linux-hardened/include/linux/sunrpc/sched.h
Chuck Lever dead28da8e SUNRPC: eliminate rpc_call()
Clean-up: replace rpc_call() helper with direct call to rpc_call_sync.

This makes NFSv2 and NFSv3 synchronous calls more computationally
efficient, and reduces stack consumption in functions that used to
invoke rpc_call more than once.

Test plan:
Compile kernel with CONFIG_NFS enabled.  Connectathon on NFS version 2,
version 3, and version 4 mount points.

Signed-off-by: Chuck Lever <cel@netapp.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-03-20 13:44:23 -05:00

305 lines
9.5 KiB
C

/*
* linux/include/linux/sunrpc/sched.h
*
* Scheduling primitives for kernel Sun RPC.
*
* Copyright (C) 1996, Olaf Kirch <okir@monad.swb.de>
*/
#ifndef _LINUX_SUNRPC_SCHED_H_
#define _LINUX_SUNRPC_SCHED_H_
#include <linux/timer.h>
#include <linux/sunrpc/types.h>
#include <linux/spinlock.h>
#include <linux/wait.h>
#include <linux/workqueue.h>
#include <linux/sunrpc/xdr.h>
/*
* This is the actual RPC procedure call info.
*/
struct rpc_procinfo;
struct rpc_message {
struct rpc_procinfo * rpc_proc; /* Procedure information */
void * rpc_argp; /* Arguments */
void * rpc_resp; /* Result */
struct rpc_cred * rpc_cred; /* Credentials */
};
struct rpc_call_ops;
struct rpc_wait_queue;
struct rpc_wait {
struct list_head list; /* wait queue links */
struct list_head links; /* Links to related tasks */
struct rpc_wait_queue * rpc_waitq; /* RPC wait queue we're on */
};
/*
* This is the RPC task struct
*/
struct rpc_task {
#ifdef RPC_DEBUG
unsigned long tk_magic; /* 0xf00baa */
#endif
atomic_t tk_count; /* Reference count */
struct list_head tk_task; /* global list of tasks */
struct rpc_clnt * tk_client; /* RPC client */
struct rpc_rqst * tk_rqstp; /* RPC request */
int tk_status; /* result of last operation */
/*
* RPC call state
*/
struct rpc_message tk_msg; /* RPC call info */
__u8 tk_garb_retry;
__u8 tk_cred_retry;
unsigned long tk_cookie; /* Cookie for batching tasks */
/*
* timeout_fn to be executed by timer bottom half
* callback to be executed after waking up
* action next procedure for async tasks
* tk_ops caller callbacks
*/
void (*tk_timeout_fn)(struct rpc_task *);
void (*tk_callback)(struct rpc_task *);
void (*tk_action)(struct rpc_task *);
const struct rpc_call_ops *tk_ops;
void * tk_calldata;
/*
* tk_timer is used for async processing by the RPC scheduling
* primitives. You should not access this directly unless
* you have a pathological interest in kernel oopses.
*/
struct timer_list tk_timer; /* kernel timer */
unsigned long tk_timeout; /* timeout for rpc_sleep() */
unsigned short tk_flags; /* misc flags */
unsigned char tk_priority : 2;/* Task priority */
unsigned long tk_runstate; /* Task run status */
struct workqueue_struct *tk_workqueue; /* Normally rpciod, but could
* be any workqueue
*/
union {
struct work_struct tk_work; /* Async task work queue */
struct rpc_wait tk_wait; /* RPC wait */
} u;
unsigned short tk_timeouts; /* maj timeouts */
size_t tk_bytes_sent; /* total bytes sent */
unsigned long tk_start; /* RPC task init timestamp */
long tk_rtt; /* round-trip time (jiffies) */
#ifdef RPC_DEBUG
unsigned short tk_pid; /* debugging aid */
#endif
};
#define tk_auth tk_client->cl_auth
#define tk_xprt tk_client->cl_xprt
/* support walking a list of tasks on a wait queue */
