linux-hardened/drivers/usb/chipidea/udc.c
Alexander Shishkin e443b33362 usb: chipidea: split the driver code into units
Split the driver into the following parts:
  * core  -- resources, register access, capabilities, etc;
  * udc   -- device controller functionality;
  * debug -- logging events.

Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-05-11 16:49:51 -07:00

1837 lines
44 KiB
C

/*
* udc.h - ChipIdea UDC driver
*
* Copyright (C) 2008 Chipidea - MIPS Technologies, Inc. All rights reserved.
*
* Author: David Lopo
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dmapool.h>
#include <linux/dma-mapping.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/pm_runtime.h>
#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
#include <linux/usb/otg.h>
#include <linux/usb/chipidea.h>
#include "ci.h"
#include "udc.h"
#include "bits.h"
#include "debug.h"
/* control endpoint description */
static const struct usb_endpoint_descriptor
ctrl_endpt_out_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_OUT,
.bmAttributes = USB_ENDPOINT_XFER_CONTROL,
.wMaxPacketSize = cpu_to_le16(CTRL_PAYLOAD_MAX),
};
static const struct usb_endpoint_descriptor
ctrl_endpt_in_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_IN,
.bmAttributes = USB_ENDPOINT_XFER_CONTROL,
.wMaxPacketSize = cpu_to_le16(CTRL_PAYLOAD_MAX),
};
/**
* hw_ep_bit: calculates the bit number
* @num: endpoint number
* @dir: endpoint direction
*
* This function returns bit number
*/
static inline int hw_ep_bit(int num, int dir)
{
return num + (dir ? 16 : 0);
}
static inline int ep_to_bit(struct ci13xxx *udc, int n)
{
int fill = 16 - udc->hw_ep_max / 2;
if (n >= udc->hw_ep_max / 2)
n += fill;
return n;
}
/**
* hw_device_state: enables/disables interrupts & starts/stops device (execute
* without interruption)
* @dma: 0 => disable, !0 => enable and set dma engine
*
* This function returns an error code
*/
static int hw_device_state(struct ci13xxx *udc, u32 dma)
{
if (dma) {
hw_write(udc, OP_ENDPTLISTADDR, ~0, dma);
/* interrupt, error, port change, reset, sleep/suspend */
hw_write(udc, OP_USBINTR, ~0,
USBi_UI|USBi_UEI|USBi_PCI|USBi_URI|USBi_SLI);
hw_write(udc, OP_USBCMD, USBCMD_RS, USBCMD_RS);
} else {
hw_write(udc, OP_USBCMD, USBCMD_RS, 0);
hw_write(udc, OP_USBINTR, ~0, 0);
}
return 0;
}
/**
* hw_ep_flush: flush endpoint fifo (execute without interruption)
* @num: endpoint number
* @dir: endpoint direction
*
* This function returns an error code
*/
static int hw_ep_flush(struct ci13xxx *udc, int num, int dir)
{
int n = hw_ep_bit(num, dir);
do {
/* flush any pending transfer */
hw_write(udc, OP_ENDPTFLUSH, BIT(n), BIT(n));
while (hw_read(udc, OP_ENDPTFLUSH, BIT(n)))
cpu_relax();
} while (hw_read(udc, OP_ENDPTSTAT, BIT(n)));
return 0;
}
/**
* hw_ep_disable: disables endpoint (execute without interruption)
* @num: endpoint number
* @dir: endpoint direction
*
* This function returns an error code
*/
static int hw_ep_disable(struct ci13xxx *udc, int num, int dir)
{
hw_ep_flush(udc, num, dir);
hw_write(udc, OP_ENDPTCTRL + num,
dir ? ENDPTCTRL_TXE : ENDPTCTRL_RXE, 0);
return 0;
}
/**
* hw_ep_enable: enables endpoint (execute without interruption)
* @num: endpoint number
* @dir: endpoint direction
* @type: endpoint type
*
* This function returns an error code
*/
static int hw_ep_enable(struct ci13xxx *udc, int num, int dir, int type)
{
u32 mask, data;
if (dir) {
mask = ENDPTCTRL_TXT; /* type */
data = type << ffs_nr(mask);
mask |= ENDPTCTRL_TXS; /* unstall */
mask |= ENDPTCTRL_TXR; /* reset data toggle */
data |= ENDPTCTRL_TXR;
mask |= ENDPTCTRL_TXE; /* enable */
data |= ENDPTCTRL_TXE;
} else {
mask = ENDPTCTRL_RXT; /* type */
data = type << ffs_nr(mask);
mask |= ENDPTCTRL_RXS; /* unstall */
mask |= ENDPTCTRL_RXR; /* reset data toggle */
data |= ENDPTCTRL_RXR;
mask |= ENDPTCTRL_RXE; /* enable */
data |= ENDPTCTRL_RXE;
}
hw_write(udc, OP_ENDPTCTRL + num, mask, data);
return 0;
}
/**
* hw_ep_get_halt: return endpoint halt status
* @num: endpoint number
* @dir: endpoint direction
*
* This function returns 1 if endpoint halted
*/
static int hw_ep_get_halt(struct ci13xxx *udc, int num, int dir)
{
u32 mask = dir ? ENDPTCTRL_TXS : ENDPTCTRL_RXS;
return hw_read(udc, OP_ENDPTCTRL + num, mask) ? 1 : 0;
}
/**
* hw_test_and_clear_setup_status: test & clear setup status (execute without
* interruption)
* @n: endpoint number
*
* This function returns setup status
*/
static int hw_test_and_clear_setup_status(struct ci13xxx *udc, int n)
{
n = ep_to_bit(udc, n);
return hw_test_and_clear(udc, OP_ENDPTSETUPSTAT, BIT(n));
}
/**
* hw_ep_prime: primes endpoint (execute without interruption)
* @num: endpoint number
* @dir: endpoint direction
* @is_ctrl: true if control endpoint
*
* This function returns an error code
*/
static int hw_ep_prime(struct ci13xxx *udc, int num, int dir, int is_ctrl)
{
int n = hw_ep_bit(num, dir);
if (is_ctrl && dir == RX && hw_read(udc, OP_ENDPTSETUPSTAT, BIT(num)))
return -EAGAIN;
hw_write(udc, OP_ENDPTPRIME, BIT(n), BIT(n));
while (hw_read(udc, OP_ENDPTPRIME, BIT(n)))
cpu_relax();
if (is_ctrl && dir == RX && hw_read(udc, OP_ENDPTSETUPSTAT, BIT(num)))
return -EAGAIN;
/* status shoult be tested according with manual but it doesn't work */
return 0;
}
/**
* hw_ep_set_halt: configures ep halt & resets data toggle after clear (execute
* without interruption)
* @num: endpoint number
* @dir: endpoint direction
* @value: true => stall, false => unstall
*
* This function returns an error code
*/
static int hw_ep_set_halt(struct ci13xxx *udc, int num, int dir, int value)
{
if (value != 0 && value != 1)
return -EINVAL;
do {
