linux-hardened/drivers/net/ifb.c
David S. Miller e8a0464cc9 netdev: Allocate multiple queues for TX.
alloc_netdev_mq() now allocates an array of netdev_queue
structures for TX, based upon the queue_count argument.

Furthermore, all accesses to the TX queues are now vectored
through the netdev_get_tx_queue() and netdev_for_each_tx_queue()
interfaces.  This makes it easy to grep the tree for all
things that want to get to a TX queue of a net device.

Problem spots which are not really multiqueue aware yet, and
only work with one queue, can easily be spotted by grepping
for all netdev_get_tx_queue() calls that pass in a zero index.

Signed-off-by: David S. Miller <davem@davemloft.net>
2008-07-17 19:21:00 -07:00

302 lines
7.2 KiB
C

/* drivers/net/ifb.c:
The purpose of this driver is to provide a device that allows
for sharing of resources:
1) qdiscs/policies that are per device as opposed to system wide.
ifb allows for a device which can be redirected to thus providing
an impression of sharing.
2) Allows for queueing incoming traffic for shaping instead of
dropping.
The original concept is based on what is known as the IMQ
driver initially written by Martin Devera, later rewritten
by Patrick McHardy and then maintained by Andre Correa.
You need the tc action mirror or redirect to feed this device
packets.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version
2 of the License, or (at your option) any later version.
Authors: Jamal Hadi Salim (2005)
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/moduleparam.h>
#include <net/pkt_sched.h>
#include <net/net_namespace.h>
#include <linux/lockdep.h>
#define TX_TIMEOUT (2*HZ)
#define TX_Q_LIMIT 32
struct ifb_private {
struct tasklet_struct ifb_tasklet;
int tasklet_pending;
/* mostly debug stats leave in for now */
unsigned long st_task_enter; /* tasklet entered */
unsigned long st_txq_refl_try; /* transmit queue refill attempt */
unsigned long st_rxq_enter; /* receive queue entered */
unsigned long st_rx2tx_tran; /* receive to trasmit transfers */
unsigned long st_rxq_notenter; /*receiveQ not entered, resched */
unsigned long st_rx_frm_egr; /* received from egress path */
unsigned long st_rx_frm_ing; /* received from ingress path */
unsigned long st_rxq_check;
unsigned long st_rxq_rsch;
struct sk_buff_head rq;
struct sk_buff_head tq;
};
static int numifbs = 2;
static void ri_tasklet(unsigned long dev);
static int ifb_xmit(struct sk_buff *skb, struct net_device *dev);
static int ifb_open(struct net_device *dev);
static int ifb_close(struct net_device *dev);
static void ri_tasklet(unsigned long dev)
{
struct net_device *_dev = (struct net_device *)dev;
struct ifb_private *dp = netdev_priv(_dev);
struct net_device_stats *stats = &_dev->stats;
struct sk_buff *skb;
dp->st_task_enter++;
if ((skb = skb_peek(&dp->tq)) == NULL) {
dp->st_txq_refl_try++;
if (netif_tx_trylock(_dev)) {
dp->st_rxq_enter++;
while ((skb = skb_dequeue(&dp->rq)) != NULL) {
skb_queue_tail(&dp->tq, skb);
dp->st_rx2tx_tran++;
}
netif_tx_unlock(_dev);
} else {
/* reschedule */
dp->st_rxq_notenter++;
goto resched;
}
}
while ((skb = skb_dequeue(&dp->tq)) != NULL) {
u32 from = G_TC_FROM(skb->tc_verd);
skb->tc_verd = 0;
skb->tc_verd = SET_TC_NCLS(skb->tc_verd);
stats->tx_packets++;
stats->tx_bytes +=skb->len;
skb->dev = __dev_get_by_index(&init_net, skb->iif);
if (!skb->dev) {
dev_kfree_skb(skb);
stats->tx_dropped++;
break;
}
skb->iif = _dev->ifindex;
if (from & AT_EGRESS) {
dp->st_rx_frm_egr++;
dev_queue_xmit(skb);
} else if (from & AT_INGRESS) {
dp->st_rx_frm_ing++;
skb_pull(skb, skb->dev->hard_header_len);
netif_rx(skb);
} else
BUG();
}
if (netif_tx_trylock(_dev)) {
dp->st_rxq_check++;
if ((skb = skb_peek(&dp->rq)) == NULL) {
dp->tasklet_pending = 0;
if (netif_queue_stopped(_dev))
netif_wake_queue(_dev);
