linux-hardened/drivers/net/irda/vlsi_ir.c
Arjan van de Ven d54b1fdb1d [PATCH] mark struct file_operations const 5
Many struct file_operations in the kernel can be "const".  Marking them const
moves these to the .rodata section, which avoids false sharing with potential
dirty data.  In addition it'll catch accidental writes at compile time to
these shared resources.

Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:45 -08:00

1904 lines
51 KiB
C

/*********************************************************************
*
* vlsi_ir.c: VLSI82C147 PCI IrDA controller driver for Linux
*
* Copyright (c) 2001-2003 Martin Diehl
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*
********************************************************************/
#include <linux/module.h>
#define DRIVER_NAME "vlsi_ir"
#define DRIVER_VERSION "v0.5"
#define DRIVER_DESCRIPTION "IrDA SIR/MIR/FIR driver for VLSI 82C147"
#define DRIVER_AUTHOR "Martin Diehl <info@mdiehl.de>"
MODULE_DESCRIPTION(DRIVER_DESCRIPTION);
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_LICENSE("GPL");
/********************************************************/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/netdevice.h>
#include <linux/skbuff.h>
#include <linux/delay.h>
#include <linux/time.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/smp_lock.h>
#include <asm/uaccess.h>
#include <asm/byteorder.h>
#include <net/irda/irda.h>
#include <net/irda/irda_device.h>
#include <net/irda/wrapper.h>
#include <net/irda/crc.h>
#include "vlsi_ir.h"
/********************************************************/
static /* const */ char drivername[] = DRIVER_NAME;
static struct pci_device_id vlsi_irda_table [] = {
{
.class = PCI_CLASS_WIRELESS_IRDA << 8,
.class_mask = PCI_CLASS_SUBCLASS_MASK << 8,
.vendor = PCI_VENDOR_ID_VLSI,
.device = PCI_DEVICE_ID_VLSI_82C147,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
},
{ /* all zeroes */ }
};
MODULE_DEVICE_TABLE(pci, vlsi_irda_table);
/********************************************************/
/* clksrc: which clock source to be used
* 0: auto - try PLL, fallback to 40MHz XCLK
* 1: on-chip 48MHz PLL
* 2: external 48MHz XCLK
* 3: external 40MHz XCLK (HP OB-800)
*/
static int clksrc = 0; /* default is 0(auto) */
module_param(clksrc, int, 0);
MODULE_PARM_DESC(clksrc, "clock input source selection");
/* ringsize: size of the tx and rx descriptor rings
* independent for tx and rx
* specify as ringsize=tx[,rx]
* allowed values: 4, 8, 16, 32, 64
* Due to the IrDA 1.x max. allowed window size=7,
* there should be no gain when using rings larger than 8
*/
static int ringsize[] = {8,8}; /* default is tx=8 / rx=8 */
module_param_array(ringsize, int, NULL, 0);
MODULE_PARM_DESC(ringsize, "TX, RX ring descriptor size");
/* sirpulse: tuning of the SIR pulse width within IrPHY 1.3 limits
* 0: very short, 1.5us (exception: 6us at 2.4 kbaud)
* 1: nominal 3/16 bittime width
* note: IrDA compliant peer devices should be happy regardless
* which one is used. Primary goal is to save some power
* on the sender's side - at 9.6kbaud for example the short
* pulse width saves more than 90% of the transmitted IR power.
*/
static int sirpulse = 1; /* default is 3/16 bittime */
module_param(sirpulse, int, 0);
MODULE_PARM_DESC(sirpulse, "SIR pulse width tuning");
/* qos_mtt_bits: encoded min-turn-time value we require the peer device
* to use before transmitting to us. "Type 1" (per-station)
* bitfield according to IrLAP definition (section 6.6.8)
* Don't know which transceiver is used by my OB800 - the
* pretty common HP HDLS-1100 requires 1 msec - so lets use this.
*/
static int qos_mtt_bits = 0x07; /* default is 1 ms or more */
module_param(qos_mtt_bits, int, 0);
MODULE_PARM_DESC(qos_mtt_bits, "IrLAP bitfield representing min-turn-time");
/********************************************************/
static void vlsi_reg_debug(unsigned iobase, const char *s)
{
int i;
printk(KERN_DEBUG "%s: ", s);
for (i = 0; i < 0x20; i++)
printk("%02x", (unsigned)inb((iobase+i)));
printk("\n");
}
static void vlsi_ring_debug(struct vlsi_ring *r)
{
struct ring_descr *rd;
unsigned i;
printk(KERN_DEBUG "%s - ring %p / size %u / mask 0x%04x / len %u / dir %d / hw %p\n",
__FUNCTION__, r, r->size, r->mask, r->len, r->dir, r->rd[0].hw);
printk(KERN_DEBUG "%s - head = %d / tail = %d\n", __FUNCTION__,
atomic_read(&r->head) & r->mask, atomic_read(&r->tail) & r->mask);
for (i = 0; i < r->size; i++) {
rd = &r->rd[i];
printk(KERN_DEBUG "%s - ring descr %u: ", __FUNCTION__, i);
printk("skb=%p data=%p hw=%p\n", rd->skb, rd->buf, rd->hw);
printk(KERN_DEBUG "%s - hw: status=%02x count=%u addr=0x%08x\n",
__FUNCTION__, (unsigned) rd_get_status(rd),
(unsigned) rd_get_count(rd), (unsigned) rd_get_addr(rd));
}
}
/********************************************************/
/* needed regardless of CONFIG_PROC_FS */
static struct proc_dir_entry *vlsi_proc_root = NULL;
#ifdef CONFIG_PROC_FS
static void vlsi_proc_pdev(struct seq_file *seq, struct pci_dev *pdev)
{
unsigned iobase = pci_resource_start(pdev, 0);
unsigned i;
seq_printf(seq, "\n%s (vid/did: %04x/%04x)\n",
pci_name(pdev), (int)pdev->vendor, (int)pdev->device);
seq_printf(seq, "pci-power-state: %u\n", (unsigned) pdev->current_state);
seq_printf(seq, "resources: irq=%u / io=0x%04x / dma_mask=0x%016Lx\n",
pdev->irq, (unsigned)pci_resource_start(pdev, 0), (unsigned long long)pdev->dma_mask);
seq_printf(seq, "hw registers: ");
for (i = 0; i < 0x20; i++)
seq_printf(seq, "%02x", (unsigned)inb((iobase+i)));
seq_printf(seq, "\n");
}
static void vlsi_proc_ndev(struct seq_file *seq, struct net_device *ndev)
{
vlsi_irda_dev_t *idev = ndev->priv;
u8 byte;
u16 word;
unsigned delta1, delta2;
struct timeval now;
unsigned iobase = ndev->base_addr;
seq_printf(seq, "\n%s link state: %s / %s / %s / %s\n", ndev->name,
