linux-hardened/drivers/ide/pmac.c
Joe Perches f2ba70a22c drivers/ide/pmac.c: Remove unnecessary casts of pci_get_drvdata
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2010-11-22 11:38:08 -08:00

1728 lines
46 KiB
C

/*
* Support for IDE interfaces on PowerMacs.
*
* These IDE interfaces are memory-mapped and have a DBDMA channel
* for doing DMA.
*
* Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
* Copyright (C) 2007-2008 Bartlomiej Zolnierkiewicz
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Some code taken from drivers/ide/ide-dma.c:
*
* Copyright (c) 1995-1998 Mark Lord
*
* TODO: - Use pre-calculated (kauai) timing tables all the time and
* get rid of the "rounded" tables used previously, so we have the
* same table format for all controllers and can then just have one
* big table
*
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/ide.h>
#include <linux/notifier.h>
#include <linux/reboot.h>
#include <linux/pci.h>
#include <linux/adb.h>
#include <linux/pmu.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <asm/prom.h>
#include <asm/io.h>
#include <asm/dbdma.h>
#include <asm/ide.h>
#include <asm/pci-bridge.h>
#include <asm/machdep.h>
#include <asm/pmac_feature.h>
#include <asm/sections.h>
#include <asm/irq.h>
#include <asm/mediabay.h>
#define DRV_NAME "ide-pmac"
#undef IDE_PMAC_DEBUG
#define DMA_WAIT_TIMEOUT 50
typedef struct pmac_ide_hwif {
unsigned long regbase;
int irq;
int kind;
int aapl_bus_id;
unsigned broken_dma : 1;
unsigned broken_dma_warn : 1;
struct device_node* node;
struct macio_dev *mdev;
u32 timings[4];
volatile u32 __iomem * *kauai_fcr;
ide_hwif_t *hwif;
/* Those fields are duplicating what is in hwif. We currently
* can't use the hwif ones because of some assumptions that are
* beeing done by the generic code about the kind of dma controller
* and format of the dma table. This will have to be fixed though.
*/
volatile struct dbdma_regs __iomem * dma_regs;
struct dbdma_cmd* dma_table_cpu;
} pmac_ide_hwif_t;
enum {
controller_ohare, /* OHare based */
controller_heathrow, /* Heathrow/Paddington */
controller_kl_ata3, /* KeyLargo ATA-3 */
controller_kl_ata4, /* KeyLargo ATA-4 */
controller_un_ata6, /* UniNorth2 ATA-6 */
controller_k2_ata6, /* K2 ATA-6 */
controller_sh_ata6, /* Shasta ATA-6 */
};
static const char* model_name[] = {
"OHare ATA", /* OHare based */
"Heathrow ATA", /* Heathrow/Paddington */
"KeyLargo ATA-3", /* KeyLargo ATA-3 (MDMA only) */
"KeyLargo ATA-4", /* KeyLargo ATA-4 (UDMA/66) */
"UniNorth ATA-6", /* UniNorth2 ATA-6 (UDMA/100) */
"K2 ATA-6", /* K2 ATA-6 (UDMA/100) */
"Shasta ATA-6", /* Shasta ATA-6 (UDMA/133) */
};
/*
* Extra registers, both 32-bit little-endian
*/
#define IDE_TIMING_CONFIG 0x200
#define IDE_INTERRUPT 0x300
/* Kauai (U2) ATA has different register setup */
#define IDE_KAUAI_PIO_CONFIG 0x200
#define IDE_KAUAI_ULTRA_CONFIG 0x210
#define IDE_KAUAI_POLL_CONFIG 0x220
/*
* Timing configuration register definitions
*/
/* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
#define SYSCLK_TICKS(t) (((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
#define SYSCLK_TICKS_66(t) (((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
#define IDE_SYSCLK_NS 30 /* 33Mhz cell */
#define IDE_SYSCLK_66_NS 15 /* 66Mhz cell */
/* 133Mhz cell, found in shasta.
* See comments about 100 Mhz Uninorth 2...
* Note that PIO_MASK and MDMA_MASK seem to overlap
*/
#define TR_133_PIOREG_PIO_MASK 0xff000fff
#define TR_133_PIOREG_MDMA_MASK 0x00fff800
#define TR_133_UDMAREG_UDMA_MASK 0x0003ffff
#define TR_133_UDMAREG_UDMA_EN 0x00000001
/* 100Mhz cell, found in Uninorth 2. I don't have much infos about
* this one yet, it appears as a pci device (106b/0033) on uninorth
* internal PCI bus and it's clock is controlled like gem or fw. It
* appears to be an evolution of keylargo ATA4 with a timing register
* extended to 2 32bits registers and a similar DBDMA channel. Other
* registers seem to exist but I can't tell much about them.
*
* So far, I'm using pre-calculated tables for this extracted from
* the values used by the MacOS X driver.
*
* The "PIO" register controls PIO and MDMA timings, the "ULTRA"
* register controls the UDMA timings. At least, it seems bit 0
* of this one enables UDMA vs. MDMA, and bits 4..7 are the
* cycle time in units of 10ns. Bits 8..15 are used by I don't
* know their meaning yet
*/
#define TR_100_PIOREG_PIO_MASK 0xff000fff
#define TR_100_PIOREG_MDMA_MASK 0x00fff000
#define TR_100_UDMAREG_UDMA_MASK 0x0000ffff
#define TR_100_UDMAREG_UDMA_EN 0x00000001
/* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
* 40 connector cable and to 4 on 80 connector one.
* Clock unit is 15ns (66Mhz)
*
* 3 Values can be programmed:
* - Write data setup, which appears to match the cycle time. They
* also call it DIOW setup.
* - Ready to pause time (from spec)
* - Address setup. That one is weird. I don't see where exactly
* it fits in UDMA cycles, I got it's name from an obscure piece
* of commented out code in Darwin. They leave it to 0, we do as
* well, despite a comment that would lead to think it has a
* min value of 45ns.
* Apple also add 60ns to the write data setup (or cycle time ?) on
* reads.