enum ci13xxx_regs reg = OP_ENDPTCTRL + num;
u32 mask_xs = dir ? ENDPTCTRL_TXS : ENDPTCTRL_RXS;
u32 mask_xr = dir ? ENDPTCTRL_TXR : ENDPTCTRL_RXR;
/* data toggle - reserved for EP0 but it's in ESS */
hw_write(udc, reg, mask_xs|mask_xr,
value ? mask_xs : mask_xr);
} while (value != hw_ep_get_halt(udc, num, dir));
return 0;
}
/**
* hw_is_port_high_speed: test if port is high speed
*
* This function returns true if high speed port
*/
static int hw_port_is_high_speed(struct ci13xxx *udc)
{
return udc->hw_bank.lpm ? hw_read(udc, OP_DEVLC, DEVLC_PSPD) :
hw_read(udc, OP_PORTSC, PORTSC_HSP);
}
/**
* hw_read_intr_enable: returns interrupt enable register
*
* This function returns register data
*/
static u32 hw_read_intr_enable(struct ci13xxx *udc)
{
return hw_read(udc, OP_USBINTR, ~0);
}
/**
* hw_read_intr_status: returns interrupt status register
*
* This function returns register data
*/
static u32 hw_read_intr_status(struct ci13xxx *udc)
{
return hw_read(udc, OP_USBSTS, ~0);
}
/**
* hw_test_and_clear_complete: test & clear complete status (execute without
* interruption)
* @n: endpoint number
*
* This function returns complete status
*/
static int hw_test_and_clear_complete(struct ci13xxx *udc, int n)
{
n = ep_to_bit(udc, n);
return hw_test_and_clear(udc, OP_ENDPTCOMPLETE, BIT(n));
}
/**
* hw_test_and_clear_intr_active: test & clear active interrupts (execute
* without interruption)
*
* This function returns active interrutps
*/
static u32 hw_test_and_clear_intr_active(struct ci13xxx *udc)
{
u32 reg = hw_read_intr_status(udc) & hw_read_intr_enable(udc);
hw_write(udc, OP_USBSTS, ~0, reg);
return reg;
}
/**
* hw_test_and_clear_setup_guard: test & clear setup guard (execute without
* interruption)
*
* This function returns guard value
*/
static int hw_test_and_clear_setup_guard(struct ci13xxx *udc)
{
return hw_test_and_write(udc, OP_USBCMD, USBCMD_SUTW, 0);
}
/**
* hw_test_and_set_setup_guard: test & set setup guard (execute without
* interruption)
*
* This function returns guard value
*/
static int hw_test_and_set_setup_guard(struct ci13xxx *udc)
{
return hw_test_and_write(udc, OP_USBCMD, USBCMD_SUTW, USBCMD_SUTW);
}
/**
* hw_usb_set_address: configures USB address (execute without interruption)
* @value: new USB address
*
* This function explicitly sets the address, without the "USBADRA" (advance)
* feature, which is not supported by older versions of the controller.
*/
static void hw_usb_set_address(struct ci13xxx *udc, u8 value)
{
hw_write(udc, OP_DEVICEADDR, DEVICEADDR_USBADR,
value << ffs_nr(DEVICEADDR_USBADR));
}
/**
* hw_usb_reset: restart device after a bus reset (execute without
* interruption)
*
* This function returns an error code
*/
static int hw_usb_reset(struct ci13xxx *udc)
{
hw_usb_set_address(udc, 0);
/* ESS flushes only at end?!? */
hw_write(udc, OP_ENDPTFLUSH, ~0, ~0);
/* clear setup token semaphores */
hw_write(udc, OP_ENDPTSETUPSTAT, 0, 0);
/* clear complete status */
hw_write(udc, OP_ENDPTCOMPLETE, 0, 0);
/* wait until all bits cleared */
while (hw_read(udc, OP_ENDPTPRIME, ~0))
udelay(10); /* not RTOS friendly */
/* reset all endpoints ? */
/* reset internal status and wait for further instructions
no need to verify the port reset status (ESS does it) */
return 0;
}
/******************************************************************************
* UTIL block
*****************************************************************************/
/**
* _usb_addr: calculates endpoint address from direction & number
* @ep: endpoint
*/
static inline u8 _usb_addr(struct ci13xxx_ep *ep)
{
return ((ep->dir == TX) ? USB_ENDPOINT_DIR_MASK : 0) | ep->num;
}
/**
* _hardware_queue: configures a request at hardware level
* @gadget: gadget
* @mEp: endpoint
*
* This function returns an error code
*/
static int _hardware_enqueue(struct ci13xxx_ep *mEp, struct ci13xxx_req *mReq)
{
struct ci13xxx *udc = mEp->udc;
unsigned i;
int ret = 0;
unsigned length = mReq->req.length;
/* don't queue twice */
if (mReq->req.status == -EALREADY)
return -EALREADY;
mReq->req.status = -EALREADY;
if (length && mReq->req.dma == DMA_ADDR_INVALID) {
mReq->req.dma = \
dma_map_single(mEp->device, mReq->req.buf,
length, mEp->dir ? DMA_TO_DEVICE :
DMA_FROM_DEVICE);
if (mReq->req.dma == 0)
return -ENOMEM;
mReq->map = 1;
}
if (mReq->req.zero && length && (length % mEp->ep.maxpacket == 0)) {
mReq->zptr = dma_pool_alloc(mEp->td_pool, GFP_ATOMIC,
&mReq->zdma);
if (mReq->zptr == NULL) {
if (mReq->map) {
dma_unmap_single(mEp->device, mReq->req.dma,
length, mEp->dir ? DMA_TO_DEVICE :
DMA_FROM_DEVICE);
mReq->req.dma = DMA_ADDR_INVALID;
mReq->map = 0;
}
return -ENOMEM;
}
memset(mReq->zptr, 0, sizeof(*mReq->zptr));
mReq->zptr->next = TD_TERMINATE;
mReq->zptr->token = TD_STATUS_ACTIVE;
if (!mReq->req.no_interrupt)
mReq->zptr->token |= TD_IOC;
}
/*
* TD configuration
* TODO - handle requests which spawns into several TDs
*/
memset(mReq->ptr, 0, sizeof(*mReq->ptr));
mReq->ptr->token = length << ffs_nr(TD_TOTAL_BYTES);
mReq->ptr->token &= TD_TOTAL_BYTES;
mReq->ptr->token |= TD_STATUS_ACTIVE;
if (mReq->zptr) {
mReq->ptr->next = mReq->zdma;
} else {
mReq->ptr->next = TD_TERMINATE;
if (!mReq->req.no_interrupt)
mReq->ptr->token |= TD_IOC;
}
mReq->ptr->page[0] = mReq->req.dma;
for (i = 1; i < 5; i++)
mReq->ptr->page[i] =
(mReq->req.dma + i * CI13XXX_PAGE_SIZE) & ~TD_RESERVED_MASK;
if (!list_empty(&mEp->qh.queue)) {
struct ci13xxx_req *mReqPrev;
int n = hw_ep_bit(mEp->num, mEp->dir);
int tmp_stat;
mReqPrev = list_entry(mEp->qh.queue.prev,
struct ci13xxx_req, queue);
if (mReqPrev->zptr)
mReqPrev->zptr->next = mReq->dma & TD_ADDR_MASK;
else