#define task_for_each(task, pos, head) \
list_for_each(pos, head) \
if ((task=list_entry(pos, struct rpc_task, u.tk_wait.list)),1)
#define task_for_first(task, head) \
if (!list_empty(head) && \
((task=list_entry((head)->next, struct rpc_task, u.tk_wait.list)),1))
/* .. and walking list of all tasks */
#define alltask_for_each(task, pos, head) \
list_for_each(pos, head) \
if ((task=list_entry(pos, struct rpc_task, tk_task)),1)
typedef void (*rpc_action)(struct rpc_task *);
struct rpc_call_ops {
void (*rpc_call_prepare)(struct rpc_task *, void *);
void (*rpc_call_done)(struct rpc_task *, void *);
void (*rpc_release)(void *);
};
/*
* RPC task flags
*/
#define RPC_TASK_ASYNC 0x0001 /* is an async task */
#define RPC_TASK_SWAPPER 0x0002 /* is swapping in/out */
#define RPC_TASK_CHILD 0x0008 /* is child of other task */
#define RPC_CALL_MAJORSEEN 0x0020 /* major timeout seen */
#define RPC_TASK_ROOTCREDS 0x0040 /* force root creds */
#define RPC_TASK_DYNAMIC 0x0080 /* task was kmalloc'ed */
#define RPC_TASK_KILLED 0x0100 /* task was killed */
#define RPC_TASK_SOFT 0x0200 /* Use soft timeouts */
#define RPC_TASK_NOINTR 0x0400 /* uninterruptible task */
#define RPC_IS_ASYNC(t) ((t)->tk_flags & RPC_TASK_ASYNC)
#define RPC_IS_CHILD(t) ((t)->tk_flags & RPC_TASK_CHILD)
#define RPC_IS_SWAPPER(t) ((t)->tk_flags & RPC_TASK_SWAPPER)
#define RPC_DO_ROOTOVERRIDE(t) ((t)->tk_flags & RPC_TASK_ROOTCREDS)
#define RPC_ASSASSINATED(t) ((t)->tk_flags & RPC_TASK_KILLED)
#define RPC_DO_CALLBACK(t) ((t)->tk_callback != NULL)
#define RPC_IS_SOFT(t) ((t)->tk_flags & RPC_TASK_SOFT)
#define RPC_TASK_UNINTERRUPTIBLE(t) ((t)->tk_flags & RPC_TASK_NOINTR)
#define RPC_TASK_RUNNING 0
#define RPC_TASK_QUEUED 1
#define RPC_TASK_WAKEUP 2
#define RPC_TASK_HAS_TIMER 3
#define RPC_TASK_ACTIVE 4
#define RPC_IS_RUNNING(t) (test_bit(RPC_TASK_RUNNING, &(t)->tk_runstate))
#define rpc_set_running(t) (set_bit(RPC_TASK_RUNNING, &(t)->tk_runstate))
#define rpc_test_and_set_running(t) \
(test_and_set_bit(RPC_TASK_RUNNING, &(t)->tk_runstate))
#define rpc_clear_running(t) \
do { \
smp_mb__before_clear_bit(); \
clear_bit(RPC_TASK_RUNNING, &(t)->tk_runstate); \
smp_mb__after_clear_bit(); \
} while (0)
#define RPC_IS_QUEUED(t) (test_bit(RPC_TASK_QUEUED, &(t)->tk_runstate))
#define rpc_set_queued(t) (set_bit(RPC_TASK_QUEUED, &(t)->tk_runstate))
#define rpc_clear_queued(t) \
do { \
smp_mb__before_clear_bit(); \
clear_bit(RPC_TASK_QUEUED, &(t)->tk_runstate); \
smp_mb__after_clear_bit(); \
} while (0)
#define rpc_start_wakeup(t) \
(test_and_set_bit(RPC_TASK_WAKEUP, &(t)->tk_runstate) == 0)
#define rpc_finish_wakeup(t) \
do { \
smp_mb__before_clear_bit(); \
clear_bit(RPC_TASK_WAKEUP, &(t)->tk_runstate); \
smp_mb__after_clear_bit(); \
} while (0)
#define RPC_IS_ACTIVATED(t) (test_bit(RPC_TASK_ACTIVE, &(t)->tk_runstate))
#define rpc_set_active(t) (set_bit(RPC_TASK_ACTIVE, &(t)->tk_runstate))
#define rpc_clear_active(t) \
do { \
smp_mb__before_clear_bit(); \
clear_bit(RPC_TASK_ACTIVE, &(t)->tk_runstate); \
smp_mb__after_clear_bit(); \
} while(0)
/*
* Task priorities.
* Note: if you change these, you must also change
* the task initialization definitions below.
*/
#define RPC_PRIORITY_LOW 0
#define RPC_PRIORITY_NORMAL 1
#define RPC_PRIORITY_HIGH 2
#define RPC_NR_PRIORITY (RPC_PRIORITY_HIGH+1)