} else {
dp->st_rxq_rsch++;
netif_tx_unlock(_dev);
goto resched;
}
netif_tx_unlock(_dev);
} else {
resched:
dp->tasklet_pending = 1;
tasklet_schedule(&dp->ifb_tasklet);
}
}
static void ifb_setup(struct net_device *dev)
{
/* Initialize the device structure. */
dev->hard_start_xmit = ifb_xmit;
dev->open = &ifb_open;
dev->stop = &ifb_close;
dev->destructor = free_netdev;
/* Fill in device structure with ethernet-generic values. */
ether_setup(dev);
dev->tx_queue_len = TX_Q_LIMIT;
dev->change_mtu = NULL;
dev->flags |= IFF_NOARP;
dev->flags &= ~IFF_MULTICAST;
random_ether_addr(dev->dev_addr);
}
static int ifb_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct ifb_private *dp = netdev_priv(dev);
struct net_device_stats *stats = &dev->stats;
int ret = 0;
u32 from = G_TC_FROM(skb->tc_verd);
stats->rx_packets++;
stats->rx_bytes+=skb->len;
if (!(from & (AT_INGRESS|AT_EGRESS)) || !skb->iif) {
dev_kfree_skb(skb);
stats->rx_dropped++;
return ret;
}
if (skb_queue_len(&dp->rq) >= dev->tx_queue_len) {
netif_stop_queue(dev);
}
dev->trans_start = jiffies;
skb_queue_tail(&dp->rq, skb);
if (!dp->tasklet_pending) {
dp->tasklet_pending = 1;
tasklet_schedule(&dp->ifb_tasklet);
}
return ret;
}
static int ifb_close(struct net_device *dev)
{
struct ifb_private *dp = netdev_priv(dev);
tasklet_kill(&dp->ifb_tasklet);
netif_stop_queue(dev);
skb_queue_purge(&dp->rq);
skb_queue_purge(&dp->tq);
return 0;
}
static int ifb_open(struct net_device *dev)
{
struct ifb_private *dp = netdev_priv(dev);
tasklet_init(&dp->ifb_tasklet, ri_tasklet, (unsigned long)dev);
skb_queue_head_init(&dp->rq);
skb_queue_head_init(&dp->tq);
netif_start_queue(dev);
return 0;
}
static int ifb_validate(struct nlattr *tb[], struct nlattr *data[])
{
if (tb[IFLA_ADDRESS]) {
if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
return -EINVAL;
if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
return -EADDRNOTAVAIL;
}
return 0;
}
static struct rtnl_link_ops ifb_link_ops __read_mostly = {
.kind = "ifb",
.priv_size = sizeof(struct ifb_private),
.setup = ifb_setup,
.validate = ifb_validate,
};
/* Number of ifb devices to be set up by this module. */
module_param(numifbs, int, 0);
MODULE_PARM_DESC(numifbs, "Number of ifb devices");
/*
* dev_ifb's TX queue lock is usually taken after dev->rx_queue.lock,
* reversely to e.g. qdisc_lock_tree(). It should be safe until
* ifb doesn't take dev's TX queue lock with dev_ifb->rx_queue.lock.
* But lockdep should know that ifb has different locks from dev.
*/
static struct lock_class_key ifb_tx_queue_lock_key;
static struct lock_class_key ifb_rx_queue_lock_key;
static void set_tx_lockdep_key(struct net_device *dev,
struct netdev_queue *txq,
void *_unused)
{
lockdep_set_class(&txq->lock, &ifb_tx_queue_lock_key);
}
static int __init ifb_init_one(int index)
{
struct net_device *dev_ifb;
int err;
dev_ifb = alloc_netdev(sizeof(struct ifb_private),
"ifb%d", ifb_setup);
if (!dev_ifb)
return -ENOMEM;
err = dev_alloc_name(dev_ifb, dev_ifb->name);
if (err < 0)
goto err;
dev_ifb->rtnl_link_ops = &ifb_link_ops;
err = register_netdevice(dev_ifb);
if (err < 0)
goto err;
netdev_for_each_tx_queue(dev_ifb, set_tx_lockdep_key, NULL);
lockdep_set_class(&dev_ifb->rx_queue.lock, &ifb_rx_queue_lock_key);
return 0;
err:
free_netdev(dev_ifb);
return err;
}
static int __init ifb_init_module(void)
{
int i, err;
rtnl_lock();
err = __rtnl_link_register(&ifb_link_ops);
for (i = 0; i < numifbs && !err; i++)
err = ifb_init_one(i);
if (err)
__rtnl_link_unregister(&ifb_link_ops);
rtnl_unlock();
return err;
}
static void __exit ifb_cleanup_module(void)
{
rtnl_link_unregister(&ifb_link_ops);
}
module_init(ifb_init_module);
module_exit(ifb_cleanup_module);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Jamal Hadi Salim");
MODULE_ALIAS_RTNL_LINK("ifb");