mReqPrev->ptr->next = mReq->dma & TD_ADDR_MASK;
wmb();
if (hw_read(udc, OP_ENDPTPRIME, BIT(n)))
goto done;
do {
hw_write(udc, OP_USBCMD, USBCMD_ATDTW, USBCMD_ATDTW);
tmp_stat = hw_read(udc, OP_ENDPTSTAT, BIT(n));
} while (!hw_read(udc, OP_USBCMD, USBCMD_ATDTW));
hw_write(udc, OP_USBCMD, USBCMD_ATDTW, 0);
if (tmp_stat)
goto done;
}
/* QH configuration */
mEp->qh.ptr->td.next = mReq->dma; /* TERMINATE = 0 */
mEp->qh.ptr->td.token &= ~TD_STATUS; /* clear status */
mEp->qh.ptr->cap |= QH_ZLT;
wmb(); /* synchronize before ep prime */
ret = hw_ep_prime(udc, mEp->num, mEp->dir,
mEp->type == USB_ENDPOINT_XFER_CONTROL);
done:
return ret;
}
/**
* _hardware_dequeue: handles a request at hardware level
* @gadget: gadget
* @mEp: endpoint
*
* This function returns an error code
*/
static int _hardware_dequeue(struct ci13xxx_ep *mEp, struct ci13xxx_req *mReq)
{
if (mReq->req.status != -EALREADY)
return -EINVAL;
if ((TD_STATUS_ACTIVE & mReq->ptr->token) != 0)
return -EBUSY;
if (mReq->zptr) {
if ((TD_STATUS_ACTIVE & mReq->zptr->token) != 0)
return -EBUSY;
dma_pool_free(mEp->td_pool, mReq->zptr, mReq->zdma);
mReq->zptr = NULL;
}
mReq->req.status = 0;
if (mReq->map) {
dma_unmap_single(mEp->device, mReq->req.dma, mReq->req.length,
mEp->dir ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
mReq->req.dma = DMA_ADDR_INVALID;
mReq->map = 0;
}
mReq->req.status = mReq->ptr->token & TD_STATUS;
if ((TD_STATUS_HALTED & mReq->req.status) != 0)
mReq->req.status = -1;
else if ((TD_STATUS_DT_ERR & mReq->req.status) != 0)
mReq->req.status = -1;
else if ((TD_STATUS_TR_ERR & mReq->req.status) != 0)
mReq->req.status = -1;
mReq->req.actual = mReq->ptr->token & TD_TOTAL_BYTES;
mReq->req.actual >>= ffs_nr(TD_TOTAL_BYTES);
mReq->req.actual = mReq->req.length - mReq->req.actual;
mReq->req.actual = mReq->req.status ? 0 : mReq->req.actual;
return mReq->req.actual;
}
/**
* _ep_nuke: dequeues all endpoint requests
* @mEp: endpoint
*
* This function returns an error code
* Caller must hold lock
*/
static int _ep_nuke(struct ci13xxx_ep *mEp)
__releases(mEp->lock)
__acquires(mEp->lock)
{
if (mEp == NULL)
return -EINVAL;
hw_ep_flush(mEp->udc, mEp->num, mEp->dir);
while (!list_empty(&mEp->qh.queue)) {
/* pop oldest request */
struct ci13xxx_req *mReq = \
list_entry(mEp->qh.queue.next,
struct ci13xxx_req, queue);
list_del_init(&mReq->queue);
mReq->req.status = -ESHUTDOWN;
if (mReq->req.complete != NULL) {
spin_unlock(mEp->lock);
mReq->req.complete(&mEp->ep, &mReq->req);
spin_lock(mEp->lock);
}
}
return 0;
}
/**
* _gadget_stop_activity: stops all USB activity, flushes & disables all endpts
* @gadget: gadget
*
* This function returns an error code
*/
static int _gadget_stop_activity(struct usb_gadget *gadget)
{
struct usb_ep *ep;
struct ci13xxx *udc = container_of(gadget, struct ci13xxx, gadget);
unsigned long flags;
if (gadget == NULL)
return -EINVAL;
spin_lock_irqsave(&udc->lock, flags);
udc->gadget.speed = USB_SPEED_UNKNOWN;
udc->remote_wakeup = 0;
udc->suspended = 0;
spin_unlock_irqrestore(&udc->lock, flags);
/* flush all endpoints */
gadget_for_each_ep(ep, gadget) {
usb_ep_fifo_flush(ep);
}
usb_ep_fifo_flush(&udc->ep0out->ep);
usb_ep_fifo_flush(&udc->ep0in->ep);
if (udc->driver)
udc->driver->disconnect(gadget);
/* make sure to disable all endpoints */
gadget_for_each_ep(ep, gadget) {
usb_ep_disable(ep);
}
if (udc->status != NULL) {
usb_ep_free_request(&udc->ep0in->ep, udc->status);
udc->status = NULL;
}
return 0;
}
/******************************************************************************
* ISR block
*****************************************************************************/
/**
* isr_reset_handler: USB reset interrupt handler
* @udc: UDC device
*
* This function resets USB engine after a bus reset occurred
*/
static void isr_reset_handler(struct ci13xxx *udc)
__releases(udc->lock)
__acquires(udc->lock)
{
int retval;
dbg_event(0xFF, "BUS RST", 0);
spin_unlock(&udc->lock);
retval = _gadget_stop_activity(&udc->gadget);
if (retval)
goto done;
retval = hw_usb_reset(udc);
if (retval)
goto done;
udc->status = usb_ep_alloc_request(&udc->ep0in->ep, GFP_ATOMIC);
if (udc->status == NULL)
retval = -ENOMEM;
spin_lock(&udc->lock);
done:
if (retval)
dev_err(udc->dev, "error: %i\n", retval);
}
/**
* isr_get_status_complete: get_status request complete function
* @ep: endpoint
* @req: request handled
*
* Caller must release lock
*/
static void isr_get_status_complete(struct usb_ep *ep, struct usb_request *req)
{
if (ep == NULL || req == NULL)
return;
kfree(req->buf);
usb_ep_free_request(ep, req);
}
/**
* isr_get_status_response: get_status request response
* @udc: udc struct
* @setup: setup request packet
*
* This function returns an error code
*/
static int isr_get_status_response(struct ci13xxx *udc,
struct usb_ctrlrequest *setup)
__releases(mEp->lock)
__acquires(mEp->lock)
{
struct ci13xxx_ep *mEp = udc->ep0in;
struct usb_request *req = NULL;
gfp_t gfp_flags = GFP_ATOMIC;
int dir, num, retval;
if (mEp == NULL || setup == NULL)
return -EINVAL;
spin_unlock(mEp->lock);
req = usb_ep_alloc_request(&mEp->ep, gfp_flags);
spin_lock(mEp->lock);
if (req == NULL)
return -ENOMEM;
req->complete = isr_get_status_complete;
req->length = 2;
req->buf = kzalloc(req->length, gfp_flags);
if (req->buf == NULL) {
retval = -ENOMEM;
goto err_free_req;
}
if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
/* Assume that device is bus powered for now. */
*(u16 *)req->buf = udc->remote_wakeup << 1;
retval = 0;
} else if ((setup->bRequestType & USB_RECIP_MASK) \
== USB_RECIP_ENDPOINT) {
dir = (le16_to_cpu(setup->wIndex) & USB_ENDPOINT_DIR_MASK) ?