*/
#define TR_66_UDMA_MASK 0xfff00000
#define TR_66_UDMA_EN 0x00100000 /* Enable Ultra mode for DMA */
#define TR_66_UDMA_ADDRSETUP_MASK 0xe0000000 /* Address setup */
#define TR_66_UDMA_ADDRSETUP_SHIFT 29
#define TR_66_UDMA_RDY2PAUS_MASK 0x1e000000 /* Ready 2 pause time */
#define TR_66_UDMA_RDY2PAUS_SHIFT 25
#define TR_66_UDMA_WRDATASETUP_MASK 0x01e00000 /* Write data setup time */
#define TR_66_UDMA_WRDATASETUP_SHIFT 21
#define TR_66_MDMA_MASK 0x000ffc00
#define TR_66_MDMA_RECOVERY_MASK 0x000f8000
#define TR_66_MDMA_RECOVERY_SHIFT 15
#define TR_66_MDMA_ACCESS_MASK 0x00007c00
#define TR_66_MDMA_ACCESS_SHIFT 10
#define TR_66_PIO_MASK 0x000003ff
#define TR_66_PIO_RECOVERY_MASK 0x000003e0
#define TR_66_PIO_RECOVERY_SHIFT 5
#define TR_66_PIO_ACCESS_MASK 0x0000001f
#define TR_66_PIO_ACCESS_SHIFT 0
/* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
* Can do pio & mdma modes, clock unit is 30ns (33Mhz)
*
* The access time and recovery time can be programmed. Some older
* Darwin code base limit OHare to 150ns cycle time. I decided to do
* the same here fore safety against broken old hardware ;)
* The HalfTick bit, when set, adds half a clock (15ns) to the access
* time and removes one from recovery. It's not supported on KeyLargo
* implementation afaik. The E bit appears to be set for PIO mode 0 and
* is used to reach long timings used in this mode.
*/
#define TR_33_MDMA_MASK 0x003ff800
#define TR_33_MDMA_RECOVERY_MASK 0x001f0000
#define TR_33_MDMA_RECOVERY_SHIFT 16
#define TR_33_MDMA_ACCESS_MASK 0x0000f800
#define TR_33_MDMA_ACCESS_SHIFT 11
#define TR_33_MDMA_HALFTICK 0x00200000
#define TR_33_PIO_MASK 0x000007ff
#define TR_33_PIO_E 0x00000400
#define TR_33_PIO_RECOVERY_MASK 0x000003e0
#define TR_33_PIO_RECOVERY_SHIFT 5
#define TR_33_PIO_ACCESS_MASK 0x0000001f
#define TR_33_PIO_ACCESS_SHIFT 0
/*
* Interrupt register definitions
*/
#define IDE_INTR_DMA 0x80000000
#define IDE_INTR_DEVICE 0x40000000
/*
* FCR Register on Kauai. Not sure what bit 0x4 is ...
*/
#define KAUAI_FCR_UATA_MAGIC 0x00000004
#define KAUAI_FCR_UATA_RESET_N 0x00000002
#define KAUAI_FCR_UATA_ENABLE 0x00000001
/* Rounded Multiword DMA timings
*
* I gave up finding a generic formula for all controller
* types and instead, built tables based on timing values
* used by Apple in Darwin's implementation.
*/
struct mdma_timings_t {
int accessTime;
int recoveryTime;
int cycleTime;
};
struct mdma_timings_t mdma_timings_33[] =
{
{ 240, 240, 480 },
{ 180, 180, 360 },
{ 135, 135, 270 },
{ 120, 120, 240 },
{ 105, 105, 210 },
{ 90, 90, 180 },
{ 75, 75, 150 },
{ 75, 45, 120 },
{ 0, 0, 0 }
};
struct mdma_timings_t mdma_timings_33k[] =
{
{ 240, 240, 480 },
{ 180, 180, 360 },
{ 150, 150, 300 },
{ 120, 120, 240 },
{ 90, 120, 210 },
{ 90, 90, 180 },
{ 90, 60, 150 },
{ 90, 30, 120 },
{ 0, 0, 0 }
};
struct mdma_timings_t mdma_timings_66[] =
{
{ 240, 240, 480 },
{ 180, 180, 360 },
{ 135, 135, 270 },
{ 120, 120, 240 },
{ 105, 105, 210 },
{ 90, 90, 180 },
{ 90, 75, 165 },
{ 75, 45, 120 },
{ 0, 0, 0 }
};
/* KeyLargo ATA-4 Ultra DMA timings (rounded) */
struct {
int addrSetup; /* ??? */
int rdy2pause;
int wrDataSetup;
} kl66_udma_timings[] =
{
{ 0, 180, 120 }, /* Mode 0 */
{ 0, 150, 90 }, /* 1 */
{ 0, 120, 60 }, /* 2 */
{ 0, 90, 45 }, /* 3 */
{ 0, 90, 30 } /* 4 */
};
/* UniNorth 2 ATA/100 timings */
struct kauai_timing {
int cycle_time;
u32 timing_reg;
};
static struct kauai_timing kauai_pio_timings[] =
{
{ 930 , 0x08000fff },
{ 600 , 0x08000a92 },
{ 383 , 0x0800060f },
{ 360 , 0x08000492 },
{ 330 , 0x0800048f },
{ 300 , 0x080003cf },
{ 270 , 0x080003cc },
{ 240 , 0x0800038b },
{ 239 , 0x0800030c },
{ 180 , 0x05000249 },
{ 120 , 0x04000148 },
{ 0 , 0 },
};
static struct kauai_timing kauai_mdma_timings[] =
{
{ 1260 , 0x00fff000 },
{ 480 , 0x00618000 },
{ 360 , 0x00492000 },
{ 270 , 0x0038e000 },
{ 240 , 0x0030c000 },
{ 210 , 0x002cb000 },
{ 180 , 0x00249000 },
{ 150 , 0x00209000 },
{ 120 , 0x00148000 },
{ 0 , 0 },
};
static struct kauai_timing kauai_udma_timings[] =
{
{ 120 , 0x000070c0 },
{ 90 , 0x00005d80 },
{ 60 , 0x00004a60 },
{ 45 , 0x00003a50 },
{ 30 , 0x00002a30 },
{ 20 , 0x00002921 },
{ 0 , 0 },
};
static struct kauai_timing shasta_pio_timings[] =
{
{ 930 , 0x08000fff },
{ 600 , 0x0A000c97 },
{ 383 , 0x07000712 },
{ 360 , 0x040003cd },
{ 330 , 0x040003cd },
{ 300 , 0x040003cd },
{ 270 , 0x040003cd },
{ 240 , 0x040003cd },
{ 239 , 0x040003cd },
{ 180 , 0x0400028b },
{ 120 , 0x0400010a },
{ 0 , 0 },
};
static struct kauai_timing shasta_mdma_timings[] =
{
{ 1260 , 0x00fff000 },
{ 480 , 0x00820800 },
{ 360 , 0x00820800 },
{ 270 , 0x00820800 },
{ 240 , 0x00820800 },
{ 210 , 0x00820800 },
{ 180 , 0x00820800 },
{ 150 , 0x0028b000 },
{ 120 , 0x001ca000 },
{ 0 , 0 },
};
static struct kauai_timing shasta_udma133_timings[] =
{
{ 120 , 0x00035901, },
{ 90 , 0x000348b1, },
{ 60 , 0x00033881, },
{ 45 , 0x00033861, },
{ 30 , 0x00033841, },
{ 20 , 0x00033031, },
{ 15 , 0x00033021, },
{ 0 , 0 },
};
static inline u32
kauai_lookup_timing(struct kauai_timing* table, int cycle_time)
{
int i;
for (i=0; table[i].cycle_time; i++)
if (cycle_time > table[i+1].cycle_time)
return table[i].timing_reg;
BUG();
return 0;
}
/* allow up to 256 DBDMA commands per xfer */
#define MAX_DCMDS 256
/*
* Wait 1s for disk to answer on IDE bus after a hard reset
* of the device (via GPIO/FCR).