netif_device_present(ndev) ? "attached" : "detached",
netif_running(ndev) ? "running" : "not running",
netif_carrier_ok(ndev) ? "carrier ok" : "no carrier",
netif_queue_stopped(ndev) ? "queue stopped" : "queue running");
if (!netif_running(ndev))
return;
seq_printf(seq, "\nhw-state:\n");
pci_read_config_byte(idev->pdev, VLSI_PCI_IRMISC, &byte);
seq_printf(seq, "IRMISC:%s%s%s uart%s",
(byte&IRMISC_IRRAIL) ? " irrail" : "",
(byte&IRMISC_IRPD) ? " irpd" : "",
(byte&IRMISC_UARTTST) ? " uarttest" : "",
(byte&IRMISC_UARTEN) ? "@" : " disabled\n");
if (byte&IRMISC_UARTEN) {
seq_printf(seq, "0x%s\n",
(byte&2) ? ((byte&1) ? "3e8" : "2e8")
: ((byte&1) ? "3f8" : "2f8"));
}
pci_read_config_byte(idev->pdev, VLSI_PCI_CLKCTL, &byte);
seq_printf(seq, "CLKCTL: PLL %s%s%s / clock %s / wakeup %s\n",
(byte&CLKCTL_PD_INV) ? "powered" : "down",
(byte&CLKCTL_LOCK) ? " locked" : "",
(byte&CLKCTL_EXTCLK) ? ((byte&CLKCTL_XCKSEL)?" / 40 MHz XCLK":" / 48 MHz XCLK") : "",
(byte&CLKCTL_CLKSTP) ? "stopped" : "running",
(byte&CLKCTL_WAKE) ? "enabled" : "disabled");
pci_read_config_byte(idev->pdev, VLSI_PCI_MSTRPAGE, &byte);
seq_printf(seq, "MSTRPAGE: 0x%02x\n", (unsigned)byte);
byte = inb(iobase+VLSI_PIO_IRINTR);
seq_printf(seq, "IRINTR:%s%s%s%s%s%s%s%s\n",
(byte&IRINTR_ACTEN) ? " ACTEN" : "",
(byte&IRINTR_RPKTEN) ? " RPKTEN" : "",
(byte&IRINTR_TPKTEN) ? " TPKTEN" : "",
(byte&IRINTR_OE_EN) ? " OE_EN" : "",
(byte&IRINTR_ACTIVITY) ? " ACTIVITY" : "",
(byte&IRINTR_RPKTINT) ? " RPKTINT" : "",
(byte&IRINTR_TPKTINT) ? " TPKTINT" : "",
(byte&IRINTR_OE_INT) ? " OE_INT" : "");
word = inw(iobase+VLSI_PIO_RINGPTR);
seq_printf(seq, "RINGPTR: rx=%u / tx=%u\n", RINGPTR_GET_RX(word), RINGPTR_GET_TX(word));
word = inw(iobase+VLSI_PIO_RINGBASE);
seq_printf(seq, "RINGBASE: busmap=0x%08x\n",
((unsigned)word << 10)|(MSTRPAGE_VALUE<<24));
word = inw(iobase+VLSI_PIO_RINGSIZE);
seq_printf(seq, "RINGSIZE: rx=%u / tx=%u\n", RINGSIZE_TO_RXSIZE(word),
RINGSIZE_TO_TXSIZE(word));
word = inw(iobase+VLSI_PIO_IRCFG);
seq_printf(seq, "IRCFG:%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
(word&IRCFG_LOOP) ? " LOOP" : "",
(word&IRCFG_ENTX) ? " ENTX" : "",
(word&IRCFG_ENRX) ? " ENRX" : "",
(word&IRCFG_MSTR) ? " MSTR" : "",
(word&IRCFG_RXANY) ? " RXANY" : "",
(word&IRCFG_CRC16) ? " CRC16" : "",
(word&IRCFG_FIR) ? " FIR" : "",
(word&IRCFG_MIR) ? " MIR" : "",
(word&IRCFG_SIR) ? " SIR" : "",
(word&IRCFG_SIRFILT) ? " SIRFILT" : "",
(word&IRCFG_SIRTEST) ? " SIRTEST" : "",
(word&IRCFG_TXPOL) ? " TXPOL" : "",
(word&IRCFG_RXPOL) ? " RXPOL" : "");
word = inw(iobase+VLSI_PIO_IRENABLE);
seq_printf(seq, "IRENABLE:%s%s%s%s%s%s%s%s\n",
(word&IRENABLE_PHYANDCLOCK) ? " PHYANDCLOCK" : "",
(word&IRENABLE_CFGER) ? " CFGERR" : "",
(word&IRENABLE_FIR_ON) ? " FIR_ON" : "",
(word&IRENABLE_MIR_ON) ? " MIR_ON" : "",
(word&IRENABLE_SIR_ON) ? " SIR_ON" : "",
(word&IRENABLE_ENTXST) ? " ENTXST" : "",
(word&IRENABLE_ENRXST) ? " ENRXST" : "",
(word&IRENABLE_CRC16_ON) ? " CRC16_ON" : "");
word = inw(iobase+VLSI_PIO_PHYCTL);
seq_printf(seq, "PHYCTL: baud-divisor=%u / pulsewidth=%u / preamble=%u\n",
(unsigned)PHYCTL_TO_BAUD(word),
(unsigned)PHYCTL_TO_PLSWID(word),
(unsigned)PHYCTL_TO_PREAMB(word));
word = inw(iobase+VLSI_PIO_NPHYCTL);
seq_printf(seq, "NPHYCTL: baud-divisor=%u / pulsewidth=%u / preamble=%u\n",
(unsigned)PHYCTL_TO_BAUD(word),
(unsigned)PHYCTL_TO_PLSWID(word),
(unsigned)PHYCTL_TO_PREAMB(word));
word = inw(iobase+VLSI_PIO_MAXPKT);
seq_printf(seq, "MAXPKT: max. rx packet size = %u\n", word);
word = inw(iobase+VLSI_PIO_RCVBCNT) & RCVBCNT_MASK;
seq_printf(seq, "RCVBCNT: rx-fifo filling level = %u\n", word);
seq_printf(seq, "\nsw-state:\n");
seq_printf(seq, "IrPHY setup: %d baud - %s encoding\n", idev->baud,
(idev->mode==IFF_SIR)?"SIR":((idev->mode==IFF_MIR)?"MIR":"FIR"));
do_gettimeofday(&now);
if (now.tv_usec >= idev->last_rx.tv_usec) {
delta2 = now.tv_usec - idev->last_rx.tv_usec;
delta1 = 0;
}
else {
delta2 = 1000000 + now.tv_usec - idev->last_rx.tv_usec;
delta1 = 1;
}
seq_printf(seq, "last rx: %lu.%06u sec\n",
now.tv_sec - idev->last_rx.tv_sec - delta1, delta2);
seq_printf(seq, "RX: packets=%lu / bytes=%lu / errors=%lu / dropped=%lu",
idev->stats.rx_packets, idev->stats.rx_bytes, idev->stats.rx_errors,
idev->stats.rx_dropped);
seq_printf(seq, " / overrun=%lu / length=%lu / frame=%lu / crc=%lu\n",
idev->stats.rx_over_errors, idev->stats.rx_length_errors,
idev->stats.rx_frame_errors, idev->stats.rx_crc_errors);
seq_printf(seq, "TX: packets=%lu / bytes=%lu / errors=%lu / dropped=%lu / fifo=%lu\n",
idev->stats.tx_packets, idev->stats.tx_bytes, idev->stats.tx_errors,
idev->stats.tx_dropped, idev->stats.tx_fifo_errors);
}
static void vlsi_proc_ring(struct seq_file *seq, struct vlsi_ring *r)
{
struct ring_descr *rd;
unsigned i, j;
int h, t;
seq_printf(seq, "size %u / mask 0x%04x / len %u / dir %d / hw %p\n",
r->size, r->mask, r->len, r->dir, r->rd[0].hw);
h = atomic_read(&r->head) & r->mask;
t = atomic_read(&r->tail) & r->mask;
seq_printf(seq, "head = %d / tail = %d ", h, t);
if (h == t)
seq_printf(seq, "(empty)\n");
else {
if (((t+1)&r->mask) == h)
seq_printf(seq, "(full)\n");
else
seq_printf(seq, "(level = %d)\n", ((unsigned)(t-h) & r->mask));
rd = &r->rd[h];
j = (unsigned) rd_get_count(rd);
seq_printf(seq, "current: rd = %d / status = %02x / len = %u\n",
h, (unsigned)rd_get_status(rd), j);
if (j > 0) {
seq_printf(seq, " data:");
if (j > 20)
j = 20;
for (i = 0; i < j; i++)
seq_printf(seq, " %02x", (unsigned)((unsigned char *)rd->buf)[i]);
seq_printf(seq, "\n");
}
}
for (i = 0; i < r->size; i++) {
rd = &r->rd[i];
seq_printf(seq, "> ring descr %u: ", i);
seq_printf(seq, "skb=%p data=%p hw=%p\n", rd->skb, rd->buf, rd->hw);
seq_printf(seq, " hw: status=%02x count=%u busaddr=0x%08x\n",
(unsigned) rd_get_status(rd),