TX : RX;
num = le16_to_cpu(setup->wIndex) & USB_ENDPOINT_NUMBER_MASK;
*(u16 *)req->buf = hw_ep_get_halt(udc, num, dir);
}
/* else do nothing; reserved for future use */
spin_unlock(mEp->lock);
retval = usb_ep_queue(&mEp->ep, req, gfp_flags);
spin_lock(mEp->lock);
if (retval)
goto err_free_buf;
return 0;
err_free_buf:
kfree(req->buf);
err_free_req:
spin_unlock(mEp->lock);
usb_ep_free_request(&mEp->ep, req);
spin_lock(mEp->lock);
return retval;
}
/**
* isr_setup_status_complete: setup_status request complete function
* @ep: endpoint
* @req: request handled
*
* Caller must release lock. Put the port in test mode if test mode
* feature is selected.
*/
static void
isr_setup_status_complete(struct usb_ep *ep, struct usb_request *req)
{
struct ci13xxx *udc = req->context;
unsigned long flags;
if (udc->setaddr) {
hw_usb_set_address(udc, udc->address);
udc->setaddr = false;
}
spin_lock_irqsave(&udc->lock, flags);
if (udc->test_mode)
hw_port_test_set(udc, udc->test_mode);
spin_unlock_irqrestore(&udc->lock, flags);
}
/**
* isr_setup_status_phase: queues the status phase of a setup transation
* @udc: udc struct
*
* This function returns an error code
*/
static int isr_setup_status_phase(struct ci13xxx *udc)
__releases(mEp->lock)
__acquires(mEp->lock)
{
int retval;
struct ci13xxx_ep *mEp;
mEp = (udc->ep0_dir == TX) ? udc->ep0out : udc->ep0in;
udc->status->context = udc;
udc->status->complete = isr_setup_status_complete;
spin_unlock(mEp->lock);
retval = usb_ep_queue(&mEp->ep, udc->status, GFP_ATOMIC);
spin_lock(mEp->lock);
return retval;
}
/**
* isr_tr_complete_low: transaction complete low level handler
* @mEp: endpoint
*
* This function returns an error code
* Caller must hold lock
*/
static int isr_tr_complete_low(struct ci13xxx_ep *mEp)
__releases(mEp->lock)
__acquires(mEp->lock)
{
struct ci13xxx_req *mReq, *mReqTemp;
struct ci13xxx_ep *mEpTemp = mEp;
int uninitialized_var(retval);
if (list_empty(&mEp->qh.queue))
return -EINVAL;
list_for_each_entry_safe(mReq, mReqTemp, &mEp->qh.queue,
queue) {
retval = _hardware_dequeue(mEp, mReq);
if (retval < 0)
break;
list_del_init(&mReq->queue);
dbg_done(_usb_addr(mEp), mReq->ptr->token, retval);
if (mReq->req.complete != NULL) {
spin_unlock(mEp->lock);
if ((mEp->type == USB_ENDPOINT_XFER_CONTROL) &&
mReq->req.length)
mEpTemp = mEp->udc->ep0in;
mReq->req.complete(&mEpTemp->ep, &mReq->req);
spin_lock(mEp->lock);
}
}
if (retval == -EBUSY)
retval = 0;
if (retval < 0)
dbg_event(_usb_addr(mEp), "DONE", retval);
return retval;
}
/**
* isr_tr_complete_handler: transaction complete interrupt handler
* @udc: UDC descriptor
*
* This function handles traffic events
*/
static void isr_tr_complete_handler(struct ci13xxx *udc)
__releases(udc->lock)
__acquires(udc->lock)
{
unsigned i;
u8 tmode = 0;
for (i = 0; i < udc->hw_ep_max; i++) {
struct ci13xxx_ep *mEp = &udc->ci13xxx_ep[i];
int type, num, dir, err = -EINVAL;
struct usb_ctrlrequest req;
if (mEp->ep.desc == NULL)
continue; /* not configured */
if (hw_test_and_clear_complete(udc, i)) {
err = isr_tr_complete_low(mEp);
if (mEp->type == USB_ENDPOINT_XFER_CONTROL) {
if (err > 0) /* needs status phase */
err = isr_setup_status_phase(udc);
if (err < 0) {
dbg_event(_usb_addr(mEp),
"ERROR", err);
spin_unlock(&udc->lock);
if (usb_ep_set_halt(&mEp->ep))
dev_err(udc->dev,
"error: ep_set_halt\n");
spin_lock(&udc->lock);
}
}
}
if (mEp->type != USB_ENDPOINT_XFER_CONTROL ||
!hw_test_and_clear_setup_status(udc, i))
continue;
if (i != 0) {
dev_warn(udc->dev, "ctrl traffic at endpoint %d\n", i);
continue;
}
/*
* Flush data and handshake transactions of previous
* setup packet.