*
* Some devices seem to "pollute" the bus even after dropping
* the BSY bit (typically some combo drives slave on the UDMA
* bus) after a hard reset. Since we hard reset all drives on
* KeyLargo ATA66, we have to keep that delay around. I may end
* up not hard resetting anymore on these and keep the delay only
* for older interfaces instead (we have to reset when coming
* from MacOS...) --BenH.
*/
#define IDE_WAKEUP_DELAY (1*HZ)
static int pmac_ide_init_dma(ide_hwif_t *, const struct ide_port_info *);
#define PMAC_IDE_REG(x) \
((void __iomem *)((drive)->hwif->io_ports.data_addr + (x)))
/*
* Apply the timings of the proper unit (master/slave) to the shared
* timing register when selecting that unit. This version is for
* ASICs with a single timing register
*/
static void pmac_ide_apply_timings(ide_drive_t *drive)
{
ide_hwif_t *hwif = drive->hwif;
pmac_ide_hwif_t *pmif =
(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
if (drive->dn & 1)
writel(pmif->timings[1], PMAC_IDE_REG(IDE_TIMING_CONFIG));
else
writel(pmif->timings[0], PMAC_IDE_REG(IDE_TIMING_CONFIG));
(void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
}
/*
* Apply the timings of the proper unit (master/slave) to the shared
* timing register when selecting that unit. This version is for
* ASICs with a dual timing register (Kauai)
*/
static void pmac_ide_kauai_apply_timings(ide_drive_t *drive)
{
ide_hwif_t *hwif = drive->hwif;
pmac_ide_hwif_t *pmif =
(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
if (drive->dn & 1) {
writel(pmif->timings[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
writel(pmif->timings[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
} else {
writel(pmif->timings[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
writel(pmif->timings[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
}
(void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
}
/*
* Force an update of controller timing values for a given drive
*/
static void
pmac_ide_do_update_timings(ide_drive_t *drive)
{
ide_hwif_t *hwif = drive->hwif;
pmac_ide_hwif_t *pmif =
(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
if (pmif->kind == controller_sh_ata6 ||
pmif->kind == controller_un_ata6 ||
pmif->kind == controller_k2_ata6)
pmac_ide_kauai_apply_timings(drive);
else
pmac_ide_apply_timings(drive);
}
static void pmac_dev_select(ide_drive_t *drive)
{
pmac_ide_apply_timings(drive);
writeb(drive->select | ATA_DEVICE_OBS,
(void __iomem *)drive->hwif->io_ports.device_addr);
}
static void pmac_kauai_dev_select(ide_drive_t *drive)
{
pmac_ide_kauai_apply_timings(drive);
writeb(drive->select | ATA_DEVICE_OBS,
(void __iomem *)drive->hwif->io_ports.device_addr);
}
static void pmac_exec_command(ide_hwif_t *hwif, u8 cmd)
{
writeb(cmd, (void __iomem *)hwif->io_ports.command_addr);
(void)readl((void __iomem *)(hwif->io_ports.data_addr
+ IDE_TIMING_CONFIG));
}
static void pmac_write_devctl(ide_hwif_t *hwif, u8 ctl)
{
writeb(ctl, (void __iomem *)hwif->io_ports.ctl_addr);
(void)readl((void __iomem *)(hwif->io_ports.data_addr
+ IDE_TIMING_CONFIG));
}
/*
* Old tuning functions (called on hdparm -p), sets up drive PIO timings
*/
static void pmac_ide_set_pio_mode(ide_hwif_t *hwif, ide_drive_t *drive)
{
pmac_ide_hwif_t *pmif =
(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
const u8 pio = drive->pio_mode - XFER_PIO_0;
struct ide_timing *tim = ide_timing_find_mode(XFER_PIO_0 + pio);
u32 *timings, t;
unsigned accessTicks, recTicks;
unsigned accessTime, recTime;
unsigned int cycle_time;
/* which drive is it ? */
timings = &pmif->timings[drive->dn & 1];
t = *timings;
cycle_time = ide_pio_cycle_time(drive, pio);
switch (pmif->kind) {
case controller_sh_ata6: {
/* 133Mhz cell */
u32 tr = kauai_lookup_timing(shasta_pio_timings, cycle_time);
t = (t & ~TR_133_PIOREG_PIO_MASK) | tr;
break;
}
case controller_un_ata6:
case controller_k2_ata6: {
/* 100Mhz cell */
u32 tr = kauai_lookup_timing(kauai_pio_timings, cycle_time);
t = (t & ~TR_100_PIOREG_PIO_MASK) | tr;
break;
}
case controller_kl_ata4:
/* 66Mhz cell */
recTime = cycle_time - tim->active - tim->setup;
recTime = max(recTime, 150U);
accessTime = tim->active;
accessTime = max(accessTime, 150U);
accessTicks = SYSCLK_TICKS_66(accessTime);
accessTicks = min(accessTicks, 0x1fU);
recTicks = SYSCLK_TICKS_66(recTime);
recTicks = min(recTicks, 0x1fU);
t = (t & ~TR_66_PIO_MASK) |
(accessTicks << TR_66_PIO_ACCESS_SHIFT) |
(recTicks << TR_66_PIO_RECOVERY_SHIFT);
break;
default: {
/* 33Mhz cell */
int ebit = 0;
recTime = cycle_time - tim->active - tim->setup;
recTime = max(recTime, 150U);
accessTime = tim->active;
accessTime = max(accessTime, 150U);
accessTicks = SYSCLK_TICKS(accessTime);
accessTicks = min(accessTicks, 0x1fU);
accessTicks = max(accessTicks, 4U);
recTicks = SYSCLK_TICKS(recTime);
recTicks = min(recTicks, 0x1fU);
recTicks = max(recTicks, 5U) - 4;
if (recTicks > 9) {
recTicks--; /* guess, but it's only for PIO0, so... */
ebit = 1;
}
t = (t & ~TR_33_PIO_MASK) |
(accessTicks << TR_33_PIO_ACCESS_SHIFT) |
(recTicks << TR_33_PIO_RECOVERY_SHIFT);
if (ebit)
t |= TR_33_PIO_E;
break;
}
}
#ifdef IDE_PMAC_DEBUG
printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n",
drive->name, pio, *timings);
#endif
*timings = t;
pmac_ide_do_update_timings(drive);
}
/*
* Calculate KeyLargo ATA/66 UDMA timings
*/
static int
set_timings_udma_ata4(u32 *timings, u8 speed)
{
unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks;
if (speed > XFER_UDMA_4)
return 1;
rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause);
wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup);
addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup);
*timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) |
(wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) |
(rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) |
(addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) |
TR_66_UDMA_EN;
#ifdef IDE_PMAC_DEBUG
printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
speed & 0xf, *timings);
#endif
return 0;
}
/*
* Calculate Kauai ATA/100 UDMA timings
*/
static int
set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed)
{
struct ide_timing *t = ide_timing_find_mode(speed);
u32 tr;
if (speed > XFER_UDMA_5 || t == NULL)
return 1;
tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma);
*ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr;
*ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN;
return 0;
}
/*
* Calculate Shasta ATA/133 UDMA timings
*/
static int
set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed)
{
struct ide_timing *t = ide_timing_find_mode(speed);
u32 tr;
if (speed > XFER_UDMA_6 || t == NULL)
return 1;
tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma);
*ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr;
*ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN;
return 0;
}
/*
* Calculate MDMA timings for all cells
*/
static void
set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2,
u8 speed)
{
u16 *id = drive->id;
int cycleTime, accessTime = 0, recTime = 0;
unsigned accessTicks, recTicks;
struct mdma_timings_t* tm = NULL;
int i;
/* Get default cycle time for mode */
switch(speed & 0xf) {
case 0: cycleTime = 480; break;
case 1: cycleTime = 150; break;
case 2: cycleTime = 120; break;
default:
BUG();
break;
}
/* Check if drive provides explicit DMA cycle time */
if ((id[ATA_ID_FIELD_VALID] & 2) && id[ATA_ID_EIDE_DMA_TIME])
cycleTime = max_t(int, id[ATA_ID_EIDE_DMA_TIME], cycleTime);
/* OHare limits according to some old Apple sources */
if ((intf_type == controller_ohare) && (cycleTime < 150))
cycleTime = 150;
/* Get the proper timing array for this controller */
switch(intf_type) {
case controller_sh_ata6:
case controller_un_ata6:
case controller_k2_ata6:
break;
case controller_kl_ata4:
tm = mdma_timings_66;
break;
case controller_kl_ata3:
tm = mdma_timings_33k;
break;
default:
tm = mdma_timings_33;
break;
}
if (tm != NULL) {
/* Lookup matching access & recovery times */
i = -1;
for (;;) {
if (tm[i+1].cycleTime < cycleTime)
break;
i++;
}
cycleTime = tm[i].cycleTime;
accessTime = tm[i].accessTime;
recTime = tm[i].recoveryTime;
#ifdef IDE_PMAC_DEBUG
printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
drive->name, cycleTime, accessTime, recTime);
#endif
}
switch(intf_type) {
case controller_sh_ata6: {
/* 133Mhz cell */
u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime);
*timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr;
*timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN;
}
case controller_un_ata6:
case controller_k2_ata6: {
/* 100Mhz cell */
u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime);
*timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr;
*timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN;
}
break;
case controller_kl_ata4:
/* 66Mhz cell */
accessTicks = SYSCLK_TICKS_66(accessTime);
accessTicks = min(accessTicks, 0x1fU);
accessTicks = max(accessTicks, 0x1U);
recTicks = SYSCLK_TICKS_66(recTime);
recTicks = min(recTicks, 0x1fU);
recTicks = max(recTicks, 0x3U);
/* Clear out mdma bits and disable udma */
*timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) |
(accessTicks << TR_66_MDMA_ACCESS_SHIFT) |
(recTicks << TR_66_MDMA_RECOVERY_SHIFT);
break;
case controller_kl_ata3:
/* 33Mhz cell on KeyLargo */
accessTicks = SYSCLK_TICKS(accessTime);
accessTicks = max(accessTicks, 1U);
accessTicks = min(accessTicks, 0x1fU);
accessTime = accessTicks * IDE_SYSCLK_NS;
recTicks = SYSCLK_TICKS(recTime);
recTicks = max(recTicks, 1U);
recTicks = min(recTicks, 0x1fU);
*timings = ((*timings) & ~TR_33_MDMA_MASK) |
(accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
(recTicks << TR_33_MDMA_RECOVERY_SHIFT);
break;
default: {
/* 33Mhz cell on others */
int halfTick = 0;
int origAccessTime = accessTime;
int origRecTime = recTime;
accessTicks = SYSCLK_TICKS(accessTime);
accessTicks = max(accessTicks, 1U);
accessTicks = min(accessTicks, 0x1fU);
accessTime = accessTicks * IDE_SYSCLK_NS;
recTicks = SYSCLK_TICKS(recTime);
recTicks = max(recTicks, 2U) - 1;
recTicks = min(recTicks, 0x1fU);
recTime = (recTicks + 1) * IDE_SYSCLK_NS;
if ((accessTicks > 1) &&
((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) &&
((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) {
halfTick = 1;
accessTicks--;
}
*timings = ((*timings) & ~TR_33_MDMA_MASK) |
(accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
(recTicks << TR_33_MDMA_RECOVERY_SHIFT);
if (halfTick)
*timings |= TR_33_MDMA_HALFTICK;
}
}
#ifdef IDE_PMAC_DEBUG
printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
drive->name, speed & 0xf, *timings);
#endif
}
static void pmac_ide_set_dma_mode(ide_hwif_t *hwif, ide_drive_t *drive)
{
pmac_ide_hwif_t *pmif =
(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
int ret = 0;
u32 *timings, *timings2, tl[2];
u8 unit = drive->dn & 1;
const u8 speed = drive->dma_mode;
timings = &pmif->timings[unit];
timings2 = &pmif->timings[unit+2];
/* Copy timings to local image */
tl[0] = *timings;
tl[1] = *timings2;
if (speed >= XFER_UDMA_0) {
if (pmif->kind == controller_kl_ata4)
ret = set_timings_udma_ata4(&tl[0], speed);