(unsigned) rd_get_count(rd), (unsigned) rd_get_addr(rd));
}
}
static int vlsi_seq_show(struct seq_file *seq, void *v)
{
struct net_device *ndev = seq->private;
vlsi_irda_dev_t *idev = ndev->priv;
unsigned long flags;
seq_printf(seq, "\n%s %s\n\n", DRIVER_NAME, DRIVER_VERSION);
seq_printf(seq, "clksrc: %s\n",
(clksrc>=2) ? ((clksrc==3)?"40MHz XCLK":"48MHz XCLK")
: ((clksrc==1)?"48MHz PLL":"autodetect"));
seq_printf(seq, "ringsize: tx=%d / rx=%d\n",
ringsize[0], ringsize[1]);
seq_printf(seq, "sirpulse: %s\n", (sirpulse)?"3/16 bittime":"short");
seq_printf(seq, "qos_mtt_bits: 0x%02x\n", (unsigned)qos_mtt_bits);
spin_lock_irqsave(&idev->lock, flags);
if (idev->pdev != NULL) {
vlsi_proc_pdev(seq, idev->pdev);
if (idev->pdev->current_state == 0)
vlsi_proc_ndev(seq, ndev);
else
seq_printf(seq, "\nPCI controller down - resume_ok = %d\n",
idev->resume_ok);
if (netif_running(ndev) && idev->rx_ring && idev->tx_ring) {
seq_printf(seq, "\n--------- RX ring -----------\n\n");
vlsi_proc_ring(seq, idev->rx_ring);
seq_printf(seq, "\n--------- TX ring -----------\n\n");
vlsi_proc_ring(seq, idev->tx_ring);
}
}
seq_printf(seq, "\n");
spin_unlock_irqrestore(&idev->lock, flags);
return 0;
}
static int vlsi_seq_open(struct inode *inode, struct file *file)
{
return single_open(file, vlsi_seq_show, PDE(inode)->data);
}
static const struct file_operations vlsi_proc_fops = {
.owner = THIS_MODULE,
.open = vlsi_seq_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
#define VLSI_PROC_FOPS (&vlsi_proc_fops)
#else /* CONFIG_PROC_FS */
#define VLSI_PROC_FOPS NULL
#endif
/********************************************************/
static struct vlsi_ring *vlsi_alloc_ring(struct pci_dev *pdev, struct ring_descr_hw *hwmap,
unsigned size, unsigned len, int dir)
{
struct vlsi_ring *r;
struct ring_descr *rd;
unsigned i, j;
dma_addr_t busaddr;
if (!size || ((size-1)&size)!=0) /* must be >0 and power of 2 */
return NULL;
r = kmalloc(sizeof(*r) + size * sizeof(struct ring_descr), GFP_KERNEL);
if (!r)
return NULL;
memset(r, 0, sizeof(*r));
r->pdev = pdev;
r->dir = dir;
r->len = len;
r->rd = (struct ring_descr *)(r+1);
r->mask = size - 1;
r->size = size;
atomic_set(&r->head, 0);
atomic_set(&r->tail, 0);
for (i = 0; i < size; i++) {
rd = r->rd + i;
memset(rd, 0, sizeof(*rd));
rd->hw = hwmap + i;
rd->buf = kmalloc(len, GFP_KERNEL|GFP_DMA);
if (rd->buf == NULL
|| !(busaddr = pci_map_single(pdev, rd->buf, len, dir))) {
if (rd->buf) {
IRDA_ERROR("%s: failed to create PCI-MAP for %p",
__FUNCTION__, rd->buf);
kfree(rd->buf);
rd->buf = NULL;
}
for (j = 0; j < i; j++) {
rd = r->rd + j;
busaddr = rd_get_addr(rd);
rd_set_addr_status(rd, 0, 0);
if (busaddr)
pci_unmap_single(pdev, busaddr, len, dir);
kfree(rd->buf);
rd->buf = NULL;
}
kfree(r);
return NULL;
}
rd_set_addr_status(rd, busaddr, 0);
/* initially, the dma buffer is owned by the CPU */
rd->skb = NULL;
}
return r;
}
static int vlsi_free_ring(struct vlsi_ring *r)
{
struct ring_descr *rd;
unsigned i;
dma_addr_t busaddr;
for (i = 0; i < r->size; i++) {
rd = r->rd + i;
if (rd->skb)
dev_kfree_skb_any(rd->skb);
busaddr = rd_get_addr(rd);
rd_set_addr_status(rd, 0, 0);
if (busaddr)
pci_unmap_single(r->pdev, busaddr, r->len, r->dir);
kfree(rd->buf);
}
kfree(r);
return 0;
}
static int vlsi_create_hwif(vlsi_irda_dev_t *idev)
{
char *ringarea;
struct ring_descr_hw *hwmap;
idev->virtaddr = NULL;
idev->busaddr = 0;
ringarea = pci_alloc_consistent(idev->pdev, HW_RING_AREA_SIZE, &idev->busaddr);
if (!ringarea) {
IRDA_ERROR("%s: insufficient memory for descriptor rings\n",
__FUNCTION__);
goto out;
}
memset(ringarea, 0, HW_RING_AREA_SIZE);
hwmap = (struct ring_descr_hw *)ringarea;
idev->rx_ring = vlsi_alloc_ring(idev->pdev, hwmap, ringsize[1],
XFER_BUF_SIZE, PCI_DMA_FROMDEVICE);
if (idev->rx_ring == NULL)
goto out_unmap;
hwmap += MAX_RING_DESCR;
idev->tx_ring = vlsi_alloc_ring(idev->pdev, hwmap, ringsize[0],
XFER_BUF_SIZE, PCI_DMA_TODEVICE);
if (idev->tx_ring == NULL)
goto out_free_rx;
idev->virtaddr = ringarea;
return 0;
out_free_rx:
vlsi_free_ring(idev->rx_ring);
out_unmap:
idev->rx_ring = idev->tx_ring = NULL;
pci_free_consistent(idev->pdev, HW_RING_AREA_SIZE, ringarea, idev->busaddr);
idev->busaddr = 0;
out:
return -ENOMEM;
}
static int vlsi_destroy_hwif(vlsi_irda_dev_t *idev)
{
vlsi_free_ring(idev->rx_ring);
vlsi_free_ring(idev->tx_ring);
idev->rx_ring = idev->tx_ring = NULL;
if (idev->busaddr)
pci_free_consistent(idev->pdev,HW_RING_AREA_SIZE,idev->virtaddr,idev->busaddr);
idev->virtaddr = NULL;
idev->busaddr = 0;
return 0;
}
/********************************************************/
static int vlsi_process_rx(struct vlsi_ring *r, struct ring_descr *rd)
{
u16 status;
int crclen, len = 0;
struct sk_buff *skb;
int ret = 0;
struct net_device *ndev = (struct net_device *)pci_get_drvdata(r->pdev);
vlsi_irda_dev_t *idev = ndev->priv;
pci_dma_sync_single_for_cpu(r->pdev, rd_get_addr(rd), r->len, r->dir);
/* dma buffer now owned by the CPU */
status = rd_get_status(rd);
if (status & RD_RX_ERROR) {
if (status & RD_RX_OVER)
ret |= VLSI_RX_OVER;
if (status & RD_RX_LENGTH)
ret |= VLSI_RX_LENGTH;
if (status & RD_RX_PHYERR)
ret |= VLSI_RX_FRAME;
if (status & RD_RX_CRCERR)
ret |= VLSI_RX_CRC;
goto done;
}
len = rd_get_count(rd);
crclen = (idev->mode==IFF_FIR) ? sizeof(u32) : sizeof(u16);
len -= crclen; /* remove trailing CRC */
if (len <= 0) {
IRDA_DEBUG(0, "%s: strange frame (len=%d)\n", __FUNCTION__, len);
ret |= VLSI_RX_DROP;
goto done;
}
if (idev->mode == IFF_SIR) { /* hw checks CRC in MIR, FIR mode */
/* rd->buf is a streaming PCI_DMA_FROMDEVICE map. Doing the
* endian-adjustment there just in place will dirty a cache line
* which belongs to the map and thus we must be sure it will
* get flushed before giving the buffer back to hardware.
* vlsi_fill_rx() will do this anyway - but here we rely on.