*/
_ep_nuke(udc->ep0out);
_ep_nuke(udc->ep0in);
/* read_setup_packet */
do {
hw_test_and_set_setup_guard(udc);
memcpy(&req, &mEp->qh.ptr->setup, sizeof(req));
} while (!hw_test_and_clear_setup_guard(udc));
type = req.bRequestType;
udc->ep0_dir = (type & USB_DIR_IN) ? TX : RX;
dbg_setup(_usb_addr(mEp), &req);
switch (req.bRequest) {
case USB_REQ_CLEAR_FEATURE:
if (type == (USB_DIR_OUT|USB_RECIP_ENDPOINT) &&
le16_to_cpu(req.wValue) ==
USB_ENDPOINT_HALT) {
if (req.wLength != 0)
break;
num = le16_to_cpu(req.wIndex);
dir = num & USB_ENDPOINT_DIR_MASK;
num &= USB_ENDPOINT_NUMBER_MASK;
if (dir) /* TX */
num += udc->hw_ep_max/2;
if (!udc->ci13xxx_ep[num].wedge) {
spin_unlock(&udc->lock);
err = usb_ep_clear_halt(
&udc->ci13xxx_ep[num].ep);
spin_lock(&udc->lock);
if (err)
break;
}
err = isr_setup_status_phase(udc);
} else if (type == (USB_DIR_OUT|USB_RECIP_DEVICE) &&
le16_to_cpu(req.wValue) ==
USB_DEVICE_REMOTE_WAKEUP) {
if (req.wLength != 0)
break;
udc->remote_wakeup = 0;
err = isr_setup_status_phase(udc);
} else {
goto delegate;
}
break;
case USB_REQ_GET_STATUS:
if (type != (USB_DIR_IN|USB_RECIP_DEVICE) &&
type != (USB_DIR_IN|USB_RECIP_ENDPOINT) &&
type != (USB_DIR_IN|USB_RECIP_INTERFACE))
goto delegate;
if (le16_to_cpu(req.wLength) != 2 ||
le16_to_cpu(req.wValue) != 0)
break;
err = isr_get_status_response(udc, &req);
break;
case USB_REQ_SET_ADDRESS:
if (type != (USB_DIR_OUT|USB_RECIP_DEVICE))
goto delegate;
if (le16_to_cpu(req.wLength) != 0 ||
le16_to_cpu(req.wIndex) != 0)
break;
udc->address = (u8)le16_to_cpu(req.wValue);
udc->setaddr = true;
err = isr_setup_status_phase(udc);
break;
case USB_REQ_SET_FEATURE:
if (type == (USB_DIR_OUT|USB_RECIP_ENDPOINT) &&
le16_to_cpu(req.wValue) ==
USB_ENDPOINT_HALT) {
if (req.wLength != 0)
break;
num = le16_to_cpu(req.wIndex);
dir = num & USB_ENDPOINT_DIR_MASK;
num &= USB_ENDPOINT_NUMBER_MASK;
if (dir) /* TX */
num += udc->hw_ep_max/2;
spin_unlock(&udc->lock);
err = usb_ep_set_halt(&udc->ci13xxx_ep[num].ep);
spin_lock(&udc->lock);
if (!err)
isr_setup_status_phase(udc);
} else if (type == (USB_DIR_OUT|USB_RECIP_DEVICE)) {
if (req.wLength != 0)
break;
switch (le16_to_cpu(req.wValue)) {
case USB_DEVICE_REMOTE_WAKEUP:
udc->remote_wakeup = 1;
err = isr_setup_status_phase(udc);
break;
case USB_DEVICE_TEST_MODE:
tmode = le16_to_cpu(req.wIndex) >> 8;
switch (tmode) {
case TEST_J:
case TEST_K:
case TEST_SE0_NAK:
case TEST_PACKET:
case TEST_FORCE_EN:
udc->test_mode = tmode;
err = isr_setup_status_phase(
udc);
break;
default:
break;
}
default:
goto delegate;
}
} else {
goto delegate;
}
break;
default:
delegate:
if (req.wLength == 0) /* no data phase */
udc->ep0_dir = TX;
spin_unlock(&udc->lock);
err = udc->driver->setup(&udc->gadget, &req);
spin_lock(&udc->lock);
break;
}
if (err < 0) {
dbg_event(_usb_addr(mEp), "ERROR", err);
spin_unlock(&udc->lock);
if (usb_ep_set_halt(&mEp->ep))
dev_err(udc->dev, "error: ep_set_halt\n");
spin_lock(&udc->lock);
}
}
}
/******************************************************************************
* ENDPT block
*****************************************************************************/
/**
* ep_enable: configure endpoint, making it usable
*
* Check usb_ep_enable() at "usb_gadget.h" for details
*/
static int ep_enable(struct usb_ep *ep,
const struct usb_endpoint_descriptor *desc)
{
struct ci13xxx_ep *mEp = container_of(ep, struct ci13xxx_ep, ep);
int retval = 0;
unsigned long flags;
if (ep == NULL || desc == NULL)
return -EINVAL;
spin_lock_irqsave(mEp->lock, flags);
/* only internal SW should enable ctrl endpts */
mEp->ep.desc = desc;
if (!list_empty(&mEp->qh.queue))
dev_warn(mEp->udc->dev, "enabling a non-empty endpoint!\n");
mEp->dir = usb_endpoint_dir_in(desc) ? TX : RX;
mEp->num = usb_endpoint_num(desc);
mEp->type = usb_endpoint_type(desc);
mEp->ep.maxpacket = usb_endpoint_maxp(desc);
dbg_event(_usb_addr(mEp), "ENABLE", 0);
mEp->qh.ptr->cap = 0;
if (mEp->type == USB_ENDPOINT_XFER_CONTROL)
mEp->qh.ptr->cap |= QH_IOS;
else if (mEp->type == USB_ENDPOINT_XFER_ISOC)
mEp->qh.ptr->cap &= ~QH_MULT;
else
mEp->qh.ptr->cap &= ~QH_ZLT;
mEp->qh.ptr->cap |=
(mEp->ep.maxpacket << ffs_nr(QH_MAX_PKT)) & QH_MAX_PKT;
mEp->qh.ptr->td.next |= TD_TERMINATE; /* needed? */
/*
* Enable endpoints in the HW other than ep0 as ep0
* is always enabled
*/
if (mEp->num)
retval |= hw_ep_enable(mEp->udc, mEp->num, mEp->dir, mEp->type);
spin_unlock_irqrestore(mEp->lock, flags);
return retval;
}
/**
* ep_disable: endpoint is no longer usable
*
* Check usb_ep_disable() at "usb_gadget.h" for details
*/
static int ep_disable(struct usb_ep *ep)
{
struct ci13xxx_ep *mEp = container_of(ep, struct ci13xxx_ep, ep);
int direction, retval = 0;
unsigned long flags;
if (ep == NULL)
return -EINVAL;
else if (mEp->ep.desc == NULL)
return -EBUSY;
spin_lock_irqsave(mEp->lock, flags);
/* only internal SW should disable ctrl endpts */
direction = mEp->dir;
do {
dbg_event(_usb_addr(mEp), "DISABLE", 0);
retval |= _ep_nuke(mEp);
retval |= hw_ep_disable(mEp->udc, mEp->num, mEp->dir);
if (mEp->type == USB_ENDPOINT_XFER_CONTROL)
mEp->dir = (mEp->dir == TX) ? RX : TX;
} while (mEp->dir != direction);
mEp->ep.desc = NULL;
spin_unlock_irqrestore(mEp->lock, flags);
return retval;
}
/**
* ep_alloc_request: allocate a request object to use with this endpoint
*
* Check usb_ep_alloc_request() at "usb_gadget.h" for details
*/
static struct usb_request *ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags)
{
struct ci13xxx_ep *mEp = container_of(ep, struct ci13xxx_ep, ep);
struct ci13xxx_req *mReq = NULL;
if (ep == NULL)
return NULL;
mReq = kzalloc(sizeof(struct ci13xxx_req), gfp_flags);
if (mReq != NULL) {
INIT_LIST_HEAD(&mReq->queue);
mReq->req.dma = DMA_ADDR_INVALID;
mReq->ptr = dma_pool_alloc(mEp->td_pool, gfp_flags,
&mReq->dma);
if (mReq->ptr == NULL) {
kfree(mReq);
mReq = NULL;
}
}
dbg_event(_usb_addr(mEp), "ALLOC", mReq == NULL);
return (mReq == NULL) ? NULL : &mReq->req;
}
/**
* ep_free_request: frees a request object
*
* Check usb_ep_free_request() at "usb_gadget.h" for details
*/
static void ep_free_request(struct usb_ep *ep, struct usb_request *req)
{
struct ci13xxx_ep *mEp = container_of(ep, struct ci13xxx_ep, ep);
struct ci13xxx_req *mReq = container_of(req, struct ci13xxx_req, req);
unsigned long flags;
if (ep == NULL || req == NULL) {
return;
} else if (!list_empty(&mReq->queue)) {
dev_err(mEp->udc->dev, "freeing queued request\n");
return;
}
spin_lock_irqsave(mEp->lock, flags);
if (mReq->ptr)
dma_pool_free(mEp->td_pool, mReq->ptr, mReq->dma);
kfree(mReq);
dbg_event(_usb_addr(mEp), "FREE", 0);
spin_unlock_irqrestore(mEp->lock, flags);
}
/**
* ep_queue: queues (submits) an I/O request to an endpoint
*
* Check usb_ep_queue()* at usb_gadget.h" for details
*/
static int ep_queue(struct usb_ep *ep, struct usb_request *req,
gfp_t __maybe_unused gfp_flags)
{
struct ci13xxx_ep *mEp = container_of(ep, struct ci13xxx_ep, ep);
struct ci13xxx_req *mReq = container_of(req, struct ci13xxx_req, req);
struct ci13xxx *udc = mEp->udc;
int retval = 0;
unsigned long flags;
if (ep == NULL || req == NULL || mEp->ep.desc == NULL)
return -EINVAL;
spin_lock_irqsave(mEp->lock, flags);
if (mEp->type == USB_ENDPOINT_XFER_CONTROL) {
if (req->length)
mEp = (udc->ep0_dir == RX) ?
