linux-hardened/arch/sparc64/kernel/pci_common.c
David S. Miller 22fecbae44 sparc64: Record OF device instead of device node pointer in pci_pbm_info.
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-09-10 23:07:59 -07:00

545 lines
12 KiB
C

/* pci_common.c: PCI controller common support.
*
* Copyright (C) 1999, 2007 David S. Miller (davem@davemloft.net)
*/
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/device.h>
#include <linux/of_device.h>
#include <asm/prom.h>
#include <asm/oplib.h>
#include "pci_impl.h"
#include "pci_sun4v.h"
static int config_out_of_range(struct pci_pbm_info *pbm,
unsigned long bus,
unsigned long devfn,
unsigned long reg)
{
if (bus < pbm->pci_first_busno ||
bus > pbm->pci_last_busno)
return 1;
return 0;
}
static void *sun4u_config_mkaddr(struct pci_pbm_info *pbm,
unsigned long bus,
unsigned long devfn,
unsigned long reg)
{
unsigned long rbits = pbm->config_space_reg_bits;
if (config_out_of_range(pbm, bus, devfn, reg))
return NULL;
reg = (reg & ((1 << rbits) - 1));
devfn <<= rbits;
bus <<= rbits + 8;
return (void *) (pbm->config_space | bus | devfn | reg);
}
/* At least on Sabre, it is necessary to access all PCI host controller
* registers at their natural size, otherwise zeros are returned.
* Strange but true, and I see no language in the UltraSPARC-IIi
* programmer's manual that mentions this even indirectly.
*/
static int sun4u_read_pci_cfg_host(struct pci_pbm_info *pbm,
unsigned char bus, unsigned int devfn,
int where, int size, u32 *value)
{
u32 tmp32, *addr;
u16 tmp16;
u8 tmp8;
addr = sun4u_config_mkaddr(pbm, bus, devfn, where);
if (!addr)
return PCIBIOS_SUCCESSFUL;
switch (size) {
case 1:
if (where < 8) {
unsigned long align = (unsigned long) addr;
align &= ~1;
pci_config_read16((u16 *)align, &tmp16);
if (where & 1)
*value = tmp16 >> 8;
else
*value = tmp16 & 0xff;
} else {
pci_config_read8((u8 *)addr, &tmp8);
*value = (u32) tmp8;
}
break;
case 2:
if (where < 8) {
pci_config_read16((u16 *)addr, &tmp16);
*value = (u32) tmp16;
} else {
pci_config_read8((u8 *)addr, &tmp8);
*value = (u32) tmp8;
pci_config_read8(((u8 *)addr) + 1, &tmp8);
*value |= ((u32) tmp8) << 8;
}
break;
case 4:
tmp32 = 0xffffffff;
sun4u_read_pci_cfg_host(pbm, bus, devfn,
where, 2, &tmp32);
*value = tmp32;
tmp32 = 0xffffffff;
sun4u_read_pci_cfg_host(pbm, bus, devfn,
where + 2, 2, &tmp32);
*value |= tmp32 << 16;
break;
}
return PCIBIOS_SUCCESSFUL;
}
static int sun4u_read_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
int where, int size, u32 *value)
{
struct pci_pbm_info *pbm = bus_dev->sysdata;
unsigned char bus = bus_dev->number;
u32 *addr;
u16 tmp16;
u8 tmp8;
switch (size) {
case 1:
*value = 0xff;
break;
case 2:
*value = 0xffff;
break;
case 4:
*value = 0xffffffff;
break;
}
if (!bus_dev->number && !PCI_SLOT(devfn))
return sun4u_read_pci_cfg_host(pbm, bus, devfn, where,
size, value);
addr = sun4u_config_mkaddr(pbm, bus, devfn, where);
if (!addr)
return PCIBIOS_SUCCESSFUL;