*/
le16_to_cpus(rd->buf+len);
if (irda_calc_crc16(INIT_FCS,rd->buf,len+crclen) != GOOD_FCS) {
IRDA_DEBUG(0, "%s: crc error\n", __FUNCTION__);
ret |= VLSI_RX_CRC;
goto done;
}
}
if (!rd->skb) {
IRDA_WARNING("%s: rx packet lost\n", __FUNCTION__);
ret |= VLSI_RX_DROP;
goto done;
}
skb = rd->skb;
rd->skb = NULL;
skb->dev = ndev;
memcpy(skb_put(skb,len), rd->buf, len);
skb->mac.raw = skb->data;
if (in_interrupt())
netif_rx(skb);
else
netif_rx_ni(skb);
ndev->last_rx = jiffies;
done:
rd_set_status(rd, 0);
rd_set_count(rd, 0);
/* buffer still owned by CPU */
return (ret) ? -ret : len;
}
static void vlsi_fill_rx(struct vlsi_ring *r)
{
struct ring_descr *rd;
for (rd = ring_last(r); rd != NULL; rd = ring_put(r)) {
if (rd_is_active(rd)) {
IRDA_WARNING("%s: driver bug: rx descr race with hw\n",
__FUNCTION__);
vlsi_ring_debug(r);
break;
}
if (!rd->skb) {
rd->skb = dev_alloc_skb(IRLAP_SKB_ALLOCSIZE);
if (rd->skb) {
skb_reserve(rd->skb,1);
rd->skb->protocol = htons(ETH_P_IRDA);
}
else
break; /* probably not worth logging? */
}
/* give dma buffer back to busmaster */
pci_dma_sync_single_for_device(r->pdev, rd_get_addr(rd), r->len, r->dir);
rd_activate(rd);
}
}
static void vlsi_rx_interrupt(struct net_device *ndev)
{
vlsi_irda_dev_t *idev = ndev->priv;
struct vlsi_ring *r = idev->rx_ring;
struct ring_descr *rd;
int ret;
for (rd = ring_first(r); rd != NULL; rd = ring_get(r)) {
if (rd_is_active(rd))
break;
ret = vlsi_process_rx(r, rd);
if (ret < 0) {
ret = -ret;
idev->stats.rx_errors++;
if (ret & VLSI_RX_DROP)
idev->stats.rx_dropped++;
if (ret & VLSI_RX_OVER)
idev->stats.rx_over_errors++;
if (ret & VLSI_RX_LENGTH)
idev->stats.rx_length_errors++;
if (ret & VLSI_RX_FRAME)
idev->stats.rx_frame_errors++;
if (ret & VLSI_RX_CRC)
idev->stats.rx_crc_errors++;
}
else if (ret > 0) {
idev->stats.rx_packets++;
idev->stats.rx_bytes += ret;
}
}
do_gettimeofday(&idev->last_rx); /* remember "now" for later mtt delay */
vlsi_fill_rx(r);
if (ring_first(r) == NULL) {
/* we are in big trouble, if this should ever happen */
IRDA_ERROR("%s: rx ring exhausted!\n", __FUNCTION__);
vlsi_ring_debug(r);
}
else
outw(0, ndev->base_addr+VLSI_PIO_PROMPT);
}
/* caller must have stopped the controller from busmastering */
static void vlsi_unarm_rx(vlsi_irda_dev_t *idev)
{
struct vlsi_ring *r = idev->rx_ring;
struct ring_descr *rd;
int ret;
for (rd = ring_first(r); rd != NULL; rd = ring_get(r)) {
ret = 0;
if (rd_is_active(rd)) {
rd_set_status(rd, 0);
if (rd_get_count(rd)) {
IRDA_DEBUG(0, "%s - dropping rx packet\n", __FUNCTION__);
ret = -VLSI_RX_DROP;
}
rd_set_count(rd, 0);
pci_dma_sync_single_for_cpu(r->pdev, rd_get_addr(rd), r->len, r->dir);
if (rd->skb) {
dev_kfree_skb_any(rd->skb);
rd->skb = NULL;
}
}
else
ret = vlsi_process_rx(r, rd);
if (ret < 0) {
ret = -ret;
idev->stats.rx_errors++;
if (ret & VLSI_RX_DROP)
idev->stats.rx_dropped++;
if (ret & VLSI_RX_OVER)
idev->stats.rx_over_errors++;
if (ret & VLSI_RX_LENGTH)
idev->stats.rx_length_errors++;
if (ret & VLSI_RX_FRAME)
idev->stats.rx_frame_errors++;
if (ret & VLSI_RX_CRC)
idev->stats.rx_crc_errors++;
}
else if (ret > 0) {
idev->stats.rx_packets++;
idev->stats.rx_bytes += ret;
}
}
}
/********************************************************/
static int vlsi_process_tx(struct vlsi_ring *r, struct ring_descr *rd)
{
u16 status;
int len;
int ret;
pci_dma_sync_single_for_cpu(r->pdev, rd_get_addr(rd), r->len, r->dir);
/* dma buffer now owned by the CPU */
status = rd_get_status(rd);
if (status & RD_TX_UNDRN)
ret = VLSI_TX_FIFO;
else
ret = 0;
rd_set_status(rd, 0);
if (rd->skb) {
len = rd->skb->len;
dev_kfree_skb_any(rd->skb);
rd->skb = NULL;
}
else /* tx-skb already freed? - should never happen */
len = rd_get_count(rd); /* incorrect for SIR! (due to wrapping) */
rd_set_count(rd, 0);
/* dma buffer still owned by the CPU */
return (ret) ? -ret : len;
}
static int vlsi_set_baud(vlsi_irda_dev_t *idev, unsigned iobase)
{
u16 nphyctl;
u16 config;
unsigned mode;
int ret;
int baudrate;
int fifocnt;
baudrate = idev->new_baud;
IRDA_DEBUG(2, "%s: %d -> %d\n", __FUNCTION__, idev->baud, idev->new_baud);
if (baudrate == 4000000) {
mode = IFF_FIR;
config = IRCFG_FIR;
nphyctl = PHYCTL_FIR;
}
else if (baudrate == 1152000) {
mode = IFF_MIR;
config = IRCFG_MIR | IRCFG_CRC16;
nphyctl = PHYCTL_MIR(clksrc==3);
}
else {
mode = IFF_SIR;
config = IRCFG_SIR | IRCFG_SIRFILT | IRCFG_RXANY;
switch(baudrate) {
default:
IRDA_WARNING("%s: undefined baudrate %d - fallback to 9600!\n",
__FUNCTION__, baudrate);
baudrate = 9600;
/* fallthru */
case 2400:
case 9600:
case 19200:
case 38400:
case 57600:
case 115200:
nphyctl = PHYCTL_SIR(baudrate,sirpulse,clksrc==3);
break;
}
}
config |= IRCFG_MSTR | IRCFG_ENRX;
fifocnt = inw(iobase+VLSI_PIO_RCVBCNT) & RCVBCNT_MASK;
if (fifocnt != 0) {
IRDA_DEBUG(0, "%s: rx fifo not empty(%d)\n", __FUNCTION__, fifocnt);
}
outw(0, iobase+VLSI_PIO_IRENABLE);
outw(config, iobase+VLSI_PIO_IRCFG);
outw(nphyctl, iobase+VLSI_PIO_NPHYCTL);
wmb();
outw(IRENABLE_PHYANDCLOCK, iobase+VLSI_PIO_IRENABLE);
mb();
udelay(1); /* chip applies IRCFG on next rising edge of its 8MHz clock */
/* read back settings for validation */
config = inw(iobase+VLSI_PIO_IRENABLE) & IRENABLE_MASK;
if (mode == IFF_FIR)
config ^= IRENABLE_FIR_ON;
else if (mode == IFF_MIR)
config ^= (IRENABLE_MIR_ON|IRENABLE_CRC16_ON);
else
config ^= IRENABLE_SIR_ON;
if (config != (IRENABLE_PHYANDCLOCK|IRENABLE_ENRXST)) {
IRDA_WARNING("%s: failed to set %s mode!\n", __FUNCTION__,
(mode==IFF_SIR)?"SIR":((mode==IFF_MIR)?"MIR":"FIR"));
ret = -1;
}
else {
if (inw(iobase+VLSI_PIO_PHYCTL) != nphyctl) {
IRDA_WARNING("%s: failed to apply baudrate %d\n",
__FUNCTION__, baudrate);
ret = -1;
}
else {
idev->mode = mode;
idev->baud = baudrate;
idev->new_baud = 0;
ret = 0;
}
}
if (ret)
vlsi_reg_debug(iobase,__FUNCTION__);
return ret;
}
static int vlsi_hard_start_xmit(struct sk_buff *skb, struct net_device *ndev)
{
vlsi_irda_dev_t *idev = ndev->priv;
struct vlsi_ring *r = idev->tx_ring;
struct ring_descr *rd;
unsigned long flags;
unsigned iobase = ndev->base_addr;
u8 status;
u16 config;
int mtt;
int len, speed;
struct timeval now, ready;
char *msg = NULL;
speed = irda_get_next_speed(skb);
spin_lock_irqsave(&idev->lock, flags);
if (speed != -1 && speed != idev->baud) {
netif_stop_queue(ndev);
idev->new_baud = speed;
status = RD_TX_CLRENTX; /* stop tx-ring after this frame */
}
else
status = 0;
if (skb->len == 0) {
/* handle zero packets - should be speed change */
if (status == 0) {
msg = "bogus zero-length packet";
goto drop_unlock;
}
/* due to the completely asynch tx operation we might have
* IrLAP racing with the hardware here, f.e. if the controller
* is just sending the last packet with current speed while
* the LAP is already switching the speed using synchronous
* len=0 packet. Immediate execution would lead to hw lockup
* requiring a powercycle to reset. Good candidate to trigger
* this is the final UA:RSP packet after receiving a DISC:CMD
* when getting the LAP down.