else if (pmif->kind == controller_un_ata6
|| pmif->kind == controller_k2_ata6)
ret = set_timings_udma_ata6(&tl[0], &tl[1], speed);
else if (pmif->kind == controller_sh_ata6)
ret = set_timings_udma_shasta(&tl[0], &tl[1], speed);
else
ret = -1;
} else
set_timings_mdma(drive, pmif->kind, &tl[0], &tl[1], speed);
if (ret)
return;
/* Apply timings to controller */
*timings = tl[0];
*timings2 = tl[1];
pmac_ide_do_update_timings(drive);
}
/*
* Blast some well known "safe" values to the timing registers at init or
* wakeup from sleep time, before we do real calculation
*/
static void
sanitize_timings(pmac_ide_hwif_t *pmif)
{
unsigned int value, value2 = 0;
switch(pmif->kind) {
case controller_sh_ata6:
value = 0x0a820c97;
value2 = 0x00033031;
break;
case controller_un_ata6:
case controller_k2_ata6:
value = 0x08618a92;
value2 = 0x00002921;
break;
case controller_kl_ata4:
value = 0x0008438c;
break;
case controller_kl_ata3:
value = 0x00084526;
break;
case controller_heathrow:
case controller_ohare:
default:
value = 0x00074526;
break;
}
pmif->timings[0] = pmif->timings[1] = value;
pmif->timings[2] = pmif->timings[3] = value2;
}
static int on_media_bay(pmac_ide_hwif_t *pmif)
{
return pmif->mdev && pmif->mdev->media_bay != NULL;
}
/* Suspend call back, should be called after the child devices
* have actually been suspended
*/
static int pmac_ide_do_suspend(pmac_ide_hwif_t *pmif)
{
/* We clear the timings */
pmif->timings[0] = 0;
pmif->timings[1] = 0;
disable_irq(pmif->irq);
/* The media bay will handle itself just fine */
if (on_media_bay(pmif))
return 0;
/* Kauai has bus control FCRs directly here */
if (pmif->kauai_fcr) {
u32 fcr = readl(pmif->kauai_fcr);
fcr &= ~(KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE);
writel(fcr, pmif->kauai_fcr);
}
/* Disable the bus on older machines and the cell on kauai */
ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id,
0);
return 0;
}
/* Resume call back, should be called before the child devices
* are resumed
*/
static int pmac_ide_do_resume(pmac_ide_hwif_t *pmif)
{
/* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
if (!on_media_bay(pmif)) {
ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1);
ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1);
msleep(10);
ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0);
/* Kauai has it different */
if (pmif->kauai_fcr) {
u32 fcr = readl(pmif->kauai_fcr);
fcr |= KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE;
writel(fcr, pmif->kauai_fcr);
}
msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
}
/* Sanitize drive timings */
sanitize_timings(pmif);
enable_irq(pmif->irq);
return 0;
}
static u8 pmac_ide_cable_detect(ide_hwif_t *hwif)
{
pmac_ide_hwif_t *pmif =
(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
struct device_node *np = pmif->node;
const char *cable = of_get_property(np, "cable-type", NULL);
struct device_node *root = of_find_node_by_path("/");
const char *model = of_get_property(root, "model", NULL);
/* Get cable type from device-tree. */
if (cable && !strncmp(cable, "80-", 3)) {
/* Some drives fail to detect 80c cable in PowerBook */
/* These machine use proprietary short IDE cable anyway */
if (!strncmp(model, "PowerBook", 9))
return ATA_CBL_PATA40_SHORT;
else
return ATA_CBL_PATA80;
}
/*
* G5's seem to have incorrect cable type in device-tree.
* Let's assume they have a 80 conductor cable, this seem
* to be always the case unless the user mucked around.
*/
if (of_device_is_compatible(np, "K2-UATA") ||
of_device_is_compatible(np, "shasta-ata"))
return ATA_CBL_PATA80;
return ATA_CBL_PATA40;
}
static void pmac_ide_init_dev(ide_drive_t *drive)
{
ide_hwif_t *hwif = drive->hwif;
pmac_ide_hwif_t *pmif =
(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
if (on_media_bay(pmif)) {
if (check_media_bay(pmif->mdev->media_bay) == MB_CD) {
drive->dev_flags &= ~IDE_DFLAG_NOPROBE;
return;
}
drive->dev_flags |= IDE_DFLAG_NOPROBE;
}
}
static const struct ide_tp_ops pmac_tp_ops = {
.exec_command = pmac_exec_command,
.read_status = ide_read_status,
.read_altstatus = ide_read_altstatus,
.write_devctl = pmac_write_devctl,
.dev_select = pmac_dev_select,
.tf_load = ide_tf_load,
.tf_read = ide_tf_read,
.input_data = ide_input_data,
.output_data = ide_output_data,
};
static const struct ide_tp_ops pmac_ata6_tp_ops = {
.exec_command = pmac_exec_command,
.read_status = ide_read_status,
.read_altstatus = ide_read_altstatus,
.write_devctl = pmac_write_devctl,
.dev_select = pmac_kauai_dev_select,
.tf_load = ide_tf_load,
.tf_read = ide_tf_read,
.input_data = ide_input_data,
.output_data = ide_output_data,
};
static const struct ide_port_ops pmac_ide_ata4_port_ops = {
.init_dev = pmac_ide_init_dev,
.set_pio_mode = pmac_ide_set_pio_mode,
.set_dma_mode = pmac_ide_set_dma_mode,
.cable_detect = pmac_ide_cable_detect,
};
static const struct ide_port_ops pmac_ide_port_ops = {
.init_dev = pmac_ide_init_dev,
.set_pio_mode = pmac_ide_set_pio_mode,
.set_dma_mode = pmac_ide_set_dma_mode,
};
static const struct ide_dma_ops pmac_dma_ops;
static const struct ide_port_info pmac_port_info = {
.name = DRV_NAME,
.init_dma = pmac_ide_init_dma,
.chipset = ide_pmac,
.tp_ops = &pmac_tp_ops,
.port_ops = &pmac_ide_port_ops,
.dma_ops = &pmac_dma_ops,
.host_flags = IDE_HFLAG_SET_PIO_MODE_KEEP_DMA |
IDE_HFLAG_POST_SET_MODE |
IDE_HFLAG_MMIO |
IDE_HFLAG_UNMASK_IRQS,
.pio_mask = ATA_PIO4,
.mwdma_mask = ATA_MWDMA2,
};
/*
* Setup, register & probe an IDE channel driven by this driver, this is
* called by one of the 2 probe functions (macio or PCI).