switch (size) {
case 1:
pci_config_read8((u8 *)addr, &tmp8);
*value = (u32) tmp8;
break;
case 2:
if (where & 0x01) {
printk("pci_read_config_word: misaligned reg [%x]\n",
where);
return PCIBIOS_SUCCESSFUL;
}
pci_config_read16((u16 *)addr, &tmp16);
*value = (u32) tmp16;
break;
case 4:
if (where & 0x03) {
printk("pci_read_config_dword: misaligned reg [%x]\n",
where);
return PCIBIOS_SUCCESSFUL;
}
pci_config_read32(addr, value);
break;
}
return PCIBIOS_SUCCESSFUL;
}
static int sun4u_write_pci_cfg_host(struct pci_pbm_info *pbm,
unsigned char bus, unsigned int devfn,
int where, int size, u32 value)
{
u32 *addr;
addr = sun4u_config_mkaddr(pbm, bus, devfn, where);
if (!addr)
return PCIBIOS_SUCCESSFUL;
switch (size) {
case 1:
if (where < 8) {
unsigned long align = (unsigned long) addr;
u16 tmp16;
align &= ~1;
pci_config_read16((u16 *)align, &tmp16);
if (where & 1) {
tmp16 &= 0x00ff;
tmp16 |= value << 8;
} else {
tmp16 &= 0xff00;
tmp16 |= value;
}
pci_config_write16((u16 *)align, tmp16);
} else
pci_config_write8((u8 *)addr, value);
break;
case 2:
if (where < 8) {
pci_config_write16((u16 *)addr, value);
} else {
pci_config_write8((u8 *)addr, value & 0xff);
pci_config_write8(((u8 *)addr) + 1, value >> 8);
}
break;
case 4:
sun4u_write_pci_cfg_host(pbm, bus, devfn,
where, 2, value & 0xffff);
sun4u_write_pci_cfg_host(pbm, bus, devfn,
where + 2, 2, value >> 16);
break;
}
return PCIBIOS_SUCCESSFUL;
}
static int sun4u_write_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
int where, int size, u32 value)
{
struct pci_pbm_info *pbm = bus_dev->sysdata;
unsigned char bus = bus_dev->number;
u32 *addr;
if (!bus_dev->number && !PCI_SLOT(devfn))
return sun4u_write_pci_cfg_host(pbm, bus, devfn, where,
size, value);
addr = sun4u_config_mkaddr(pbm, bus, devfn, where);
if (!addr)
return PCIBIOS_SUCCESSFUL;
switch (size) {
case 1:
pci_config_write8((u8 *)addr, value);
break;
case 2:
if (where & 0x01) {
printk("pci_write_config_word: misaligned reg [%x]\n",
where);
return PCIBIOS_SUCCESSFUL;
}
pci_config_write16((u16 *)addr, value);
break;
case 4:
if (where & 0x03) {
printk("pci_write_config_dword: misaligned reg [%x]\n",
where);
return PCIBIOS_SUCCESSFUL;
}
pci_config_write32(addr, value);
}
return PCIBIOS_SUCCESSFUL;
}
struct pci_ops sun4u_pci_ops = {
.read = sun4u_read_pci_cfg,
.write = sun4u_write_pci_cfg,
};
static int sun4v_read_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
int where, int size, u32 *value)
{
struct pci_pbm_info *pbm = bus_dev->sysdata;
u32 devhandle = pbm->devhandle;
unsigned int bus = bus_dev->number;
unsigned int device = PCI_SLOT(devfn);
unsigned int func = PCI_FUNC(devfn);
unsigned long ret;
if (config_out_of_range(pbm, bus, devfn, where)) {
ret = ~0UL;
} else {
ret = pci_sun4v_config_get(devhandle,
HV_PCI_DEVICE_BUILD(bus, device, func),
where, size);
}
switch (size) {
case 1:
*value = ret & 0xff;
break;
case 2:
*value = ret & 0xffff;
break;
case 4:
*value = ret & 0xffffffff;
break;
};