udc->ep0out : udc->ep0in;
if (!list_empty(&mEp->qh.queue)) {
_ep_nuke(mEp);
retval = -EOVERFLOW;
dev_warn(mEp->udc->dev, "endpoint ctrl %X nuked\n",
_usb_addr(mEp));
}
}
/* first nuke then test link, e.g. previous status has not sent */
if (!list_empty(&mReq->queue)) {
retval = -EBUSY;
dev_err(mEp->udc->dev, "request already in queue\n");
goto done;
}
if (req->length > 4 * CI13XXX_PAGE_SIZE) {
req->length = 4 * CI13XXX_PAGE_SIZE;
retval = -EMSGSIZE;
dev_warn(mEp->udc->dev, "request length truncated\n");
}
dbg_queue(_usb_addr(mEp), req, retval);
/* push request */
mReq->req.status = -EINPROGRESS;
mReq->req.actual = 0;
retval = _hardware_enqueue(mEp, mReq);
if (retval == -EALREADY) {
dbg_event(_usb_addr(mEp), "QUEUE", retval);
retval = 0;
}
if (!retval)
list_add_tail(&mReq->queue, &mEp->qh.queue);
done:
spin_unlock_irqrestore(mEp->lock, flags);
return retval;
}
/**
* ep_dequeue: dequeues (cancels, unlinks) an I/O request from an endpoint
*
* Check usb_ep_dequeue() at "usb_gadget.h" for details
*/
static int ep_dequeue(struct usb_ep *ep, struct usb_request *req)
{
struct ci13xxx_ep *mEp = container_of(ep, struct ci13xxx_ep, ep);
struct ci13xxx_req *mReq = container_of(req, struct ci13xxx_req, req);
unsigned long flags;
if (ep == NULL || req == NULL || mReq->req.status != -EALREADY ||
mEp->ep.desc == NULL || list_empty(&mReq->queue) ||
list_empty(&mEp->qh.queue))
return -EINVAL;
spin_lock_irqsave(mEp->lock, flags);
dbg_event(_usb_addr(mEp), "DEQUEUE", 0);
hw_ep_flush(mEp->udc, mEp->num, mEp->dir);
/* pop request */
list_del_init(&mReq->queue);
if (mReq->map) {
dma_unmap_single(mEp->device, mReq->req.dma, mReq->req.length,
mEp->dir ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
mReq->req.dma = DMA_ADDR_INVALID;
mReq->map = 0;
}
req->status = -ECONNRESET;
if (mReq->req.complete != NULL) {
spin_unlock(mEp->lock);
mReq->req.complete(&mEp->ep, &mReq->req);
spin_lock(mEp->lock);
}
spin_unlock_irqrestore(mEp->lock, flags);
return 0;
}
/**
* ep_set_halt: sets the endpoint halt feature
*
* Check usb_ep_set_halt() at "usb_gadget.h" for details
*/
static int ep_set_halt(struct usb_ep *ep, int value)
{
struct ci13xxx_ep *mEp = container_of(ep, struct ci13xxx_ep, ep);
int direction, retval = 0;
unsigned long flags;
if (ep == NULL || mEp->ep.desc == NULL)
return -EINVAL;
spin_lock_irqsave(mEp->lock, flags);
#ifndef STALL_IN
/* g_file_storage MS compliant but g_zero fails chapter 9 compliance */
if (value && mEp->type == USB_ENDPOINT_XFER_BULK && mEp->dir == TX &&
!list_empty(&mEp->qh.queue)) {
spin_unlock_irqrestore(mEp->lock, flags);
return -EAGAIN;
}
#endif
direction = mEp->dir;
do {
dbg_event(_usb_addr(mEp), "HALT", value);
retval |= hw_ep_set_halt(mEp->udc, mEp->num, mEp->dir, value);
if (!value)
mEp->wedge = 0;
if (mEp->type == USB_ENDPOINT_XFER_CONTROL)
mEp->dir = (mEp->dir == TX) ? RX : TX;
} while (mEp->dir != direction);
spin_unlock_irqrestore(mEp->lock, flags);
return retval;
}
/**
* ep_set_wedge: sets the halt feature and ignores clear requests
*
* Check usb_ep_set_wedge() at "usb_gadget.h" for details
*/
static int ep_set_wedge(struct usb_ep *ep)
{
struct ci13xxx_ep *mEp = container_of(ep, struct ci13xxx_ep, ep);
unsigned long flags;
if (ep == NULL || mEp->ep.desc == NULL)
return -EINVAL;
spin_lock_irqsave(mEp->lock, flags);
dbg_event(_usb_addr(mEp), "WEDGE", 0);
mEp->wedge = 1;
spin_unlock_irqrestore(mEp->lock, flags);
return usb_ep_set_halt(ep);
}
/**
* ep_fifo_flush: flushes contents of a fifo
*
* Check usb_ep_fifo_flush() at "usb_gadget.h" for details
*/
static void ep_fifo_flush(struct usb_ep *ep)
{
struct ci13xxx_ep *mEp = container_of(ep, struct ci13xxx_ep, ep);
unsigned long flags;
if (ep == NULL) {
dev_err(mEp->udc->dev, "%02X: -EINVAL\n", _usb_addr(mEp));
return;
}
spin_lock_irqsave(mEp->lock, flags);
dbg_event(_usb_addr(mEp), "FFLUSH", 0);
hw_ep_flush(mEp->udc, mEp->num, mEp->dir);
spin_unlock_irqrestore(mEp->lock, flags);
}
/**
* Endpoint-specific part of the API to the USB controller hardware
* Check "usb_gadget.h" for details
*/
static const struct usb_ep_ops usb_ep_ops = {
.enable = ep_enable,
.disable = ep_disable,
.alloc_request = ep_alloc_request,
.free_request = ep_free_request,
.queue = ep_queue,
.dequeue = ep_dequeue,
.set_halt = ep_set_halt,
.set_wedge = ep_set_wedge,
.fifo_flush = ep_fifo_flush,
};
/******************************************************************************
* GADGET block
*****************************************************************************/
static int ci13xxx_vbus_session(struct usb_gadget *_gadget, int is_active)
{
struct ci13xxx *udc = container_of(_gadget, struct ci13xxx, gadget);
unsigned long flags;
int gadget_ready = 0;
if (!(udc->udc_driver->flags & CI13XXX_PULLUP_ON_VBUS))
return -EOPNOTSUPP;
spin_lock_irqsave(&udc->lock, flags);
udc->vbus_active = is_active;
if (udc->driver)
gadget_ready = 1;
spin_unlock_irqrestore(&udc->lock, flags);
if (gadget_ready) {
if (is_active) {
pm_runtime_get_sync(&_gadget->dev);
hw_device_reset(udc);
hw_device_state(udc, udc->ep0out->qh.dma);
