|
for (i = 0; i < sz; i++) {
|
|
const struct cvb_table *d = &cvb_tables[i];
|
|
|
|
if (d->speedo_id != -1 && d->speedo_id != speedo_id)
|
|
continue;
|
|
if (d->process_id != -1 && d->process_id != process_id)
|
|
continue;
|
|
|
|
ret = build_opp_table(d, speedo_value, max_rate, opp_dev);
|
|
return ret ? ERR_PTR(ret) : d;
|
|
}
|
|
|
|
return ERR_PTR(-EINVAL);
|
|
}
|