*/
static int __devinit pmac_ide_setup_device(pmac_ide_hwif_t *pmif,
struct ide_hw *hw)
{
struct device_node *np = pmif->node;
const int *bidp;
struct ide_host *host;
ide_hwif_t *hwif;
struct ide_hw *hws[] = { hw };
struct ide_port_info d = pmac_port_info;
int rc;
pmif->broken_dma = pmif->broken_dma_warn = 0;
if (of_device_is_compatible(np, "shasta-ata")) {
pmif->kind = controller_sh_ata6;
d.tp_ops = &pmac_ata6_tp_ops;
d.port_ops = &pmac_ide_ata4_port_ops;
d.udma_mask = ATA_UDMA6;
} else if (of_device_is_compatible(np, "kauai-ata")) {
pmif->kind = controller_un_ata6;
d.tp_ops = &pmac_ata6_tp_ops;
d.port_ops = &pmac_ide_ata4_port_ops;
d.udma_mask = ATA_UDMA5;
} else if (of_device_is_compatible(np, "K2-UATA")) {
pmif->kind = controller_k2_ata6;
d.tp_ops = &pmac_ata6_tp_ops;
d.port_ops = &pmac_ide_ata4_port_ops;
d.udma_mask = ATA_UDMA5;
} else if (of_device_is_compatible(np, "keylargo-ata")) {
if (strcmp(np->name, "ata-4") == 0) {
pmif->kind = controller_kl_ata4;
d.port_ops = &pmac_ide_ata4_port_ops;
d.udma_mask = ATA_UDMA4;
} else
pmif->kind = controller_kl_ata3;
} else if (of_device_is_compatible(np, "heathrow-ata")) {
pmif->kind = controller_heathrow;
} else {
pmif->kind = controller_ohare;
pmif->broken_dma = 1;
}
bidp = of_get_property(np, "AAPL,bus-id", NULL);
pmif->aapl_bus_id = bidp ? *bidp : 0;
/* On Kauai-type controllers, we make sure the FCR is correct */
if (pmif->kauai_fcr)
writel(KAUAI_FCR_UATA_MAGIC |
KAUAI_FCR_UATA_RESET_N |
KAUAI_FCR_UATA_ENABLE, pmif->kauai_fcr);
/* Make sure we have sane timings */
sanitize_timings(pmif);
/* If we are on a media bay, wait for it to settle and lock it */
if (pmif->mdev)
lock_media_bay(pmif->mdev->media_bay);
host = ide_host_alloc(&d, hws, 1);
if (host == NULL) {
rc = -ENOMEM;
goto bail;
}
hwif = pmif->hwif = host->ports[0];
if (on_media_bay(pmif)) {
/* Fixup bus ID for media bay */
if (!bidp)
pmif->aapl_bus_id = 1;
} else if (pmif->kind == controller_ohare) {
/* The code below is having trouble on some ohare machines
* (timing related ?). Until I can put my hand on one of these
* units, I keep the old way
*/
ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1);
} else {
/* This is necessary to enable IDE when net-booting */
ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1);
ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1);
msleep(10);
ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0);
msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
}
printk(KERN_INFO DRV_NAME ": Found Apple %s controller (%s), "
"bus ID %d%s, irq %d\n", model_name[pmif->kind],
pmif->mdev ? "macio" : "PCI", pmif->aapl_bus_id,
on_media_bay(pmif) ? " (mediabay)" : "", hw->irq);
rc = ide_host_register(host, &d, hws);
if (rc)
pmif->hwif = NULL;
if (pmif->mdev)
unlock_media_bay(pmif->mdev->media_bay);
bail:
if (rc && host)
ide_host_free(host);
return rc;
}
static void __devinit pmac_ide_init_ports(struct ide_hw *hw, unsigned long base)
{
int i;
for (i = 0; i < 8; ++i)
hw->io_ports_array[i] = base + i * 0x10;
hw->io_ports.ctl_addr = base + 0x160;
}
/*
* Attach to a macio probed interface
*/
static int __devinit
pmac_ide_macio_attach(struct macio_dev *mdev, const struct of_device_id *match)
{
void __iomem *base;
unsigned long regbase;
pmac_ide_hwif_t *pmif;
int irq, rc;
struct ide_hw hw;
pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
if (pmif == NULL)
return -ENOMEM;
if (macio_resource_count(mdev) == 0) {
printk(KERN_WARNING "ide-pmac: no address for %s\n",
mdev->ofdev.dev.of_node->full_name);
rc = -ENXIO;
goto out_free_pmif;
}
/* Request memory resource for IO ports */
if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) {
printk(KERN_ERR "ide-pmac: can't request MMIO resource for "
"%s!\n", mdev->ofdev.dev.of_node->full_name);
rc = -EBUSY;
goto out_free_pmif;
}
/* XXX This is bogus. Should be fixed in the registry by checking
* the kind of host interrupt controller, a bit like gatwick
* fixes in irq.c. That works well enough for the single case
* where that happens though...
*/
if (macio_irq_count(mdev) == 0) {
printk(KERN_WARNING "ide-pmac: no intrs for device %s, using "
"13\n", mdev->ofdev.dev.of_node->full_name);
irq = irq_create_mapping(NULL, 13);
} else
irq = macio_irq(mdev, 0);
base = ioremap(macio_resource_start(mdev, 0), 0x400);
regbase = (unsigned long) base;
pmif->mdev = mdev;
pmif->node = mdev->ofdev.dev.of_node;
pmif->regbase = regbase;
pmif->irq = irq;
pmif->kauai_fcr = NULL;
if (macio_resource_count(mdev) >= 2) {
if (macio_request_resource(mdev, 1, "ide-pmac (dma)"))
printk(KERN_WARNING "ide-pmac: can't request DMA "
"resource for %s!\n",
mdev->ofdev.dev.of_node->full_name);
else
pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000);
} else
pmif->dma_regs = NULL;
dev_set_drvdata(&mdev->ofdev.dev, pmif);
memset(&hw, 0, sizeof(hw));
pmac_ide_init_ports(&hw, pmif->regbase);
hw.irq = irq;
hw.dev = &mdev->bus->pdev->dev;
hw.parent = &mdev->ofdev.dev;
rc = pmac_ide_setup_device(pmif, &hw);
if (rc != 0) {
/* The inteface is released to the common IDE layer */
dev_set_drvdata(&mdev->ofdev.dev, NULL);
iounmap(base);
if (pmif->dma_regs) {
iounmap(pmif->dma_regs);