/*
* RPC synchronization objects
*/
struct rpc_wait_queue {
spinlock_t lock;
struct list_head tasks[RPC_NR_PRIORITY]; /* task queue for each priority level */
unsigned long cookie; /* cookie of last task serviced */
unsigned char maxpriority; /* maximum priority (0 if queue is not a priority queue) */
unsigned char priority; /* current priority */
unsigned char count; /* # task groups remaining serviced so far */
unsigned char nr; /* # tasks remaining for cookie */
unsigned short qlen; /* total # tasks waiting in queue */
#ifdef RPC_DEBUG
const char * name;
#endif
};
/*
* This is the # requests to send consecutively
* from a single cookie. The aim is to improve
* performance of NFS operations such as read/write.
*/
#define RPC_BATCH_COUNT 16
#ifndef RPC_DEBUG
# define RPC_WAITQ_INIT(var,qname) { \
.lock = SPIN_LOCK_UNLOCKED, \
.tasks = { \
[0] = LIST_HEAD_INIT(var.tasks[0]), \
[1] = LIST_HEAD_INIT(var.tasks[1]), \
[2] = LIST_HEAD_INIT(var.tasks[2]), \
}, \
}
#else
# define RPC_WAITQ_INIT(var,qname) { \
.lock = SPIN_LOCK_UNLOCKED, \
.tasks = { \
[0] = LIST_HEAD_INIT(var.tasks[0]), \
[1] = LIST_HEAD_INIT(var.tasks[1]), \
[2] = LIST_HEAD_INIT(var.tasks[2]), \
}, \
.name = qname, \
}
#endif
# define RPC_WAITQ(var,qname) struct rpc_wait_queue var = RPC_WAITQ_INIT(var,qname)
#define RPC_IS_PRIORITY(q) ((q)->maxpriority > 0)
/*
* Function prototypes
*/
struct rpc_task *rpc_new_task(struct rpc_clnt *, int flags,
const struct rpc_call_ops *ops, void *data);
struct rpc_task *rpc_run_task(struct rpc_clnt *clnt, int flags,
const struct rpc_call_ops *ops, void *data);
struct rpc_task *rpc_new_child(struct rpc_clnt *, struct rpc_task *parent);
void rpc_init_task(struct rpc_task *task, struct rpc_clnt *clnt,
int flags, const struct rpc_call_ops *ops,
void *data);
void rpc_release_task(struct rpc_task *);
void rpc_exit_task(struct rpc_task *);
void rpc_killall_tasks(struct rpc_clnt *);
int rpc_execute(struct rpc_task *);
void rpc_run_child(struct rpc_task *parent, struct rpc_task *child,
rpc_action action);
void rpc_init_priority_wait_queue(struct rpc_wait_queue *, const char *);
void rpc_init_wait_queue(struct rpc_wait_queue *, const char *);
void rpc_sleep_on(struct rpc_wait_queue *, struct rpc_task *,
rpc_action action, rpc_action timer);
void rpc_wake_up_task(struct rpc_task *);
void rpc_wake_up(struct rpc_wait_queue *);
struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *);
void rpc_wake_up_status(struct rpc_wait_queue *, int);
void rpc_delay(struct rpc_task *, unsigned long);
void * rpc_malloc(struct rpc_task *, size_t);
void rpc_free(struct rpc_task *);
int rpciod_up(void);
void rpciod_down(void);
int __rpc_wait_for_completion_task(struct rpc_task *task, int (*)(void *));
#ifdef RPC_DEBUG
void rpc_show_tasks(void);
#endif
int rpc_init_mempool(void);
void rpc_destroy_mempool(void);
extern struct workqueue_struct *rpciod_workqueue;
static inline void rpc_exit(struct rpc_task *task, int status)
{
task->tk_status = status;
task->tk_action = rpc_exit_task;
}
static inline int rpc_wait_for_completion_task(struct rpc_task *task)
{
return __rpc_wait_for_completion_task(task, NULL);
}
#ifdef RPC_DEBUG
static inline const char * rpc_qname(struct rpc_wait_queue *q)
{
return ((q && q->name) ? q->name : "unknown");
}
#endif
#endif /* _LINUX_SUNRPC_SCHED_H_ */