} else {
hw_device_state(udc, 0);
if (udc->udc_driver->notify_event)
udc->udc_driver->notify_event(udc,
CI13XXX_CONTROLLER_STOPPED_EVENT);
_gadget_stop_activity(&udc->gadget);
pm_runtime_put_sync(&_gadget->dev);
}
}
return 0;
}
static int ci13xxx_wakeup(struct usb_gadget *_gadget)
{
struct ci13xxx *udc = container_of(_gadget, struct ci13xxx, gadget);
unsigned long flags;
int ret = 0;
spin_lock_irqsave(&udc->lock, flags);
if (!udc->remote_wakeup) {
ret = -EOPNOTSUPP;
goto out;
}
if (!hw_read(udc, OP_PORTSC, PORTSC_SUSP)) {
ret = -EINVAL;
goto out;
}
hw_write(udc, OP_PORTSC, PORTSC_FPR, PORTSC_FPR);
out:
spin_unlock_irqrestore(&udc->lock, flags);
return ret;
}
static int ci13xxx_vbus_draw(struct usb_gadget *_gadget, unsigned mA)
{
struct ci13xxx *udc = container_of(_gadget, struct ci13xxx, gadget);
if (udc->transceiver)
return usb_phy_set_power(udc->transceiver, mA);
return -ENOTSUPP;
}
static int ci13xxx_start(struct usb_gadget *gadget,
struct usb_gadget_driver *driver);
static int ci13xxx_stop(struct usb_gadget *gadget,
struct usb_gadget_driver *driver);
/**
* Device operations part of the API to the USB controller hardware,
* which don't involve endpoints (or i/o)
* Check "usb_gadget.h" for details
*/
static const struct usb_gadget_ops usb_gadget_ops = {
.vbus_session = ci13xxx_vbus_session,
.wakeup = ci13xxx_wakeup,
.vbus_draw = ci13xxx_vbus_draw,
.udc_start = ci13xxx_start,
.udc_stop = ci13xxx_stop,
};
static int init_eps(struct ci13xxx *udc)
{
int retval = 0, i, j;
for (i = 0; i < udc->hw_ep_max/2; i++)
for (j = RX; j <= TX; j++) {
int k = i + j * udc->hw_ep_max/2;
struct ci13xxx_ep *mEp = &udc->ci13xxx_ep[k];
scnprintf(mEp->name, sizeof(mEp->name), "ep%i%s", i,
(j == TX) ? "in" : "out");
mEp->udc = udc;
mEp->lock = &udc->lock;
mEp->device = &udc->gadget.dev;
mEp->td_pool = udc->td_pool;
mEp->ep.name = mEp->name;
mEp->ep.ops = &usb_ep_ops;
mEp->ep.maxpacket = CTRL_PAYLOAD_MAX;
INIT_LIST_HEAD(&mEp->qh.queue);
mEp->qh.ptr = dma_pool_alloc(udc->qh_pool, GFP_KERNEL,
&mEp->qh.dma);
if (mEp->qh.ptr == NULL)
retval = -ENOMEM;
else
memset(mEp->qh.ptr, 0, sizeof(*mEp->qh.ptr));
/*
* set up shorthands for ep0 out and in endpoints,
* don't add to gadget's ep_list
*/
if (i == 0) {
if (j == RX)
udc->ep0out = mEp;
else
udc->ep0in = mEp;
continue;
}
list_add_tail(&mEp->ep.ep_list, &udc->gadget.ep_list);
}
return retval;
}
/**
* ci13xxx_start: register a gadget driver
* @gadget: our gadget
* @driver: the driver being registered
*
* Interrupts are enabled here.
*/
static int ci13xxx_start(struct usb_gadget *gadget,
struct usb_gadget_driver *driver)
{
struct ci13xxx *udc = container_of(gadget, struct ci13xxx, gadget);
unsigned long flags;
int retval = -ENOMEM;
if (driver->disconnect == NULL)
return -EINVAL;
udc->ep0out->ep.desc = &ctrl_endpt_out_desc;
retval = usb_ep_enable(&udc->ep0out->ep);
if (retval)
return retval;
udc->ep0in->ep.desc = &ctrl_endpt_in_desc;
retval = usb_ep_enable(&udc->ep0in->ep);
if (retval)
return retval;
spin_lock_irqsave(&udc->lock, flags);
udc->driver = driver;
pm_runtime_get_sync(&udc->gadget.dev);
if (udc->udc_driver->flags & CI13XXX_PULLUP_ON_VBUS) {
if (udc->vbus_active) {
if (udc->udc_driver->flags & CI13XXX_REGS_SHARED)
hw_device_reset(udc);
} else {
pm_runtime_put_sync(&udc->gadget.dev);
goto done;
}
}
retval = hw_device_state(udc, udc->ep0out->qh.dma);
if (retval)
pm_runtime_put_sync(&udc->gadget.dev);
done:
spin_unlock_irqrestore(&udc->lock, flags);
return retval;
}
/**
* ci13xxx_stop: unregister a gadget driver
*/
static int ci13xxx_stop(struct usb_gadget *gadget,
struct usb_gadget_driver *driver)
{
struct ci13xxx *udc = container_of(gadget, struct ci13xxx, gadget);
unsigned long flags;
spin_lock_irqsave(&udc->lock, flags);
if (!(udc->udc_driver->flags & CI13XXX_PULLUP_ON_VBUS) ||
udc->vbus_active) {
hw_device_state(udc, 0);
if (udc->udc_driver->notify_event)
udc->udc_driver->notify_event(udc,
CI13XXX_CONTROLLER_STOPPED_EVENT);
udc->driver = NULL;
spin_unlock_irqrestore(&udc->lock, flags);
_gadget_stop_activity(&udc->gadget);
spin_lock_irqsave(&udc->lock, flags);
pm_runtime_put(&udc->gadget.dev);
}
spin_unlock_irqrestore(&udc->lock, flags);
return 0;
}
/******************************************************************************
* BUS block
*****************************************************************************/
/**
* udc_irq: global interrupt handler
*
* This function returns IRQ_HANDLED if the IRQ has been handled
* It locks access to registers
*/
irqreturn_t udc_irq(int irq, void *data)
{
struct ci13xxx *udc = data;
irqreturn_t retval;
u32 intr;
if (udc == NULL)
return IRQ_HANDLED;
spin_lock(&udc->lock);
if (udc->udc_driver->flags & CI13XXX_REGS_SHARED) {
if (hw_read(udc, OP_USBMODE, USBMODE_CM) !=
USBMODE_CM_DEVICE) {
spin_unlock(&udc->lock);
return IRQ_NONE;
}
}
intr = hw_test_and_clear_intr_active(udc);
dbg_interrupt(intr);
if (intr) {
/* order defines priority - do NOT change it */
if (USBi_URI & intr)
isr_reset_handler(udc);
if (USBi_PCI & intr) {
udc->gadget.speed = hw_port_is_high_speed(udc) ?
