pkgsrc/math/fftw/buildlink2.mk

26 lines
669 B
Makefile
Raw Normal View History

# $NetBSD: buildlink2.mk,v 1.4 2003/06/05 18:06:57 jmmv Exp $
2002-12-14 18:56:18 +01:00
#
# This Makefile fragment is included by packages that use fftw.
#
# This file was created automatically using createbuildlink 2.2.
#
.if !defined(FFTW_BUILDLINK2_MK)
FFTW_BUILDLINK2_MK= # defined
BUILDLINK_PACKAGES+= fftw
Update to version 3.0. Major goals of this release: * Speed: often 20% or more faster than FFTW 2.x, even without SIMD (see below). * Complete rewrite, to make it easier to add new algorithms and transforms. * New API, to support more general semantics. Other enhancements: * SIMD acceleration on supporting CPUs (SSE, SSE2, 3DNow!, and AltiVec). (With special thanks to Franz Franchetti for many experimental prototypes and to Stefan Kral for the vectorizing generator from fftwgel.) * True in-place 1d transforms of large sizes (as well as compressed twiddle tables for additional memory/cache savings). * More arbitrary placement of real & imaginary data, e.g. including interleaved (as in FFTW 2.x) as well as separate real/imag arrays. * Efficient prime-size transforms of real data. * Multidimensional transforms can operate on a subset of a larger matrix, and/or transform selected dimensions of a multidimensional array. * By popular demand, simultaneous linking to double precision (fftw), single precision (fftwf), and long-double precision (fftwl) versions of FFTW is now supported. * Cycle counters (on all modern CPUs) are exploited to speed planning. * Efficient transforms of real even/odd arrays, a.k.a. discrete cosine/sine transforms (types I-IV). (Currently work via pre/post processing of real transforms, ala FFTPACK, so are not optimal.) * DHTs (Discrete Hartley Transforms), again via post-processing of real transforms (and thus suboptimal, for now). * Support for linking to just those parts of FFTW that you need, greatly reducing the size of statically linked programs when only a limited set of transform sizes/types are required. * Canonical global wisdom file (/etc/fftw/wisdom) on Unix, along with a command-line tool (fftw-wisdom) to generate/update it. * Fortran API can be used with both g77 and non-g77 compilers simultaneously. * Multi-threaded version has optional OpenMP support. * Authors' good looks have greatly improved with age.
2003-04-30 00:48:45 +02:00
BUILDLINK_DEPENDS.fftw?= fftw>=3.0
2002-12-14 18:56:18 +01:00
BUILDLINK_PKGSRCDIR.fftw?= ../../math/fftw
EVAL_PREFIX+= BUILDLINK_PREFIX.fftw=fftw
BUILDLINK_PREFIX.fftw_DEFAULT= ${LOCALBASE}
Update to version 3.0. Major goals of this release: * Speed: often 20% or more faster than FFTW 2.x, even without SIMD (see below). * Complete rewrite, to make it easier to add new algorithms and transforms. * New API, to support more general semantics. Other enhancements: * SIMD acceleration on supporting CPUs (SSE, SSE2, 3DNow!, and AltiVec). (With special thanks to Franz Franchetti for many experimental prototypes and to Stefan Kral for the vectorizing generator from fftwgel.) * True in-place 1d transforms of large sizes (as well as compressed twiddle tables for additional memory/cache savings). * More arbitrary placement of real & imaginary data, e.g. including interleaved (as in FFTW 2.x) as well as separate real/imag arrays. * Efficient prime-size transforms of real data. * Multidimensional transforms can operate on a subset of a larger matrix, and/or transform selected dimensions of a multidimensional array. * By popular demand, simultaneous linking to double precision (fftw), single precision (fftwf), and long-double precision (fftwl) versions of FFTW is now supported. * Cycle counters (on all modern CPUs) are exploited to speed planning. * Efficient transforms of real even/odd arrays, a.k.a. discrete cosine/sine transforms (types I-IV). (Currently work via pre/post processing of real transforms, ala FFTPACK, so are not optimal.) * DHTs (Discrete Hartley Transforms), again via post-processing of real transforms (and thus suboptimal, for now). * Support for linking to just those parts of FFTW that you need, greatly reducing the size of statically linked programs when only a limited set of transform sizes/types are required. * Canonical global wisdom file (/etc/fftw/wisdom) on Unix, along with a command-line tool (fftw-wisdom) to generate/update it. * Fortran API can be used with both g77 and non-g77 compilers simultaneously. * Multi-threaded version has optional OpenMP support. * Authors' good looks have greatly improved with age.
2003-04-30 00:48:45 +02:00
BUILDLINK_FILES.fftw+= include/fftw3.f
BUILDLINK_FILES.fftw+= include/fftw3.h
BUILDLINK_FILES.fftw+= lib/libfftw3.*
2002-12-14 18:56:18 +01:00
BUILDLINK_TARGETS+= fftw-buildlink
fftw-buildlink: _BUILDLINK_USE
.endif # FFTW_BUILDLINK2_MK