macio_release_resource(mdev, 1);
}
macio_release_resource(mdev, 0);
kfree(pmif);
}
return rc;
out_free_pmif:
kfree(pmif);
return rc;
}
static int
pmac_ide_macio_suspend(struct macio_dev *mdev, pm_message_t mesg)
{
pmac_ide_hwif_t *pmif =
(pmac_ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
int rc = 0;
if (mesg.event != mdev->ofdev.dev.power.power_state.event
&& (mesg.event & PM_EVENT_SLEEP)) {
rc = pmac_ide_do_suspend(pmif);
if (rc == 0)
mdev->ofdev.dev.power.power_state = mesg;
}
return rc;
}
static int
pmac_ide_macio_resume(struct macio_dev *mdev)
{
pmac_ide_hwif_t *pmif =
(pmac_ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
int rc = 0;
if (mdev->ofdev.dev.power.power_state.event != PM_EVENT_ON) {
rc = pmac_ide_do_resume(pmif);
if (rc == 0)
mdev->ofdev.dev.power.power_state = PMSG_ON;
}
return rc;
}
/*
* Attach to a PCI probed interface
*/
static int __devinit
pmac_ide_pci_attach(struct pci_dev *pdev, const struct pci_device_id *id)
{
struct device_node *np;
pmac_ide_hwif_t *pmif;
void __iomem *base;
unsigned long rbase, rlen;
int rc;
struct ide_hw hw;
np = pci_device_to_OF_node(pdev);
if (np == NULL) {
printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
return -ENODEV;
}
pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
if (pmif == NULL)
return -ENOMEM;
if (pci_enable_device(pdev)) {
printk(KERN_WARNING "ide-pmac: Can't enable PCI device for "
"%s\n", np->full_name);
rc = -ENXIO;
goto out_free_pmif;
}
pci_set_master(pdev);
if (pci_request_regions(pdev, "Kauai ATA")) {
printk(KERN_ERR "ide-pmac: Cannot obtain PCI resources for "
"%s\n", np->full_name);
rc = -ENXIO;
goto out_free_pmif;
}
pmif->mdev = NULL;
pmif->node = np;
rbase = pci_resource_start(pdev, 0);
rlen = pci_resource_len(pdev, 0);
base = ioremap(rbase, rlen);
pmif->regbase = (unsigned long) base + 0x2000;
pmif->dma_regs = base + 0x1000;
pmif->kauai_fcr = base;
pmif->irq = pdev->irq;
pci_set_drvdata(pdev, pmif);
memset(&hw, 0, sizeof(hw));
pmac_ide_init_ports(&hw, pmif->regbase);
hw.irq = pdev->irq;
hw.dev = &pdev->dev;
rc = pmac_ide_setup_device(pmif, &hw);
if (rc != 0) {
/* The inteface is released to the common IDE layer */
pci_set_drvdata(pdev, NULL);
iounmap(base);
pci_release_regions(pdev);
kfree(pmif);
}
return rc;
out_free_pmif:
kfree(pmif);
return rc;
}
static int
pmac_ide_pci_suspend(struct pci_dev *pdev, pm_message_t mesg)
{
pmac_ide_hwif_t *pmif = pci_get_drvdata(pdev);
int rc = 0;
if (mesg.event != pdev->dev.power.power_state.event
&& (mesg.event & PM_EVENT_SLEEP)) {
rc = pmac_ide_do_suspend(pmif);
if (rc == 0)
pdev->dev.power.power_state = mesg;
}
return rc;
}
static int
pmac_ide_pci_resume(struct pci_dev *pdev)
{
pmac_ide_hwif_t *pmif = pci_get_drvdata(pdev);
int rc = 0;
if (pdev->dev.power.power_state.event != PM_EVENT_ON) {
rc = pmac_ide_do_resume(pmif);
if (rc == 0)
pdev->dev.power.power_state = PMSG_ON;
}
return rc;
}
#ifdef CONFIG_PMAC_MEDIABAY
static void pmac_ide_macio_mb_event(struct macio_dev* mdev, int mb_state)
{
pmac_ide_hwif_t *pmif =
(pmac_ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
switch(mb_state) {
case MB_CD:
if (!pmif->hwif->present)
ide_port_scan(pmif->hwif);
break;
default:
if (pmif->hwif->present)
ide_port_unregister_devices(pmif->hwif);
}
}
#endif /* CONFIG_PMAC_MEDIABAY */
static struct of_device_id pmac_ide_macio_match[] =
{
{
.name = "IDE",
},
{
.name = "ATA",
},
{
.type = "ide",
},
{
.type = "ata",
},
{},
};
static struct macio_driver pmac_ide_macio_driver =
{
.driver = {
.name = "ide-pmac",
.owner = THIS_MODULE,
.of_match_table = pmac_ide_macio_match,
},
.probe = pmac_ide_macio_attach,
.suspend = pmac_ide_macio_suspend,
.resume = pmac_ide_macio_resume,
#ifdef CONFIG_PMAC_MEDIABAY
.mediabay_event = pmac_ide_macio_mb_event,
#endif
};
static const struct pci_device_id pmac_ide_pci_match[] = {
{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_UNI_N_ATA), 0 },
{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID_ATA100), 0 },
{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_K2_ATA100), 0 },
{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_SH_ATA), 0 },
{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID2_ATA), 0 },
{},
};
static struct pci_driver pmac_ide_pci_driver = {
.name = "ide-pmac",
.id_table = pmac_ide_pci_match,
.probe = pmac_ide_pci_attach,
.suspend = pmac_ide_pci_suspend,
.resume = pmac_ide_pci_resume,
};
MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match);
int __init pmac_ide_probe(void)
{
int error;
if (!machine_is(powermac))
return -ENODEV;
#ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
error = pci_register_driver(&pmac_ide_pci_driver);
if (error)
goto out;
error = macio_register_driver(&pmac_ide_macio_driver);
if (error) {
pci_unregister_driver(&pmac_ide_pci_driver);
goto out;
}
#else
error = macio_register_driver(&pmac_ide_macio_driver);
if (error)
goto out;
error = pci_register_driver(&pmac_ide_pci_driver);
if (error) {
macio_unregister_driver(&pmac_ide_macio_driver);
goto out;
}
#endif
out:
return error;
}
/*
* pmac_ide_build_dmatable builds the DBDMA command list
* for a transfer and sets the DBDMA channel to point to it.