* Note that we are not protected by the queue_stop approach
* because the final UA:RSP arrives _without_ request to apply
* new-speed-after-this-packet - hence the driver doesn't know
* this was the last packet and doesn't stop the queue. So the
* forced switch to default speed from LAP gets through as fast
* as only some 10 usec later while the UA:RSP is still processed
* by the hardware and we would get screwed.
*/
if (ring_first(idev->tx_ring) == NULL) {
/* no race - tx-ring already empty */
vlsi_set_baud(idev, iobase);
netif_wake_queue(ndev);
}
else
;
/* keep the speed change pending like it would
* for any len>0 packet. tx completion interrupt
* will apply it when the tx ring becomes empty.
*/
spin_unlock_irqrestore(&idev->lock, flags);
dev_kfree_skb_any(skb);
return 0;
}
/* sanity checks - simply drop the packet */
rd = ring_last(r);
if (!rd) {
msg = "ring full, but queue wasn't stopped";
goto drop_unlock;
}
if (rd_is_active(rd)) {
msg = "entry still owned by hw";
goto drop_unlock;
}
if (!rd->buf) {
msg = "tx ring entry without pci buffer";
goto drop_unlock;
}
if (rd->skb) {
msg = "ring entry with old skb still attached";
goto drop_unlock;
}
/* no need for serialization or interrupt disable during mtt */
spin_unlock_irqrestore(&idev->lock, flags);
if ((mtt = irda_get_mtt(skb)) > 0) {
ready.tv_usec = idev->last_rx.tv_usec + mtt;
ready.tv_sec = idev->last_rx.tv_sec;
if (ready.tv_usec >= 1000000) {
ready.tv_usec -= 1000000;
ready.tv_sec++; /* IrLAP 1.1: mtt always < 1 sec */
}
for(;;) {
do_gettimeofday(&now);
if (now.tv_sec > ready.tv_sec
|| (now.tv_sec==ready.tv_sec && now.tv_usec>=ready.tv_usec))
break;
udelay(100);
/* must not sleep here - called under netif_tx_lock! */
}
}
/* tx buffer already owned by CPU due to pci_dma_sync_single_for_cpu()
* after subsequent tx-completion
*/
if (idev->mode == IFF_SIR) {
status |= RD_TX_DISCRC; /* no hw-crc creation */
len = async_wrap_skb(skb, rd->buf, r->len);
/* Some rare worst case situation in SIR mode might lead to
* potential buffer overflow. The wrapper detects this, returns
* with a shortened frame (without FCS/EOF) but doesn't provide
* any error indication about the invalid packet which we are
* going to transmit.
* Therefore we log if the buffer got filled to the point, where the
* wrapper would abort, i.e. when there are less than 5 bytes left to
* allow appending the FCS/EOF.
*/
if (len >= r->len-5)
IRDA_WARNING("%s: possible buffer overflow with SIR wrapping!\n",
__FUNCTION__);
}
else {
/* hw deals with MIR/FIR mode wrapping */
status |= RD_TX_PULSE; /* send 2 us highspeed indication pulse */
len = skb->len;
if (len > r->len) {
msg = "frame exceeds tx buffer length";
goto drop;
}
else
memcpy(rd->buf, skb->data, len);
}
rd->skb = skb; /* remember skb for tx-complete stats */
rd_set_count(rd, len);
rd_set_status(rd, status); /* not yet active! */
/* give dma buffer back to busmaster-hw (flush caches to make
* CPU-driven changes visible from the pci bus).
*/
pci_dma_sync_single_for_device(r->pdev, rd_get_addr(rd), r->len, r->dir);
/* Switching to TX mode here races with the controller
* which may stop TX at any time when fetching an inactive descriptor
* or one with CLR_ENTX set. So we switch on TX only, if TX was not running
* _after_ the new descriptor was activated on the ring. This ensures
* we will either find TX already stopped or we can be sure, there
* will be a TX-complete interrupt even if the chip stopped doing
* TX just after we found it still running. The ISR will then find
* the non-empty ring and restart TX processing. The enclosing
* spinlock provides the correct serialization to prevent race with isr.
*/
spin_lock_irqsave(&idev->lock,flags);
rd_activate(rd);
if (!(inw(iobase+VLSI_PIO_IRENABLE) & IRENABLE_ENTXST)) {
int fifocnt;
fifocnt = inw(ndev->base_addr+VLSI_PIO_RCVBCNT) & RCVBCNT_MASK;
if (fifocnt != 0) {
IRDA_DEBUG(0, "%s: rx fifo not empty(%d)\n", __FUNCTION__, fifocnt);
}
config = inw(iobase+VLSI_PIO_IRCFG);
mb();
outw(config | IRCFG_ENTX, iobase+VLSI_PIO_IRCFG);
wmb();
outw(0, iobase+VLSI_PIO_PROMPT);
}
ndev->trans_start = jiffies;
if (ring_put(r) == NULL) {
netif_stop_queue(ndev);
IRDA_DEBUG(3, "%s: tx ring full - queue stopped\n", __FUNCTION__);
}
spin_unlock_irqrestore(&idev->lock, flags);
return 0;
drop_unlock:
spin_unlock_irqrestore(&idev->lock, flags);
drop:
IRDA_WARNING("%s: dropping packet - %s\n", __FUNCTION__, msg);
dev_kfree_skb_any(skb);
idev->stats.tx_errors++;
idev->stats.tx_dropped++;
/* Don't even think about returning NET_XMIT_DROP (=1) here!