return PCIBIOS_SUCCESSFUL;
}
static int sun4v_write_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
int where, int size, u32 value)
{
struct pci_pbm_info *pbm = bus_dev->sysdata;
u32 devhandle = pbm->devhandle;
unsigned int bus = bus_dev->number;
unsigned int device = PCI_SLOT(devfn);
unsigned int func = PCI_FUNC(devfn);
unsigned long ret;
if (config_out_of_range(pbm, bus, devfn, where)) {
/* Do nothing. */
} else {
ret = pci_sun4v_config_put(devhandle,
HV_PCI_DEVICE_BUILD(bus, device, func),
where, size, value);
}
return PCIBIOS_SUCCESSFUL;
}
struct pci_ops sun4v_pci_ops = {
.read = sun4v_read_pci_cfg,
.write = sun4v_write_pci_cfg,
};
void pci_get_pbm_props(struct pci_pbm_info *pbm)
{
const u32 *val = of_get_property(pbm->op->node, "bus-range", NULL);
pbm->pci_first_busno = val[0];
pbm->pci_last_busno = val[1];
val = of_get_property(pbm->op->node, "ino-bitmap", NULL);
if (val) {
pbm->ino_bitmap = (((u64)val[1] << 32UL) |
((u64)val[0] << 0UL));
}
}
static void pci_register_legacy_regions(struct resource *io_res,
struct resource *mem_res)
{
struct resource *p;
/* VGA Video RAM. */
p = kzalloc(sizeof(*p), GFP_KERNEL);
if (!p)
return;
p->name = "Video RAM area";
p->start = mem_res->start + 0xa0000UL;
p->end = p->start + 0x1ffffUL;
p->flags = IORESOURCE_BUSY;
request_resource(mem_res, p);
p = kzalloc(sizeof(*p), GFP_KERNEL);
if (!p)
return;
p->name = "System ROM";
p->start = mem_res->start + 0xf0000UL;
p->end = p->start + 0xffffUL;
p->flags = IORESOURCE_BUSY;
request_resource(mem_res, p);
p = kzalloc(sizeof(*p), GFP_KERNEL);
if (!p)
return;
p->name = "Video ROM";
p->start = mem_res->start + 0xc0000UL;
p->end = p->start + 0x7fffUL;
p->flags = IORESOURCE_BUSY;
request_resource(mem_res, p);
}
static void pci_register_iommu_region(struct pci_pbm_info *pbm)
{
const u32 *vdma = of_get_property(pbm->op->node, "virtual-dma", NULL);
if (vdma) {
struct resource *rp = kmalloc(sizeof(*rp), GFP_KERNEL);
if (!rp) {
prom_printf("Cannot allocate IOMMU resource.\n");
prom_halt();
}
rp->name = "IOMMU";
rp->start = pbm->mem_space.start + (unsigned long) vdma[0];
rp->end = rp->start + (unsigned long) vdma[1] - 1UL;
rp->flags = IORESOURCE_BUSY;
request_resource(&pbm->mem_space, rp);
}
}
void pci_determine_mem_io_space(struct pci_pbm_info *pbm)
{
const struct linux_prom_pci_ranges *pbm_ranges;
int i, saw_mem, saw_io;
int num_pbm_ranges;
saw_mem = saw_io = 0;
pbm_ranges = of_get_property(pbm->op->node, "ranges", &i);
if (!pbm_ranges) {
prom_printf("PCI: Fatal error, missing PBM ranges property "
" for %s\n",
pbm->name);
prom_halt();
}
num_pbm_ranges = i / sizeof(*pbm_ranges);
for (i = 0; i < num_pbm_ranges; i++) {
const struct linux_prom_pci_ranges *pr = &pbm_ranges[i];
unsigned long a, size;
u32 parent_phys_hi, parent_phys_lo;
u32 size_hi, size_lo;
int type;
parent_phys_hi = pr->parent_phys_hi;
parent_phys_lo = pr->parent_phys_lo;
if (tlb_type == hypervisor)
parent_phys_hi &= 0x0fffffff;
size_hi = pr->size_hi;