*/
static int pmac_ide_build_dmatable(ide_drive_t *drive, struct ide_cmd *cmd)
{
ide_hwif_t *hwif = drive->hwif;
pmac_ide_hwif_t *pmif =
(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
struct dbdma_cmd *table;
volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
struct scatterlist *sg;
int wr = !!(cmd->tf_flags & IDE_TFLAG_WRITE);
int i = cmd->sg_nents, count = 0;
/* DMA table is already aligned */
table = (struct dbdma_cmd *) pmif->dma_table_cpu;
/* Make sure DMA controller is stopped (necessary ?) */
writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control);
while (readl(&dma->status) & RUN)
udelay(1);
/* Build DBDMA commands list */
sg = hwif->sg_table;
while (i && sg_dma_len(sg)) {
u32 cur_addr;
u32 cur_len;
cur_addr = sg_dma_address(sg);
cur_len = sg_dma_len(sg);
if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) {
if (pmif->broken_dma_warn == 0) {
printk(KERN_WARNING "%s: DMA on non aligned address, "
"switching to PIO on Ohare chipset\n", drive->name);
pmif->broken_dma_warn = 1;
}
return 0;
}
while (cur_len) {
unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00;
if (count++ >= MAX_DCMDS) {
printk(KERN_WARNING "%s: DMA table too small\n",
drive->name);
return 0;
}
st_le16(&table->command, wr? OUTPUT_MORE: INPUT_MORE);
st_le16(&table->req_count, tc);
st_le32(&table->phy_addr, cur_addr);
table->cmd_dep = 0;
table->xfer_status = 0;
table->res_count = 0;
cur_addr += tc;
cur_len -= tc;
++table;
}
sg = sg_next(sg);
i--;
}
/* convert the last command to an input/output last command */
if (count) {
st_le16(&table[-1].command, wr? OUTPUT_LAST: INPUT_LAST);
/* add the stop command to the end of the list */
memset(table, 0, sizeof(struct dbdma_cmd));
st_le16(&table->command, DBDMA_STOP);
mb();
writel(hwif->dmatable_dma, &dma->cmdptr);
return 1;
}
printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name);
return 0; /* revert to PIO for this request */
}
/*
* Prepare a DMA transfer. We build the DMA table, adjust the timings for
* a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
*/
static int pmac_ide_dma_setup(ide_drive_t *drive, struct ide_cmd *cmd)
{
ide_hwif_t *hwif = drive->hwif;
pmac_ide_hwif_t *pmif =
(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
u8 unit = drive->dn & 1, ata4 = (pmif->kind == controller_kl_ata4);
u8 write = !!(cmd->tf_flags & IDE_TFLAG_WRITE);
if (pmac_ide_build_dmatable(drive, cmd) == 0)
return 1;
/* Apple adds 60ns to wrDataSetup on reads */
if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) {
writel(pmif->timings[unit] + (write ? 0 : 0x00800000UL),
PMAC_IDE_REG(IDE_TIMING_CONFIG));
(void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
}
return 0;
}
/*
* Kick the DMA controller into life after the DMA command has been issued
* to the drive.
*/
static void
pmac_ide_dma_start(ide_drive_t *drive)
{
ide_hwif_t *hwif = drive->hwif;
pmac_ide_hwif_t *pmif =
(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
volatile struct dbdma_regs __iomem *dma;
dma = pmif->dma_regs;
writel((RUN << 16) | RUN, &dma->control);
/* Make sure it gets to the controller right now */
(void)readl(&dma->control);
}
/*
* After a DMA transfer, make sure the controller is stopped
*/
static int
pmac_ide_dma_end (ide_drive_t *drive)
{
ide_hwif_t *hwif = drive->hwif;
pmac_ide_hwif_t *pmif =
(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
u32 dstat;
dstat = readl(&dma->status);
writel(((RUN|WAKE|DEAD) << 16), &dma->control);
/* verify good dma status. we don't check for ACTIVE beeing 0. We should...
* in theory, but with ATAPI decices doing buffer underruns, that would
* cause us to disable DMA, which isn't what we want
*/
return (dstat & (RUN|DEAD)) != RUN;
}
/*
* Check out that the interrupt we got was for us. We can't always know this
* for sure with those Apple interfaces (well, we could on the recent ones but
* that's not implemented yet), on the other hand, we don't have shared interrupts
* so it's not really a problem
*/
static int
pmac_ide_dma_test_irq (ide_drive_t *drive)
{
ide_hwif_t *hwif = drive->hwif;
pmac_ide_hwif_t *pmif =
(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
unsigned long status, timeout;
/* We have to things to deal with here:
*
* - The dbdma won't stop if the command was started
* but completed with an error without transferring all
* datas. This happens when bad blocks are met during
* a multi-block transfer.
*
* - The dbdma fifo hasn't yet finished flushing to
* to system memory when the disk interrupt occurs.
*
*/
/* If ACTIVE is cleared, the STOP command have passed and
* transfer is complete.
*/
status = readl(&dma->status);
if (!(status & ACTIVE))
return 1;
/* If dbdma didn't execute the STOP command yet, the
* active bit is still set. We consider that we aren't
* sharing interrupts (which is hopefully the case with
* those controllers) and so we just try to flush the
* channel for pending data in the fifo
*/
udelay(1);
writel((FLUSH << 16) | FLUSH, &dma->control);
timeout = 0;
for (;;) {
udelay(1);
status = readl(&dma->status);
if ((status & FLUSH) == 0)
break;
if (++timeout > 100) {
printk(KERN_WARNING "ide%d, ide_dma_test_irq timeout flushing channel\n",
hwif->index);
break;
}
}
return 1;
}
static void pmac_ide_dma_host_set(ide_drive_t *drive, int on)
{
}
static void
pmac_ide_dma_lost_irq (ide_drive_t *drive)
{
ide_hwif_t *hwif = drive->hwif;
pmac_ide_hwif_t *pmif =
(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
unsigned long status = readl(&dma->status);
printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status);
}
static const struct ide_dma_ops pmac_dma_ops = {
.dma_host_set = pmac_ide_dma_host_set,
.dma_setup = pmac_ide_dma_setup,
.dma_start = pmac_ide_dma_start,
.dma_end = pmac_ide_dma_end,
.dma_test_irq = pmac_ide_dma_test_irq,
.dma_lost_irq = pmac_ide_dma_lost_irq,
};
/*
* Allocate the data structures needed for using DMA with an interface
* and fill the proper list of functions pointers
*/
static int __devinit pmac_ide_init_dma(ide_hwif_t *hwif,
const struct ide_port_info *d)
{
pmac_ide_hwif_t *pmif =
(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
struct pci_dev *dev = to_pci_dev(hwif->dev);
/* We won't need pci_dev if we switch to generic consistent
* DMA routines ...
*/
if (dev == NULL || pmif->dma_regs == 0)
return -ENODEV;
/*
* Allocate space for the DBDMA commands.
* The +2 is +1 for the stop command and +1 to allow for
* aligning the start address to a multiple of 16 bytes.
*/
pmif->dma_table_cpu = pci_alloc_consistent(
dev,
(MAX_DCMDS + 2) * sizeof(struct dbdma_cmd),
&hwif->dmatable_dma);
if (pmif->dma_table_cpu == NULL) {
printk(KERN_ERR "%s: unable to allocate DMA command list\n",
hwif->name);
return -ENOMEM;
}
hwif->sg_max_nents = MAX_DCMDS;
return 0;
}
module_init(pmac_ide_probe);
MODULE_LICENSE("GPL");