* In fact any retval!=0 causes the packet scheduler to requeue the
* packet for later retry of transmission - which isn't exactly
* what we want after we've just called dev_kfree_skb_any ;-)
*/
return 0;
}
static void vlsi_tx_interrupt(struct net_device *ndev)
{
vlsi_irda_dev_t *idev = ndev->priv;
struct vlsi_ring *r = idev->tx_ring;
struct ring_descr *rd;
unsigned iobase;
int ret;
u16 config;
for (rd = ring_first(r); rd != NULL; rd = ring_get(r)) {
if (rd_is_active(rd))
break;
ret = vlsi_process_tx(r, rd);
if (ret < 0) {
ret = -ret;
idev->stats.tx_errors++;
if (ret & VLSI_TX_DROP)
idev->stats.tx_dropped++;
if (ret & VLSI_TX_FIFO)
idev->stats.tx_fifo_errors++;
}
else if (ret > 0){
idev->stats.tx_packets++;
idev->stats.tx_bytes += ret;
}
}
iobase = ndev->base_addr;
if (idev->new_baud && rd == NULL) /* tx ring empty and speed change pending */
vlsi_set_baud(idev, iobase);
config = inw(iobase+VLSI_PIO_IRCFG);
if (rd == NULL) /* tx ring empty: re-enable rx */
outw((config & ~IRCFG_ENTX) | IRCFG_ENRX, iobase+VLSI_PIO_IRCFG);
else if (!(inw(iobase+VLSI_PIO_IRENABLE) & IRENABLE_ENTXST)) {
int fifocnt;
fifocnt = inw(iobase+VLSI_PIO_RCVBCNT) & RCVBCNT_MASK;
if (fifocnt != 0) {
IRDA_DEBUG(0, "%s: rx fifo not empty(%d)\n",
__FUNCTION__, fifocnt);
}
outw(config | IRCFG_ENTX, iobase+VLSI_PIO_IRCFG);
}
outw(0, iobase+VLSI_PIO_PROMPT);
if (netif_queue_stopped(ndev) && !idev->new_baud) {
netif_wake_queue(ndev);
IRDA_DEBUG(3, "%s: queue awoken\n", __FUNCTION__);
}
}
/* caller must have stopped the controller from busmastering */
static void vlsi_unarm_tx(vlsi_irda_dev_t *idev)
{
struct vlsi_ring *r = idev->tx_ring;
struct ring_descr *rd;
int ret;
for (rd = ring_first(r); rd != NULL; rd = ring_get(r)) {
ret = 0;
if (rd_is_active(rd)) {
rd_set_status(rd, 0);
rd_set_count(rd, 0);
pci_dma_sync_single_for_cpu(r->pdev, rd_get_addr(rd), r->len, r->dir);
if (rd->skb) {
dev_kfree_skb_any(rd->skb);
rd->skb = NULL;
}
IRDA_DEBUG(0, "%s - dropping tx packet\n", __FUNCTION__);
ret = -VLSI_TX_DROP;
}
else
ret = vlsi_process_tx(r, rd);
if (ret < 0) {
ret = -ret;
idev->stats.tx_errors++;
if (ret & VLSI_TX_DROP)
idev->stats.tx_dropped++;
if (ret & VLSI_TX_FIFO)
idev->stats.tx_fifo_errors++;
}
else if (ret > 0){
idev->stats.tx_packets++;
idev->stats.tx_bytes += ret;
}
}
}
/********************************************************/
static int vlsi_start_clock(struct pci_dev *pdev)
{
u8 clkctl, lock;
int i, count;
if (clksrc < 2) { /* auto or PLL: try PLL */
clkctl = CLKCTL_PD_INV | CLKCTL_CLKSTP;
pci_write_config_byte(pdev, VLSI_PCI_CLKCTL, clkctl);
/* procedure to detect PLL lock synchronisation:
* after 0.5 msec initial delay we expect to find 3 PLL lock
* indications within 10 msec for successful PLL detection.
*/
udelay(500);
count = 0;
for (i = 500; i <= 10000; i += 50) { /* max 10 msec */
pci_read_config_byte(pdev, VLSI_PCI_CLKCTL, &lock);
if (lock&CLKCTL_LOCK) {
if (++count >= 3)
break;
}
udelay(50);
}
if (count < 3) {
if (clksrc == 1) { /* explicitly asked for PLL hence bail out */
IRDA_ERROR("%s: no PLL or failed to lock!\n",
__FUNCTION__);
clkctl = CLKCTL_CLKSTP;
pci_write_config_byte(pdev, VLSI_PCI_CLKCTL, clkctl);
return -1;
}
else /* was: clksrc=0(auto) */
clksrc = 3; /* fallback to 40MHz XCLK (OB800) */
IRDA_DEBUG(0, "%s: PLL not locked, fallback to clksrc=%d\n",
__FUNCTION__, clksrc);
}
else
clksrc = 1; /* got successful PLL lock */
}
if (clksrc != 1) {
/* we get here if either no PLL detected in auto-mode or
an external clock source was explicitly specified */
clkctl = CLKCTL_EXTCLK | CLKCTL_CLKSTP;
if (clksrc == 3)
clkctl |= CLKCTL_XCKSEL;
pci_write_config_byte(pdev, VLSI_PCI_CLKCTL, clkctl);
/* no way to test for working XCLK */
}
else
pci_read_config_byte(pdev, VLSI_PCI_CLKCTL, &clkctl);
/* ok, now going to connect the chip with the clock source */
clkctl &= ~CLKCTL_CLKSTP;
pci_write_config_byte(pdev, VLSI_PCI_CLKCTL, clkctl);
return 0;
}
static void vlsi_stop_clock(struct pci_dev *pdev)
{
u8 clkctl;
/* disconnect chip from clock source */
pci_read_config_byte(pdev, VLSI_PCI_CLKCTL, &clkctl);
clkctl |= CLKCTL_CLKSTP;
pci_write_config_byte(pdev, VLSI_PCI_CLKCTL, clkctl);
/* disable all clock sources */
clkctl &= ~(CLKCTL_EXTCLK | CLKCTL_PD_INV);
pci_write_config_byte(pdev, VLSI_PCI_CLKCTL, clkctl);
}
/********************************************************/
/* writing all-zero to the VLSI PCI IO register area seems to prevent
* some occasional situations where the hardware fails (symptoms are
* what appears as stalled tx/rx state machines, i.e. everything ok for
* receive or transmit but hw makes no progress or is unable to access
* the bus memory locations).
* Best place to call this is immediately after/before the internal clock
* gets started/stopped.
*/
static inline void vlsi_clear_regs(unsigned iobase)
{
unsigned i;
const unsigned chip_io_extent = 32;
for (i = 0; i < chip_io_extent; i += sizeof(u16))
outw(0, iobase + i);
}
static int vlsi_init_chip(struct pci_dev *pdev)
{
struct net_device *ndev = pci_get_drvdata(pdev);
vlsi_irda_dev_t *idev = ndev->priv;
unsigned iobase;
u16 ptr;
/* start the clock and clean the registers */
if (vlsi_start_clock(pdev)) {
IRDA_ERROR("%s: no valid clock source\n", __FUNCTION__);
return -1;
}
iobase = ndev->base_addr;
vlsi_clear_regs(iobase);
outb(IRINTR_INT_MASK, iobase+VLSI_PIO_IRINTR); /* w/c pending IRQ, disable all INT */
outw(0, iobase+VLSI_PIO_IRENABLE); /* disable IrPHY-interface */
/* disable everything, particularly IRCFG_MSTR - (also resetting the RING_PTR) */
outw(0, iobase+VLSI_PIO_IRCFG);
wmb();
outw(MAX_PACKET_LENGTH, iobase+VLSI_PIO_MAXPKT); /* max possible value=0x0fff */
outw(BUS_TO_RINGBASE(idev->busaddr), iobase+VLSI_PIO_RINGBASE);
outw(TX_RX_TO_RINGSIZE(idev->tx_ring->size, idev->rx_ring->size),
iobase+VLSI_PIO_RINGSIZE);
ptr = inw(iobase+VLSI_PIO_RINGPTR);
atomic_set(&idev->rx_ring->head, RINGPTR_GET_RX(ptr));
atomic_set(&idev->rx_ring->tail, RINGPTR_GET_RX(ptr));
atomic_set(&idev->tx_ring->head, RINGPTR_GET_TX(ptr));
atomic_set(&idev->tx_ring->tail, RINGPTR_GET_TX(ptr));
vlsi_set_baud(idev, iobase); /* idev->new_baud used as provided by caller */
outb(IRINTR_INT_MASK, iobase+VLSI_PIO_IRINTR); /* just in case - w/c pending IRQ's */
wmb();
/* DO NOT BLINDLY ENABLE IRINTR_ACTEN!