size_lo = pr->size_lo;
type = (pr->child_phys_hi >> 24) & 0x3;
a = (((unsigned long)parent_phys_hi << 32UL) |
((unsigned long)parent_phys_lo << 0UL));
size = (((unsigned long)size_hi << 32UL) |
((unsigned long)size_lo << 0UL));
switch (type) {
case 0:
/* PCI config space, 16MB */
pbm->config_space = a;
break;
case 1:
/* 16-bit IO space, 16MB */
pbm->io_space.start = a;
pbm->io_space.end = a + size - 1UL;
pbm->io_space.flags = IORESOURCE_IO;
saw_io = 1;
break;
case 2:
/* 32-bit MEM space, 2GB */
pbm->mem_space.start = a;
pbm->mem_space.end = a + size - 1UL;
pbm->mem_space.flags = IORESOURCE_MEM;
saw_mem = 1;
break;
case 3:
/* XXX 64-bit MEM handling XXX */
default:
break;
};
}
if (!saw_io || !saw_mem) {
prom_printf("%s: Fatal error, missing %s PBM range.\n",
pbm->name,
(!saw_io ? "IO" : "MEM"));
prom_halt();
}
printk("%s: PCI IO[%lx] MEM[%lx]\n",
pbm->name,
pbm->io_space.start,
pbm->mem_space.start);
pbm->io_space.name = pbm->mem_space.name = pbm->name;
request_resource(&ioport_resource, &pbm->io_space);
request_resource(&iomem_resource, &pbm->mem_space);
pci_register_legacy_regions(&pbm->io_space,
&pbm->mem_space);
pci_register_iommu_region(pbm);
}
/* Generic helper routines for PCI error reporting. */
void pci_scan_for_target_abort(struct pci_pbm_info *pbm,
struct pci_bus *pbus)
{
struct pci_dev *pdev;
struct pci_bus *bus;
list_for_each_entry(pdev, &pbus->devices, bus_list) {
u16 status, error_bits;
pci_read_config_word(pdev, PCI_STATUS, &status);
error_bits =
(status & (PCI_STATUS_SIG_TARGET_ABORT |
PCI_STATUS_REC_TARGET_ABORT));
if (error_bits) {
pci_write_config_word(pdev, PCI_STATUS, error_bits);
printk("%s: Device %s saw Target Abort [%016x]\n",
pbm->name, pci_name(pdev), status);
}
}
list_for_each_entry(bus, &pbus->children, node)
pci_scan_for_target_abort(pbm, bus);
}
void pci_scan_for_master_abort(struct pci_pbm_info *pbm,
struct pci_bus *pbus)
{
struct pci_dev *pdev;
struct pci_bus *bus;
list_for_each_entry(pdev, &pbus->devices, bus_list) {
u16 status, error_bits;
pci_read_config_word(pdev, PCI_STATUS, &status);
error_bits =
(status & (PCI_STATUS_REC_MASTER_ABORT));
if (error_bits) {
pci_write_config_word(pdev, PCI_STATUS, error_bits);
printk("%s: Device %s received Master Abort [%016x]\n",
pbm->name, pci_name(pdev), status);
}
}
list_for_each_entry(bus, &pbus->children, node)
pci_scan_for_master_abort(pbm, bus);
}
void pci_scan_for_parity_error(struct pci_pbm_info *pbm,
struct pci_bus *pbus)
{
struct pci_dev *pdev;
struct pci_bus *bus;
list_for_each_entry(pdev, &pbus->devices, bus_list) {
u16 status, error_bits;
pci_read_config_word(pdev, PCI_STATUS, &status);
error_bits =
(status & (PCI_STATUS_PARITY |
PCI_STATUS_DETECTED_PARITY));
if (error_bits) {
pci_write_config_word(pdev, PCI_STATUS, error_bits);
printk("%s: Device %s saw Parity Error [%016x]\n",
pbm->name, pci_name(pdev), status);
}
}
list_for_each_entry(bus, &pbus->children, node)
pci_scan_for_parity_error(pbm, bus);
}