USB_SPEED_HIGH : USB_SPEED_FULL;
if (udc->suspended && udc->driver->resume) {
spin_unlock(&udc->lock);
udc->driver->resume(&udc->gadget);
spin_lock(&udc->lock);
udc->suspended = 0;
}
}
if (USBi_UI & intr)
isr_tr_complete_handler(udc);
if (USBi_SLI & intr) {
if (udc->gadget.speed != USB_SPEED_UNKNOWN &&
udc->driver->suspend) {
udc->suspended = 1;
spin_unlock(&udc->lock);
udc->driver->suspend(&udc->gadget);
spin_lock(&udc->lock);
}
}
retval = IRQ_HANDLED;
} else {
retval = IRQ_NONE;
}
spin_unlock(&udc->lock);
return retval;
}
/**
* udc_release: driver release function
* @dev: device
*
* Currently does nothing
*/
static void udc_release(struct device *dev)
{
}
/**
* udc_probe: parent probe must call this to initialize UDC
* @dev: parent device
* @regs: registers base address
* @name: driver name
*
* This function returns an error code
* No interrupts active, the IRQ has not been requested yet
* Kernel assumes 32-bit DMA operations by default, no need to dma_set_mask
*/
int udc_probe(struct ci13xxx_udc_driver *driver, struct device *dev,
void __iomem *regs, struct ci13xxx **_udc)
{
struct ci13xxx *udc;
int retval = 0;
if (dev == NULL || regs == NULL || driver == NULL ||
driver->name == NULL)
return -EINVAL;
udc = kzalloc(sizeof(struct ci13xxx), GFP_KERNEL);
if (udc == NULL)
return -ENOMEM;
spin_lock_init(&udc->lock);
udc->regs = regs;
udc->udc_driver = driver;
udc->gadget.ops = &usb_gadget_ops;
udc->gadget.speed = USB_SPEED_UNKNOWN;
udc->gadget.max_speed = USB_SPEED_HIGH;
udc->gadget.is_otg = 0;
udc->gadget.name = driver->name;
INIT_LIST_HEAD(&udc->gadget.ep_list);
dev_set_name(&udc->gadget.dev, "gadget");
udc->gadget.dev.dma_mask = dev->dma_mask;
udc->gadget.dev.coherent_dma_mask = dev->coherent_dma_mask;
udc->gadget.dev.parent = dev;
udc->gadget.dev.release = udc_release;
udc->dev = dev;
/* alloc resources */
udc->qh_pool = dma_pool_create("ci13xxx_qh", dev,
sizeof(struct ci13xxx_qh),
64, CI13XXX_PAGE_SIZE);
if (udc->qh_pool == NULL) {
retval = -ENOMEM;
goto free_udc;
}
udc->td_pool = dma_pool_create("ci13xxx_td", dev,
sizeof(struct ci13xxx_td),
64, CI13XXX_PAGE_SIZE);
if (udc->td_pool == NULL) {
retval = -ENOMEM;
goto free_qh_pool;
}
retval = hw_device_init(udc, regs, driver->capoffset);
if (retval < 0)
goto free_pools;
retval = init_eps(udc);
if (retval)
goto free_pools;
udc->gadget.ep0 = &udc->ep0in->ep;
udc->transceiver = usb_get_transceiver();
if (udc->udc_driver->flags & CI13XXX_REQUIRE_TRANSCEIVER) {
if (udc->transceiver == NULL) {
retval = -ENODEV;
goto free_pools;
}
}
if (!(udc->udc_driver->flags & CI13XXX_REGS_SHARED)) {
retval = hw_device_reset(udc);
if (retval)
goto put_transceiver;
}
retval = device_register(&udc->gadget.dev);
if (retval) {
put_device(&udc->gadget.dev);
goto put_transceiver;
}
retval = dbg_create_files(&udc->gadget.dev);
if (retval)
goto unreg_device;
if (udc->transceiver) {
retval = otg_set_peripheral(udc->transceiver->otg,
&udc->gadget);
if (retval)
goto remove_dbg;
}
retval = usb_add_gadget_udc(dev, &udc->gadget);
if (retval)
goto remove_trans;
pm_runtime_no_callbacks(&udc->gadget.dev);
pm_runtime_enable(&udc->gadget.dev);
*_udc = udc;
return retval;
remove_trans:
if (udc->transceiver) {
otg_set_peripheral(udc->transceiver->otg, &udc->gadget);
usb_put_transceiver(udc->transceiver);
}
dev_err(dev, "error = %i\n", retval);
remove_dbg:
dbg_remove_files(&udc->gadget.dev);
unreg_device:
device_unregister(&udc->gadget.dev);
put_transceiver:
if (udc->transceiver)
usb_put_transceiver(udc->transceiver);
free_pools:
dma_pool_destroy(udc->td_pool);
free_qh_pool:
dma_pool_destroy(udc->qh_pool);
free_udc:
kfree(udc);
*_udc = NULL;
return retval;
}
/**
* udc_remove: parent remove must call this to remove UDC
*
* No interrupts active, the IRQ has been released
*/
void udc_remove(struct ci13xxx *udc)
{
int i;
if (udc == NULL)
return;
usb_del_gadget_udc(&udc->gadget);
for (i = 0; i < udc->hw_ep_max; i++) {
struct ci13xxx_ep *mEp = &udc->ci13xxx_ep[i];
dma_pool_free(udc->qh_pool, mEp->qh.ptr, mEp->qh.dma);
}
dma_pool_destroy(udc->td_pool);
dma_pool_destroy(udc->qh_pool);
if (udc->transceiver) {
otg_set_peripheral(udc->transceiver->otg, &udc->gadget);
usb_put_transceiver(udc->transceiver);
}
dbg_remove_files(&udc->gadget.dev);
device_unregister(&udc->gadget.dev);
kfree(udc->hw_bank.regmap);
kfree(udc);
}