* basically every received pulse fires an ACTIVITY-INT
* leading to >>1000 INT's per second instead of few 10
*/
outb(IRINTR_RPKTEN|IRINTR_TPKTEN, iobase+VLSI_PIO_IRINTR);
return 0;
}
static int vlsi_start_hw(vlsi_irda_dev_t *idev)
{
struct pci_dev *pdev = idev->pdev;
struct net_device *ndev = pci_get_drvdata(pdev);
unsigned iobase = ndev->base_addr;
u8 byte;
/* we don't use the legacy UART, disable its address decoding */
pci_read_config_byte(pdev, VLSI_PCI_IRMISC, &byte);
byte &= ~(IRMISC_UARTEN | IRMISC_UARTTST);
pci_write_config_byte(pdev, VLSI_PCI_IRMISC, byte);
/* enable PCI busmaster access to our 16MB page */
pci_write_config_byte(pdev, VLSI_PCI_MSTRPAGE, MSTRPAGE_VALUE);
pci_set_master(pdev);
if (vlsi_init_chip(pdev) < 0) {
pci_disable_device(pdev);
return -1;
}
vlsi_fill_rx(idev->rx_ring);
do_gettimeofday(&idev->last_rx); /* first mtt may start from now on */
outw(0, iobase+VLSI_PIO_PROMPT); /* kick hw state machine */
return 0;
}
static int vlsi_stop_hw(vlsi_irda_dev_t *idev)
{
struct pci_dev *pdev = idev->pdev;
struct net_device *ndev = pci_get_drvdata(pdev);
unsigned iobase = ndev->base_addr;
unsigned long flags;
spin_lock_irqsave(&idev->lock,flags);
outw(0, iobase+VLSI_PIO_IRENABLE);
outw(0, iobase+VLSI_PIO_IRCFG); /* disable everything */
/* disable and w/c irqs */
outb(0, iobase+VLSI_PIO_IRINTR);
wmb();
outb(IRINTR_INT_MASK, iobase+VLSI_PIO_IRINTR);
spin_unlock_irqrestore(&idev->lock,flags);
vlsi_unarm_tx(idev);
vlsi_unarm_rx(idev);
vlsi_clear_regs(iobase);
vlsi_stop_clock(pdev);
pci_disable_device(pdev);
return 0;
}
/**************************************************************/
static struct net_device_stats * vlsi_get_stats(struct net_device *ndev)
{
vlsi_irda_dev_t *idev = ndev->priv;
return &idev->stats;
}
static void vlsi_tx_timeout(struct net_device *ndev)
{
vlsi_irda_dev_t *idev = ndev->priv;
vlsi_reg_debug(ndev->base_addr, __FUNCTION__);
vlsi_ring_debug(idev->tx_ring);
if (netif_running(ndev))
netif_stop_queue(ndev);
vlsi_stop_hw(idev);
/* now simply restart the whole thing */
if (!idev->new_baud)
idev->new_baud = idev->baud; /* keep current baudrate */
if (vlsi_start_hw(idev))
IRDA_ERROR("%s: failed to restart hw - %s(%s) unusable!\n",
__FUNCTION__, pci_name(idev->pdev), ndev->name);
else
netif_start_queue(ndev);
}
static int vlsi_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
{
vlsi_irda_dev_t *idev = ndev->priv;
struct if_irda_req *irq = (struct if_irda_req *) rq;
unsigned long flags;
u16 fifocnt;
int ret = 0;
switch (cmd) {
case SIOCSBANDWIDTH:
if (!capable(CAP_NET_ADMIN)) {
ret = -EPERM;
break;
}
spin_lock_irqsave(&idev->lock, flags);
idev->new_baud = irq->ifr_baudrate;
/* when called from userland there might be a minor race window here
* if the stack tries to change speed concurrently - which would be
* pretty strange anyway with the userland having full control...
*/
vlsi_set_baud(idev, ndev->base_addr);
spin_unlock_irqrestore(&idev->lock, flags);
break;
case SIOCSMEDIABUSY:
if (!capable(CAP_NET_ADMIN)) {
ret = -EPERM;
break;
}
irda_device_set_media_busy(ndev, TRUE);
break;
case SIOCGRECEIVING:
/* the best we can do: check whether there are any bytes in rx fifo.
* The trustable window (in case some data arrives just afterwards)
* may be as short as 1usec or so at 4Mbps.
*/
fifocnt = inw(ndev->base_addr+VLSI_PIO_RCVBCNT) & RCVBCNT_MASK;
irq->ifr_receiving = (fifocnt!=0) ? 1 : 0;
break;
default:
IRDA_WARNING("%s: notsupp - cmd=%04x\n",
__FUNCTION__, cmd);
ret = -EOPNOTSUPP;
}
return ret;
}
/********************************************************/
static irqreturn_t vlsi_interrupt(int irq, void *dev_instance)
{
struct net_device *ndev = dev_instance;
vlsi_irda_dev_t *idev = ndev->priv;
unsigned iobase;
u8 irintr;
int boguscount = 5;
unsigned long flags;
int handled = 0;
iobase = ndev->base_addr;
spin_lock_irqsave(&idev->lock,flags);
do {
irintr = inb(iobase+VLSI_PIO_IRINTR);
mb();
outb(irintr, iobase+VLSI_PIO_IRINTR); /* acknowledge asap */
if (!(irintr&=IRINTR_INT_MASK)) /* not our INT - probably shared */
break;
handled = 1;
if (unlikely(!(irintr & ~IRINTR_ACTIVITY)))
break; /* nothing todo if only activity */
if (irintr&IRINTR_RPKTINT)
vlsi_rx_interrupt(ndev);
if (irintr&IRINTR_TPKTINT)
vlsi_tx_interrupt(ndev);
} while (--boguscount > 0);
spin_unlock_irqrestore(&idev->lock,flags);
if (boguscount <= 0)
IRDA_MESSAGE("%s: too much work in interrupt!\n",
__FUNCTION__);
return IRQ_RETVAL(handled);
}
/********************************************************/
static int vlsi_open(struct net_device *ndev)
{
vlsi_irda_dev_t *idev = ndev->priv;
int err = -EAGAIN;
char hwname[32];
if (pci_request_regions(idev->pdev, drivername)) {
IRDA_WARNING("%s: io resource busy\n", __FUNCTION__);
goto errout;
}
ndev->base_addr = pci_resource_start(idev->pdev,0);
ndev->irq = idev->pdev->irq;
/* under some rare occasions the chip apparently comes up with
* IRQ's pending. We better w/c pending IRQ and disable them all
*/
outb(IRINTR_INT_MASK, ndev->base_addr+VLSI_PIO_IRINTR);
if (request_irq(ndev->irq, vlsi_interrupt, IRQF_SHARED,
drivername, ndev)) {
IRDA_WARNING("%s: couldn't get IRQ: %d\n",
__FUNCTION__, ndev->irq);
goto errout_io;
}
if ((err = vlsi_create_hwif(idev)) != 0)
goto errout_irq;
sprintf(hwname, "VLSI-FIR @ 0x%04x", (unsigned)ndev->base_addr);
idev->irlap = irlap_open(ndev,&idev->qos,hwname);
if (!idev->irlap)
goto errout_free_ring;
do_gettimeofday(&idev->last_rx); /* first mtt may start from now on */
idev->new_baud = 9600; /* start with IrPHY using 9600(SIR) mode */
if ((err = vlsi_start_hw(idev)) != 0)
goto errout_close_irlap;
netif_start_queue(ndev);
IRDA_MESSAGE("%s: device %s operational\n", __FUNCTION__, ndev->name);
return 0;
errout_close_irlap:
irlap_close(idev->irlap);
errout_free_ring:
vlsi_destroy_hwif(idev);
errout_irq:
free_irq(ndev->irq,ndev);
errout_io:
pci_release_regions(idev->pdev);
errout:
return err;
}
static int vlsi_close(struct net_device *ndev)
{
vlsi_irda_dev_t *idev = ndev->priv;
netif_stop_queue(ndev);
if (idev->irlap)
irlap_close(idev->irlap);
idev->irlap = NULL;
vlsi_stop_hw(idev);
vlsi_destroy_hwif(idev);
free_irq(ndev->irq,ndev);
pci_release_regions(idev->pdev);
IRDA_MESSAGE("%s: device %s stopped\n", __FUNCTION__, ndev->name);
return 0;
}
static int vlsi_irda_init(struct net_device *ndev)
{
vlsi_irda_dev_t *idev = ndev->priv;
struct pci_dev *pdev = idev->pdev;
SET_MODULE_OWNER(ndev);
ndev->irq = pdev->irq;
ndev->base_addr = pci_resource_start(pdev,0);
/* PCI busmastering
* see include file for details why we need these 2 masks, in this order!
*/
if (pci_set_dma_mask(pdev,DMA_MASK_USED_BY_HW)
|| pci_set_dma_mask(pdev,DMA_MASK_MSTRPAGE)) {
IRDA_ERROR("%s: aborting due to PCI BM-DMA address limitations\n", __FUNCTION__);
return -1;
}
irda_init_max_qos_capabilies(&idev->qos);
/* the VLSI82C147 does not support 576000! */
idev->qos.baud_rate.bits = IR_2400 | IR_9600
| IR_19200 | IR_38400 | IR_57600 | IR_115200
| IR_1152000 | (IR_4000000 << 8);
idev->qos.min_turn_time.bits = qos_mtt_bits;
irda_qos_bits_to_value(&idev->qos);
/* currently no public media definitions for IrDA */
ndev->flags |= IFF_PORTSEL | IFF_AUTOMEDIA;
ndev->if_port = IF_PORT_UNKNOWN;
ndev->open = vlsi_open;
ndev->stop = vlsi_close;
ndev->get_stats = vlsi_get_stats;
ndev->hard_start_xmit = vlsi_hard_start_xmit;
ndev->do_ioctl = vlsi_ioctl;
ndev->tx_timeout = vlsi_tx_timeout;
ndev->watchdog_timeo = 500*HZ/1000; /* max. allowed turn time for IrLAP */
SET_NETDEV_DEV(ndev, &pdev->dev);
return 0;
}
/**************************************************************/
static int __devinit
vlsi_irda_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
struct net_device *ndev;
vlsi_irda_dev_t *idev;
if (pci_enable_device(pdev))
goto out;
else
pdev->current_state = 0; /* hw must be running now */
IRDA_MESSAGE("%s: IrDA PCI controller %s detected\n",
drivername, pci_name(pdev));
if ( !pci_resource_start(pdev,0)
|| !(pci_resource_flags(pdev,0) & IORESOURCE_IO) ) {
IRDA_ERROR("%s: bar 0 invalid", __FUNCTION__);
goto out_disable;
}
ndev = alloc_irdadev(sizeof(*idev));
if (ndev==NULL) {
IRDA_ERROR("%s: Unable to allocate device memory.\n",
__FUNCTION__);
goto out_disable;
}
idev = ndev->priv;
spin_lock_init(&idev->lock);
init_MUTEX(&idev->sem);
down(&idev->sem);
idev->pdev = pdev;
if (vlsi_irda_init(ndev) < 0)
goto out_freedev;
if (register_netdev(ndev) < 0) {
IRDA_ERROR("%s: register_netdev failed\n", __FUNCTION__);
goto out_freedev;
}
if (vlsi_proc_root != NULL) {
struct proc_dir_entry *ent;
ent = create_proc_entry(ndev->name, S_IFREG|S_IRUGO, vlsi_proc_root);
if (!ent) {
IRDA_WARNING("%s: failed to create proc entry\n",
__FUNCTION__);
} else {
ent->data = ndev;
ent->proc_fops = VLSI_PROC_FOPS;
ent->size = 0;
}
idev->proc_entry = ent;
}
IRDA_MESSAGE("%s: registered device %s\n", drivername, ndev->name);
pci_set_drvdata(pdev, ndev);
up(&idev->sem);
return 0;
out_freedev:
up(&idev->sem);
free_netdev(ndev);
out_disable:
pci_disable_device(pdev);
out:
pci_set_drvdata(pdev, NULL);
return -ENODEV;
}
static void __devexit vlsi_irda_remove(struct pci_dev *pdev)
{
struct net_device *ndev = pci_get_drvdata(pdev);
vlsi_irda_dev_t *idev;
if (!ndev) {
IRDA_ERROR("%s: lost netdevice?\n", drivername);
return;
}
unregister_netdev(ndev);
idev = ndev->priv;
down(&idev->sem);
if (idev->proc_entry) {
remove_proc_entry(ndev->name, vlsi_proc_root);
idev->proc_entry = NULL;
}
up(&idev->sem);
free_netdev(ndev);
pci_set_drvdata(pdev, NULL);
IRDA_MESSAGE("%s: %s removed\n", drivername, pci_name(pdev));
}
#ifdef CONFIG_PM
/* The Controller doesn't provide PCI PM capabilities as defined by PCI specs.
* Some of the Linux PCI-PM code however depends on this, for example in
* pci_set_power_state(). So we have to take care to perform the required
* operations on our own (particularly reflecting the pdev->current_state)
* otherwise we might get cheated by pci-pm.
*/
static int vlsi_irda_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct net_device *ndev = pci_get_drvdata(pdev);
vlsi_irda_dev_t *idev;
if (!ndev) {
IRDA_ERROR("%s - %s: no netdevice \n",
__FUNCTION__, pci_name(pdev));
return 0;
}
idev = ndev->priv;
down(&idev->sem);
if (pdev->current_state != 0) { /* already suspended */
if (state.event > pdev->current_state) { /* simply go deeper */
pci_set_power_state(pdev, pci_choose_state(pdev, state));
pdev->current_state = state.event;
}
else
IRDA_ERROR("%s - %s: invalid suspend request %u -> %u\n", __FUNCTION__, pci_name(pdev), pdev->current_state, state.event);
up(&idev->sem);
return 0;
}
if (netif_running(ndev)) {
netif_device_detach(ndev);
vlsi_stop_hw(idev);
pci_save_state(pdev);
if (!idev->new_baud)
/* remember speed settings to restore on resume */
idev->new_baud = idev->baud;
}
pci_set_power_state(pdev, pci_choose_state(pdev, state));
pdev->current_state = state.event;
idev->resume_ok = 1;
up(&idev->sem);
return 0;
}
static int vlsi_irda_resume(struct pci_dev *pdev)
{
struct net_device *ndev = pci_get_drvdata(pdev);
vlsi_irda_dev_t *idev;
if (!ndev) {
IRDA_ERROR("%s - %s: no netdevice \n",
__FUNCTION__, pci_name(pdev));
return 0;
}
idev = ndev->priv;
down(&idev->sem);
if (pdev->current_state == 0) {
up(&idev->sem);
IRDA_WARNING("%s - %s: already resumed\n",
__FUNCTION__, pci_name(pdev));
return 0;
}
pci_set_power_state(pdev, PCI_D0);
pdev->current_state = PM_EVENT_ON;
if (!idev->resume_ok) {
/* should be obsolete now - but used to happen due to:
* - pci layer initially setting pdev->current_state = 4 (unknown)
* - pci layer did not walk the save_state-tree (might be APM problem)
* so we could not refuse to suspend from undefined state
* - vlsi_irda_suspend detected invalid state and refused to save
* configuration for resume - but was too late to stop suspending
* - vlsi_irda_resume got screwed when trying to resume from garbage
*
* now we explicitly set pdev->current_state = 0 after enabling the
* device and independently resume_ok should catch any garbage config.
*/
IRDA_WARNING("%s - hm, nothing to resume?\n", __FUNCTION__);
up(&idev->sem);
return 0;
}
if (netif_running(ndev)) {
pci_restore_state(pdev);
vlsi_start_hw(idev);
netif_device_attach(ndev);
}
idev->resume_ok = 0;
up(&idev->sem);
return 0;
}
#endif /* CONFIG_PM */
/*********************************************************/
static struct pci_driver vlsi_irda_driver = {
.name = drivername,
.id_table = vlsi_irda_table,
.probe = vlsi_irda_probe,
.remove = __devexit_p(vlsi_irda_remove),
#ifdef CONFIG_PM
.suspend = vlsi_irda_suspend,
.resume = vlsi_irda_resume,
#endif
};
#define PROC_DIR ("driver/" DRIVER_NAME)
static int __init vlsi_mod_init(void)
{
int i, ret;
if (clksrc < 0 || clksrc > 3) {
IRDA_ERROR("%s: invalid clksrc=%d\n", drivername, clksrc);
return -1;
}
for (i = 0; i < 2; i++) {
switch(ringsize[i]) {
case 4:
case 8:
case 16:
case 32:
case 64:
break;
default:
IRDA_WARNING("%s: invalid %s ringsize %d, using default=8", drivername, (i)?"rx":"tx", ringsize[i]);
ringsize[i] = 8;
break;
}
}
sirpulse = !!sirpulse;
/* proc_mkdir returns NULL if !CONFIG_PROC_FS.
* Failure to create the procfs entry is handled like running
* without procfs - it's not required for the driver to work.
*/
vlsi_proc_root = proc_mkdir(PROC_DIR, NULL);
if (vlsi_proc_root) {
/* protect registered procdir against module removal.
* Because we are in the module init path there's no race
* window after create_proc_entry (and no barrier needed).
*/
vlsi_proc_root->owner = THIS_MODULE;
}
ret = pci_register_driver(&vlsi_irda_driver);
if (ret && vlsi_proc_root)
remove_proc_entry(PROC_DIR, NULL);
return ret;
}
static void __exit vlsi_mod_exit(void)
{
pci_unregister_driver(&vlsi_irda_driver);
if (vlsi_proc_root)
remove_proc_entry(PROC_DIR, NULL);
}
module_init(vlsi_mod_init);
module_exit(vlsi_mod_exit);